--- library_name: transformers base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-960h-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8928571428571429 --- # wav2vec2-base-960h-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2908 - Accuracy: 0.8929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5519 | 1.0 | 70 | 0.4880 | 0.8571 | | 0.8835 | 2.0 | 140 | 0.6964 | 0.7286 | | 0.3766 | 3.0 | 210 | 0.3114 | 0.8714 | | 0.2251 | 4.0 | 280 | 0.2908 | 0.8929 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cpu - Datasets 3.5.1 - Tokenizers 0.21.1