--- model-index: - name: XYZ-embedding-zh-v2 results: - dataset: config: default name: MTEB AFQMC revision: None split: validation type: C-MTEB/AFQMC metrics: - type: cos_sim_pearson value: 55.51799059309076 - type: cos_sim_spearman value: 58.407433584137806 - type: manhattan_pearson value: 57.17473672145622 - type: manhattan_spearman value: 58.389018054159955 - type: euclidean_pearson value: 57.19483956761451 - type: euclidean_spearman value: 58.407433584137806 - type: main_score value: 58.407433584137806 task: type: STS - dataset: config: default name: MTEB ATEC revision: None split: test type: C-MTEB/ATEC metrics: - type: cos_sim_pearson value: 57.31078155367183 - type: cos_sim_spearman value: 57.59782762324478 - type: manhattan_pearson value: 62.525487007985035 - type: manhattan_spearman value: 57.591139966303615 - type: euclidean_pearson value: 62.53702437760052 - type: euclidean_spearman value: 57.597828749091384 - type: main_score value: 57.59782762324478 task: type: STS - dataset: config: zh name: MTEB AmazonReviewsClassification (zh) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 49.374 - type: accuracy_stderr value: 1.436636349254743 - type: f1 value: 47.115240601017774 - type: f1_stderr value: 1.5642799356594534 - type: main_score value: 49.374 task: type: Classification - dataset: config: default name: MTEB BQ revision: None split: test type: C-MTEB/BQ metrics: - type: cos_sim_pearson value: 71.49514309404829 - type: cos_sim_spearman value: 72.66161713021279 - type: manhattan_pearson value: 71.03443640254005 - type: manhattan_spearman value: 72.63439621980275 - type: euclidean_pearson value: 71.06830370642658 - type: euclidean_spearman value: 72.66161713043078 - type: main_score value: 72.66161713021279 task: type: STS - dataset: config: default name: MTEB CLSClusteringP2P revision: None split: test type: C-MTEB/CLSClusteringP2P metrics: - type: v_measure value: 57.237692641281 - type: v_measure_std value: 1.2777768354339174 - type: main_score value: 57.237692641281 task: type: Clustering - dataset: config: default name: MTEB CLSClusteringS2S revision: None split: test type: C-MTEB/CLSClusteringS2S metrics: - type: v_measure value: 48.41686666939331 - type: v_measure_std value: 1.7663118461900793 - type: main_score value: 48.41686666939331 task: type: Clustering - dataset: config: default name: MTEB CMedQAv1 revision: None split: test type: C-MTEB/CMedQAv1-reranking metrics: - type: map value: 89.9766367822762 - type: mrr value: 91.88896825396824 - type: main_score value: 89.9766367822762 task: type: Reranking - dataset: config: default name: MTEB CMedQAv2 revision: None split: test type: C-MTEB/CMedQAv2-reranking metrics: - type: map value: 89.04628340075982 - type: mrr value: 91.21702380952381 - type: main_score value: 89.04628340075982 task: type: Reranking - dataset: config: default name: MTEB CmedqaRetrieval revision: None split: dev type: C-MTEB/CmedqaRetrieval metrics: - type: map_at_1 value: 27.796 - type: map_at_10 value: 41.498000000000005 - type: map_at_100 value: 43.332 - type: map_at_1000 value: 43.429 - type: map_at_3 value: 37.172 - type: map_at_5 value: 39.617000000000004 - type: mrr_at_1 value: 42.111 - type: mrr_at_10 value: 50.726000000000006 - type: mrr_at_100 value: 51.632 - type: mrr_at_1000 value: 51.67 - type: mrr_at_3 value: 48.429 - type: mrr_at_5 value: 49.662 - type: ndcg_at_1 value: 42.111 - type: ndcg_at_10 value: 48.294 - type: ndcg_at_100 value: 55.135999999999996 - type: ndcg_at_1000 value: 56.818000000000005 - type: ndcg_at_3 value: 43.185 - type: ndcg_at_5 value: 45.266 - type: precision_at_1 value: 42.111 - type: precision_at_10 value: 10.635 - type: precision_at_100 value: 1.619 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 24.539 - type: precision_at_5 value: 17.644000000000002 - type: recall_at_1 value: 27.796 - type: recall_at_10 value: 59.034 - type: recall_at_100 value: 86.991 - type: recall_at_1000 value: 98.304 - type: recall_at_3 value: 43.356 - type: recall_at_5 value: 49.998 - type: main_score value: 48.294 task: type: Retrieval - dataset: config: default name: MTEB Cmnli revision: None split: validation type: C-MTEB/CMNLI metrics: - type: cos_sim_accuracy value: 82.8983764281419 - type: cos_sim_accuracy_threshold value: 56.05731010437012 - type: cos_sim_ap value: 90.23156362696572 - type: cos_sim_f1 value: 83.83207278307574 - type: cos_sim_f1_threshold value: 52.05453634262085 - type: cos_sim_precision value: 78.91044160132068 - type: cos_sim_recall value: 89.40846387654898 - type: dot_accuracy value: 82.8983764281419 - type: dot_accuracy_threshold value: 56.05730414390564 - type: dot_ap value: 90.20952356258861 - type: dot_f1 value: 83.83207278307574 - type: dot_f1_threshold value: 52.054524421691895 - type: dot_precision value: 78.91044160132068 - type: dot_recall value: 89.40846387654898 - type: euclidean_accuracy value: 82.8983764281419 - type: euclidean_accuracy_threshold value: 93.74719858169556 - type: euclidean_ap value: 90.23156283510565 - type: euclidean_f1 value: 83.83207278307574 - type: euclidean_f1_threshold value: 97.92392253875732 - type: euclidean_precision value: 78.91044160132068 - type: euclidean_recall value: 89.40846387654898 - type: manhattan_accuracy value: 82.85027059530968 - type: manhattan_accuracy_threshold value: 3164.584159851074 - type: manhattan_ap value: 90.23178004516869 - type: manhattan_f1 value: 83.82157123834887 - type: manhattan_f1_threshold value: 3273.5992431640625 - type: manhattan_precision value: 79.76768743400211 - type: manhattan_recall value: 88.30956277764788 - type: max_accuracy value: 82.8983764281419 - type: max_ap value: 90.23178004516869 - type: max_f1 value: 83.83207278307574 task: type: PairClassification - dataset: config: default name: MTEB CovidRetrieval revision: None split: dev type: C-MTEB/CovidRetrieval metrics: - type: map_at_1 value: 80.479 - type: map_at_10 value: 87.984 - type: map_at_100 value: 88.036 - type: map_at_1000 value: 88.03699999999999 - type: map_at_3 value: 87.083 - type: map_at_5 value: 87.694 - type: mrr_at_1 value: 80.927 - type: mrr_at_10 value: 88.046 - type: mrr_at_100 value: 88.099 - type: mrr_at_1000 value: 88.1 - type: mrr_at_3 value: 87.215 - type: mrr_at_5 value: 87.768 - type: ndcg_at_1 value: 80.927 - type: ndcg_at_10 value: 90.756 - type: ndcg_at_100 value: 90.96 - type: ndcg_at_1000 value: 90.975 - type: ndcg_at_3 value: 89.032 - type: ndcg_at_5 value: 90.106 - type: precision_at_1 value: 80.927 - type: precision_at_10 value: 10.011000000000001 - type: precision_at_100 value: 1.009 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 31.752999999999997 - type: precision_at_5 value: 19.6 - type: recall_at_1 value: 80.479 - type: recall_at_10 value: 99.05199999999999 - type: recall_at_100 value: 99.895 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 94.494 - type: recall_at_5 value: 97.102 - type: main_score value: 90.756 task: type: Retrieval - dataset: config: default name: MTEB DuRetrieval revision: None split: dev type: C-MTEB/DuRetrieval metrics: - type: map_at_1 value: 27.853 - type: map_at_10 value: 85.13199999999999 - type: map_at_100 value: 87.688 - type: map_at_1000 value: 87.712 - type: map_at_3 value: 59.705 - type: map_at_5 value: 75.139 - type: mrr_at_1 value: 93.65 - type: mrr_at_10 value: 95.682 - type: mrr_at_100 value: 95.722 - type: mrr_at_1000 value: 95.724 - type: mrr_at_3 value: 95.467 - type: mrr_at_5 value: 95.612 - type: ndcg_at_1 value: 93.65 - type: ndcg_at_10 value: 91.155 - type: ndcg_at_100 value: 93.183 - type: ndcg_at_1000 value: 93.38499999999999 - type: ndcg_at_3 value: 90.648 - type: ndcg_at_5 value: 89.47699999999999 - type: precision_at_1 value: 93.65 - type: precision_at_10 value: 43.11 - type: precision_at_100 value: 4.854 - type: precision_at_1000 value: 0.49100000000000005 - type: precision_at_3 value: 81.11699999999999 - type: precision_at_5 value: 68.28999999999999 - type: recall_at_1 value: 27.853 - type: recall_at_10 value: 91.678 - type: recall_at_100 value: 98.553 - type: recall_at_1000 value: 99.553 - type: recall_at_3 value: 61.381 - type: recall_at_5 value: 78.605 - type: main_score value: 91.155 task: type: Retrieval - dataset: config: default name: MTEB EcomRetrieval revision: None split: dev type: C-MTEB/EcomRetrieval metrics: - type: map_at_1 value: 54.50000000000001 - type: map_at_10 value: 65.167 - type: map_at_100 value: 65.664 - type: map_at_1000 value: 65.67399999999999 - type: map_at_3 value: 62.633 - type: map_at_5 value: 64.208 - type: mrr_at_1 value: 54.50000000000001 - type: mrr_at_10 value: 65.167 - type: mrr_at_100 value: 65.664 - type: mrr_at_1000 value: 65.67399999999999 - type: mrr_at_3 value: 62.633 - type: mrr_at_5 value: 64.208 - type: ndcg_at_1 value: 54.50000000000001 - type: ndcg_at_10 value: 70.294 - type: ndcg_at_100 value: 72.564 - type: ndcg_at_1000 value: 72.841 - type: ndcg_at_3 value: 65.128 - type: ndcg_at_5 value: 67.96799999999999 - type: precision_at_1 value: 54.50000000000001 - type: precision_at_10 value: 8.64 - type: precision_at_100 value: 0.967 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 24.099999999999998 - type: precision_at_5 value: 15.840000000000002 - type: recall_at_1 value: 54.50000000000001 - type: recall_at_10 value: 86.4 - type: recall_at_100 value: 96.7 - type: recall_at_1000 value: 98.9 - type: recall_at_3 value: 72.3 - type: recall_at_5 value: 79.2 - type: main_score value: 70.294 task: type: Retrieval - dataset: config: default name: MTEB IFlyTek revision: None split: validation type: C-MTEB/IFlyTek-classification metrics: - type: accuracy value: 52.743362831858406 - type: accuracy_stderr value: 0.23768288128480788 - type: f1 value: 41.1548855278405 - type: f1_stderr value: 0.4088759842813554 - type: main_score value: 52.743362831858406 task: type: Classification - dataset: config: default name: MTEB JDReview revision: None split: test type: C-MTEB/JDReview-classification metrics: - type: accuracy value: 89.08067542213884 - type: accuracy_stderr value: 0.9559278951487445 - type: ap value: 60.875320104586564 - type: ap_stderr value: 2.137806661565934 - type: f1 value: 84.39314192399665 - type: f1_stderr value: 1.132407155321657 - type: main_score value: 89.08067542213884 task: type: Classification - dataset: config: default name: MTEB LCQMC revision: None split: test type: C-MTEB/LCQMC metrics: - type: cos_sim_pearson value: 73.3633875566899 - type: cos_sim_spearman value: 79.27679599527615 - type: manhattan_pearson value: 79.12061667088273 - type: manhattan_spearman value: 79.26989882781706 - type: euclidean_pearson value: 79.12871362068391 - type: euclidean_spearman value: 79.27679377557219 - type: main_score value: 79.27679599527615 task: type: STS - dataset: config: default name: MTEB MMarcoReranking revision: None split: dev type: C-MTEB/Mmarco-reranking metrics: - type: map value: 37.68251937316638 - type: mrr value: 36.61746031746032 - type: main_score value: 37.68251937316638 task: type: Reranking - dataset: config: default name: MTEB MMarcoRetrieval revision: None split: dev type: C-MTEB/MMarcoRetrieval metrics: - type: map_at_1 value: 69.401 - type: map_at_10 value: 78.8 - type: map_at_100 value: 79.077 - type: map_at_1000 value: 79.081 - type: map_at_3 value: 76.97 - type: map_at_5 value: 78.185 - type: mrr_at_1 value: 71.719 - type: mrr_at_10 value: 79.327 - type: mrr_at_100 value: 79.56400000000001 - type: mrr_at_1000 value: 79.56800000000001 - type: mrr_at_3 value: 77.736 - type: mrr_at_5 value: 78.782 - type: ndcg_at_1 value: 71.719 - type: ndcg_at_10 value: 82.505 - type: ndcg_at_100 value: 83.673 - type: ndcg_at_1000 value: 83.786 - type: ndcg_at_3 value: 79.07600000000001 - type: ndcg_at_5 value: 81.122 - type: precision_at_1 value: 71.719 - type: precision_at_10 value: 9.924 - type: precision_at_100 value: 1.049 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 29.742 - type: precision_at_5 value: 18.937 - type: recall_at_1 value: 69.401 - type: recall_at_10 value: 93.349 - type: recall_at_100 value: 98.492 - type: recall_at_1000 value: 99.384 - type: recall_at_3 value: 84.385 - type: recall_at_5 value: 89.237 - type: main_score value: 82.505 task: type: Retrieval - dataset: config: zh-CN name: MTEB MassiveIntentClassification (zh-CN) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 77.9388029589778 - type: accuracy_stderr value: 1.416192788478398 - type: f1 value: 74.77765701086211 - type: f1_stderr value: 1.254859698486085 - type: main_score value: 77.9388029589778 task: type: Classification - dataset: config: zh-CN name: MTEB MassiveScenarioClassification (zh-CN) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 83.8231338264963 - type: accuracy_stderr value: 0.6973305760755886 - type: f1 value: 83.13105322628088 - type: f1_stderr value: 0.600506118139685 - type: main_score value: 83.8231338264963 task: type: Classification - dataset: config: default name: MTEB MedicalRetrieval revision: None split: dev type: C-MTEB/MedicalRetrieval metrics: - type: map_at_1 value: 57.8 - type: map_at_10 value: 64.696 - type: map_at_100 value: 65.294 - type: map_at_1000 value: 65.328 - type: map_at_3 value: 62.949999999999996 - type: map_at_5 value: 64.095 - type: mrr_at_1 value: 58.099999999999994 - type: mrr_at_10 value: 64.85 - type: mrr_at_100 value: 65.448 - type: mrr_at_1000 value: 65.482 - type: mrr_at_3 value: 63.1 - type: mrr_at_5 value: 64.23 - type: ndcg_at_1 value: 57.8 - type: ndcg_at_10 value: 68.041 - type: ndcg_at_100 value: 71.074 - type: ndcg_at_1000 value: 71.919 - type: ndcg_at_3 value: 64.584 - type: ndcg_at_5 value: 66.625 - type: precision_at_1 value: 57.8 - type: precision_at_10 value: 7.85 - type: precision_at_100 value: 0.9289999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 23.1 - type: precision_at_5 value: 14.84 - type: recall_at_1 value: 57.8 - type: recall_at_10 value: 78.5 - type: recall_at_100 value: 92.9 - type: recall_at_1000 value: 99.4 - type: recall_at_3 value: 69.3 - type: recall_at_5 value: 74.2 - type: main_score value: 68.041 task: type: Retrieval - dataset: config: default name: MTEB MultilingualSentiment revision: None split: validation type: C-MTEB/MultilingualSentiment-classification metrics: - type: accuracy value: 78.60333333333334 - type: accuracy_stderr value: 0.3331499495555859 - type: f1 value: 78.4814340961856 - type: f1_stderr value: 0.45721454672060496 - type: main_score value: 78.60333333333334 task: type: Classification - dataset: config: default name: MTEB Ocnli revision: None split: validation type: C-MTEB/OCNLI metrics: - type: cos_sim_accuracy value: 80.5630752571738 - type: cos_sim_accuracy_threshold value: 53.72971296310425 - type: cos_sim_ap value: 85.61885910463258 - type: cos_sim_f1 value: 82.40469208211144 - type: cos_sim_f1_threshold value: 50.07883310317993 - type: cos_sim_precision value: 76.70609645131938 - type: cos_sim_recall value: 89.01795142555439 - type: dot_accuracy value: 80.5630752571738 - type: dot_accuracy_threshold value: 53.7297248840332 - type: dot_ap value: 85.61885910463258 - type: dot_f1 value: 82.40469208211144 - type: dot_f1_threshold value: 50.07884502410889 - type: dot_precision value: 76.70609645131938 - type: dot_recall value: 89.01795142555439 - type: euclidean_accuracy value: 80.5630752571738 - type: euclidean_accuracy_threshold value: 96.19801044464111 - type: euclidean_ap value: 85.61885910463258 - type: euclidean_f1 value: 82.40469208211144 - type: euclidean_f1_threshold value: 99.92111921310425 - type: euclidean_precision value: 76.70609645131938 - type: euclidean_recall value: 89.01795142555439 - type: manhattan_accuracy value: 80.67135896047645 - type: manhattan_accuracy_threshold value: 3323.1739044189453 - type: manhattan_ap value: 85.55348220886658 - type: manhattan_f1 value: 82.26744186046511 - type: manhattan_f1_threshold value: 3389.273452758789 - type: manhattan_precision value: 76.00716204118174 - type: manhattan_recall value: 89.65153115100317 - type: max_accuracy value: 80.67135896047645 - type: max_ap value: 85.61885910463258 - type: max_f1 value: 82.40469208211144 task: type: PairClassification - dataset: config: default name: MTEB OnlineShopping revision: None split: test type: C-MTEB/OnlineShopping-classification metrics: - type: accuracy value: 94.94 - type: accuracy_stderr value: 0.49030602688525093 - type: ap value: 93.0785841977823 - type: ap_stderr value: 0.5447383082750599 - type: f1 value: 94.92765777406245 - type: f1_stderr value: 0.4891510966106189 - type: main_score value: 94.94 task: type: Classification - dataset: config: default name: MTEB PAWSX revision: None split: test type: C-MTEB/PAWSX metrics: - type: cos_sim_pearson value: 36.564307811370654 - type: cos_sim_spearman value: 42.44208208349051 - type: manhattan_pearson value: 42.099358471578306 - type: manhattan_spearman value: 42.50283181486304 - type: euclidean_pearson value: 42.07954956675317 - type: euclidean_spearman value: 42.453014115018554 - type: main_score value: 42.44208208349051 task: type: STS - dataset: config: default name: MTEB QBQTC revision: None split: test type: C-MTEB/QBQTC metrics: - type: cos_sim_pearson value: 39.19092968089104 - type: cos_sim_spearman value: 41.5174661348832 - type: manhattan_pearson value: 37.91587646684523 - type: manhattan_spearman value: 41.536668677987194 - type: euclidean_pearson value: 37.91079973901135 - type: euclidean_spearman value: 41.51833855501128 - type: main_score value: 41.5174661348832 task: type: STS - dataset: config: zh name: MTEB STS22 (zh) revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_pearson value: 62.029449510721605 - type: cos_sim_spearman value: 66.31935471251364 - type: manhattan_pearson value: 63.63179975157496 - type: manhattan_spearman value: 66.3007950466125 - type: euclidean_pearson value: 63.59752734041086 - type: euclidean_spearman value: 66.31935471251364 - type: main_score value: 66.31935471251364 task: type: STS - dataset: config: default name: MTEB STSB revision: None split: test type: C-MTEB/STSB metrics: - type: cos_sim_pearson value: 81.81459862563769 - type: cos_sim_spearman value: 82.15323953301453 - type: manhattan_pearson value: 81.61904305126016 - type: manhattan_spearman value: 82.1361073852468 - type: euclidean_pearson value: 81.60799063723992 - type: euclidean_spearman value: 82.15405405083231 - type: main_score value: 82.15323953301453 task: type: STS - dataset: config: default name: MTEB T2Reranking revision: None split: dev type: C-MTEB/T2Reranking metrics: - type: map value: 69.13560834260383 - type: mrr value: 79.95749642669074 - type: main_score value: 69.13560834260383 task: type: Reranking - dataset: config: default name: MTEB T2Retrieval revision: None split: dev type: C-MTEB/T2Retrieval metrics: - type: map_at_1 value: 28.041 - type: map_at_10 value: 78.509 - type: map_at_100 value: 82.083 - type: map_at_1000 value: 82.143 - type: map_at_3 value: 55.345 - type: map_at_5 value: 67.899 - type: mrr_at_1 value: 90.86 - type: mrr_at_10 value: 93.31 - type: mrr_at_100 value: 93.388 - type: mrr_at_1000 value: 93.391 - type: mrr_at_3 value: 92.92200000000001 - type: mrr_at_5 value: 93.167 - type: ndcg_at_1 value: 90.86 - type: ndcg_at_10 value: 85.875 - type: ndcg_at_100 value: 89.269 - type: ndcg_at_1000 value: 89.827 - type: ndcg_at_3 value: 87.254 - type: ndcg_at_5 value: 85.855 - type: precision_at_1 value: 90.86 - type: precision_at_10 value: 42.488 - type: precision_at_100 value: 5.029 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 76.172 - type: precision_at_5 value: 63.759 - type: recall_at_1 value: 28.041 - type: recall_at_10 value: 84.829 - type: recall_at_100 value: 95.89999999999999 - type: recall_at_1000 value: 98.665 - type: recall_at_3 value: 57.009 - type: recall_at_5 value: 71.188 - type: main_score value: 85.875 task: type: Retrieval - dataset: config: default name: MTEB TNews revision: None split: validation type: C-MTEB/TNews-classification metrics: - type: accuracy value: 54.309000000000005 - type: accuracy_stderr value: 0.4694347665011627 - type: f1 value: 52.598803987889255 - type: f1_stderr value: 0.5191189533227434 - type: main_score value: 54.309000000000005 task: type: Classification - dataset: config: default name: MTEB ThuNewsClusteringP2P revision: None split: test type: C-MTEB/ThuNewsClusteringP2P metrics: - type: v_measure value: 76.64191229011249 - type: v_measure_std value: 2.807206940615986 - type: main_score value: 76.64191229011249 task: type: Clustering - dataset: config: default name: MTEB ThuNewsClusteringS2S revision: None split: test type: C-MTEB/ThuNewsClusteringS2S metrics: - type: v_measure value: 71.02529199411326 - type: v_measure_std value: 2.0547855888165945 - type: main_score value: 71.02529199411326 task: type: Clustering - dataset: config: default name: MTEB VideoRetrieval revision: None split: dev type: C-MTEB/VideoRetrieval metrics: - type: map_at_1 value: 67.30000000000001 - type: map_at_10 value: 76.819 - type: map_at_100 value: 77.141 - type: map_at_1000 value: 77.142 - type: map_at_3 value: 75.233 - type: map_at_5 value: 76.163 - type: mrr_at_1 value: 67.30000000000001 - type: mrr_at_10 value: 76.819 - type: mrr_at_100 value: 77.141 - type: mrr_at_1000 value: 77.142 - type: mrr_at_3 value: 75.233 - type: mrr_at_5 value: 76.163 - type: ndcg_at_1 value: 67.30000000000001 - type: ndcg_at_10 value: 80.93599999999999 - type: ndcg_at_100 value: 82.311 - type: ndcg_at_1000 value: 82.349 - type: ndcg_at_3 value: 77.724 - type: ndcg_at_5 value: 79.406 - type: precision_at_1 value: 67.30000000000001 - type: precision_at_10 value: 9.36 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 28.299999999999997 - type: precision_at_5 value: 17.8 - type: recall_at_1 value: 67.30000000000001 - type: recall_at_10 value: 93.60000000000001 - type: recall_at_100 value: 99.6 - type: recall_at_1000 value: 99.9 - type: recall_at_3 value: 84.89999999999999 - type: recall_at_5 value: 89.0 - type: main_score value: 80.93599999999999 task: type: Retrieval - dataset: config: default name: MTEB Waimai revision: None split: test type: C-MTEB/waimai-classification metrics: - type: accuracy value: 89.47 - type: accuracy_stderr value: 0.26476404589747476 - type: ap value: 75.49555223825388 - type: ap_stderr value: 0.596040511982105 - type: f1 value: 88.01797939221065 - type: f1_stderr value: 0.27168216797281214 - type: main_score value: 89.47 task: type: Classification tags: - mteb ---