--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: cnn_dailymail-summarization-t5-small-2022-09-08 results: - task: name: Summarization type: summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 41.4235 --- # cnn_dailymail-summarization-t5-small-2022-09-08 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.6455 - Rouge1: 41.4235 - Rouge2: 19.0263 - Rougel: 29.2892 - Rougelsum: 38.6338 - Gen Len: 73.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8435 | 0.28 | 10000 | 1.6998 | 24.3321 | 11.599 | 20.1028 | 22.9562 | 18.9997 | | 1.8464 | 0.56 | 20000 | 1.6814 | 24.4483 | 11.6789 | 20.1798 | 23.0508 | 18.9996 | | 1.8332 | 0.84 | 30000 | 1.6738 | 24.5531 | 11.7949 | 20.2834 | 23.1588 | 18.9994 | | 1.8054 | 1.11 | 40000 | 1.6636 | 24.6194 | 11.843 | 20.3375 | 23.2259 | 18.9991 | | 1.7958 | 1.39 | 50000 | 1.6597 | 24.5017 | 11.7755 | 20.2439 | 23.1148 | 18.9998 | | 1.8095 | 1.67 | 60000 | 1.6546 | 24.5126 | 11.8043 | 20.2603 | 23.1175 | 18.9999 | | 1.8127 | 1.95 | 70000 | 1.6521 | 24.4845 | 11.8136 | 20.2557 | 23.1089 | 18.9999 | | 1.7952 | 2.23 | 80000 | 1.6488 | 24.6217 | 11.8877 | 20.3555 | 23.2514 | 18.9996 | | 1.7863 | 2.51 | 90000 | 1.6477 | 24.5616 | 11.8489 | 20.3021 | 23.1754 | 18.9996 | | 1.7824 | 2.79 | 100000 | 1.6464 | 24.5852 | 11.8531 | 20.3172 | 23.2089 | 18.9998 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1