--- tags: - autotrain - tabular - regression - tabular-regression datasets: - autotrain-vessel-eta/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.2033836841583252 - mse: 53092.500978994 - mae: 150.96381290340423 - rmse: 230.41810037189788 - rmsle: 0.9569819523414094 - loss: 230.41810037189788 ## Best Params - learning_rate: 0.0695392185390836 - reg_lambda: 0.00017542491817558795 - reg_alpha: 0.6577124531542021 - subsample: 0.3632574815242663 - colsample_bytree: 0.8007491192913739 - max_depth: 4 - early_stopping_rounds: 166 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```