--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: 13689062-8dc0-4f07-a026-44bf310e11b7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ba221e666247b30d_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: fats-fme/13689062-8dc0-4f07-a026-44bf310e11b7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: constant_with_warmup max_memory: 0: 130GB max_steps: 100 micro_batch_size: 1 mlflow_experiment_name: /tmp/ba221e666247b30d_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 saves_per_epoch: null sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true use_scaled_dot_product_attention: false val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 153d744e-8c15-4bee-bb08-3e0c6f7d29ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 153d744e-8c15-4bee-bb08-3e0c6f7d29ac warmup_steps: 200 weight_decay: 0.01 xformers_attention: null ```

# 13689062-8dc0-4f07-a026-44bf310e11b7 This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 200 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0020 | 1 | nan | | 4.1393 | 0.1985 | 100 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1