Sentence Similarity
Transformers
Safetensors
multilingual
nllb-llm2vec
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
| import importlib.metadata | |
| import torch | |
| from packaging import version | |
| from torch import nn | |
| from transformers import LlamaConfig, LlamaModel, LlamaPreTrainedModel | |
| from transformers.cache_utils import Cache, StaticCache | |
| from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
| from transformers.models.llama.modeling_llama import ( | |
| LlamaAttention, | |
| LlamaDecoderLayer, | |
| LlamaFlashAttention2, | |
| LlamaMLP, | |
| LlamaRMSNorm, | |
| LlamaRotaryEmbedding, | |
| LlamaSdpaAttention, | |
| ) | |
| from transformers.utils import logging | |
| from transformers.utils.import_utils import _is_package_available | |
| logger = logging.get_logger(__name__) | |
| def is_transformers_attn_greater_or_equal_4_43_1(): | |
| if not _is_package_available("transformers"): | |
| return False | |
| return version.parse(importlib.metadata.version("transformers")) >= version.parse( | |
| "4.43.1" | |
| ) | |
| class ModifiedLlamaAttention(LlamaAttention): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.is_causal = False | |
| class ModifiedLlamaFlashAttention2(LlamaFlashAttention2): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.is_causal = False | |
| class ModifiedLlamaSdpaAttention(LlamaSdpaAttention): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.is_causal = False | |
| LLAMA_ATTENTION_CLASSES = { | |
| "eager": ModifiedLlamaAttention, | |
| "flash_attention_2": ModifiedLlamaFlashAttention2, | |
| "sdpa": ModifiedLlamaSdpaAttention, | |
| } | |
| class ModifiedLlamaDecoderLayer(LlamaDecoderLayer): | |
| def __init__(self, config: LlamaConfig, layer_idx: int): | |
| nn.Module.__init__(self) | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation]( | |
| config=config, layer_idx=layer_idx | |
| ) | |
| self.mlp = LlamaMLP(config) | |
| self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = LlamaRMSNorm( | |
| config.hidden_size, eps=config.rms_norm_eps | |
| ) | |
| class LlamaEncoderModel(LlamaModel): | |
| _no_split_modules = ["ModifiedLlamaDecoderLayer"] | |
| def __init__(self, config: LlamaConfig): | |
| if not is_transformers_attn_greater_or_equal_4_43_1(): | |
| raise ValueError( | |
| "The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1" | |
| ) | |
| LlamaPreTrainedModel.__init__(self, config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding( | |
| config.vocab_size, config.hidden_size, self.padding_idx | |
| ) | |
| self.layers = nn.ModuleList( | |
| [ | |
| ModifiedLlamaDecoderLayer(config, layer_idx) | |
| for layer_idx in range(config.num_hidden_layers) | |
| ] | |
| ) | |
| self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.rotary_emb = LlamaRotaryEmbedding(config=config) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def _update_causal_mask( | |
| self, | |
| attention_mask, | |
| input_tensor, | |
| cache_position, | |
| past_key_values: Cache, | |
| output_attentions: bool, | |
| ): | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
| # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
| # to infer the attention mask. | |
| past_seen_tokens = ( | |
| past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| ) | |
| using_static_cache = isinstance(past_key_values, StaticCache) | |
| # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
| # if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
| # if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
| # attention_mask, | |
| # inputs_embeds=input_tensor, | |
| # past_key_values_length=past_seen_tokens, | |
| # is_training=self.training, | |
| # ): | |
| # return None | |
| dtype, device = input_tensor.dtype, input_tensor.device | |
| min_dtype = torch.finfo(dtype).min | |
| sequence_length = input_tensor.shape[1] | |
| if using_static_cache: | |
| target_length = past_key_values.get_max_length() | |
| else: | |
| target_length = ( | |
| attention_mask.shape[-1] | |
| if isinstance(attention_mask, torch.Tensor) | |
| else past_seen_tokens + sequence_length + 1 | |
| ) | |
| causal_mask = torch.zeros( | |
| (sequence_length, target_length), dtype=dtype, device=device | |
| ) # in original implementation - torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
| # Commenting out next 2 lines to disable causal masking | |
| # if sequence_length != 1: | |
| # causal_mask = torch.triu(causal_mask, diagonal=1) | |
| causal_mask *= torch.arange( | |
| target_length, device=device | |
| ) > cache_position.reshape(-1, 1) | |
| causal_mask = causal_mask[None, None, :, :].expand( | |
| input_tensor.shape[0], 1, -1, -1 | |
| ) | |
| if attention_mask is not None: | |
| causal_mask = ( | |
| causal_mask.clone() | |
| ) # copy to contiguous memory for in-place edit | |
| if attention_mask.dim() == 2: | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[ | |
| :, None, None, : | |
| ].eq(0.0) | |
| causal_mask[..., :mask_length] = causal_mask[ | |
| ..., :mask_length | |
| ].masked_fill(padding_mask, min_dtype) | |
| elif attention_mask.dim() == 4: | |
| # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with | |
| # cache. In that case, the 4D attention mask attends to the newest tokens only. | |
| if attention_mask.shape[-2] < cache_position[0] + sequence_length: | |
| offset = cache_position[0] | |
| else: | |
| offset = 0 | |
| mask_shape = attention_mask.shape | |
| mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype | |
| causal_mask[ | |
| : mask_shape[0], | |
| : mask_shape[1], | |
| offset : mask_shape[2] + offset, | |
| : mask_shape[3], | |
| ] = mask_slice | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and attention_mask is not None | |
| and attention_mask.device.type == "cuda" | |
| and not output_attentions | |
| ): | |
| causal_mask = AttentionMaskConverter._unmask_unattended( | |
| causal_mask, min_dtype | |
| ) | |
| return causal_mask | |