--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - precision - recall model-index: - name: finetuned-sentiment-analysis-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.909 - name: Precision type: precision value: 0.8899803536345776 - name: Recall type: recall value: 0.9282786885245902 --- # finetuned-sentiment-analysis-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3