--- library_name: transformers base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - kojo-george/asanti-twi-tts metrics: - wer model-index: - name: Whisper ASR Asanti Twi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kojo-george/asanti-twi-tts type: asanti-twi-dataset args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 18.398768283294842 --- # Whisper ASR Asanti Twi This model is a fine-tuned version of [openai/whisper-turbo](https://huggingface.co/openai/whisper-turbo) on the kojo-george/asanti-twi-tts dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 - Wer: 18.3988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.226 | 0.5666 | 1000 | 0.3430 | 25.6197 | | 0.1438 | 1.1331 | 2000 | 0.2737 | 20.8776 | | 0.1277 | 1.6997 | 3000 | 0.2353 | 18.9530 | | 0.083 | 2.2663 | 4000 | 0.2205 | 18.3988 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3