fengyao1909 commited on
Commit
f4bc73e
·
verified ·
1 Parent(s): 496fb4d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3MoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "decoder_sparse_step": 1,
9
+ "eos_token_id": 151643,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 6144,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 48,
17
+ "mlp_only_layers": [],
18
+ "model_type": "qwen3_moe",
19
+ "moe_intermediate_size": 768,
20
+ "norm_topk_prob": true,
21
+ "num_attention_heads": 32,
22
+ "num_experts": 128,
23
+ "num_experts_per_tok": 8,
24
+ "num_hidden_layers": 48,
25
+ "num_key_value_heads": 4,
26
+ "output_router_logits": false,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000.0,
30
+ "router_aux_loss_coef": 0.001,
31
+ "sliding_window": null,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.3",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "vocab_size": 151936
38
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.51.3"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:917e6f64f67d236721c5a413b1b9f9b1605b63e23db9f4dfa09d00285cad13bd
3
+ size 4997184968
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89fd5814f041245d0b2770eb6ab868f85bd550717c866a383ea84415c1e10461
3
+ size 4997741608
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faab4261de7a610abed9f957e4e963a8cba785685323b10e2c06185a2e9915c4
3
+ size 4997742208
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebb92de0f429ab979f722453b119a9718f19059f58fca6e66a40dc59311ddc66
3
+ size 4997743184
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc9381e2dc726321ba4f2b36976caf62f32b920efbac77d0e8fadd2c456b3a3
3
+ size 4997743184
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f37156cceeed828156c429ecd88ce614d8a1b000c1a60d17e69e41440f8cf11d
3
+ size 4997743184
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f07eb10815e4e876891dfbe3dc6d3f3963da945808e4bb3b09d09ec68b9adcec
3
+ size 4997743184
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e5dba1474b4a518186c3e3892f0811cd74d04686efc7014e5ebd1bfd8b998ab
3
+ size 4997743184
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:574ff3a368a21320aadf3b9b6070e1559db0c881ec4e40e244a6e265ead78fa8
3
+ size 4997743184
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e088342653eadbdef8f9a77e24c5754a5194b30049ed4b603ef4cf5d380c60aa
3
+ size 4997743184
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d05876ce8483f75b36d48c3c474e49e86d2e9b00142f7fd49bf80a731c89e495
3
+ size 4997743184
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23f44b5fb3411cddc6767c0c8ad32595e1b8ac8aa4192f684247bef5f49f9b12
3
+ size 4997743184
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2711a48ef21343b6730775111a9fc2e92e1ce800104c489e95626cdddf0a606
3
+ size 1094220288
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:478b41e9f26d338fd8f896e08cad1adab7c423b61f1b45754113bc78d256a3f9
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce29a8767a7d907dd24987aa2c3e654d4317f3042fbc13b5b72cadb46d43311a
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a48db011646b4e9a867bf12f4a233cad5dfbfe309686f8996c250196d3783a
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9562ee822472a4f01dcd6349ab3d1ef42a48915fe3b92e843a0c37db53c8421
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d2767d83c3bf27f12db022b0632e2c4f8c164274ba75e380cf18f9d5f21819
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76816358d4e5db8149d60d55234db658d67a13c0c1ce05d7404cf7125a676a5c
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1562e7520c977d178183d641f70abcf3f57da2489938756cfbebf9b6e6c1a9fd
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6b6cabaed045c5398cd1b732f7ec48bd363f3b43cd24e0e70e641a42bd00c28
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:825456a2be34474b3f7d4794340b44d46348da11ca144f48123eda48c25337cc
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
trainer_state.json ADDED
@@ -0,0 +1,3534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9033423667570009,
6
+ "eval_steps": 500,
7
+ "global_step": 500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0018066847335140017,
14
+ "grad_norm": 2.834148994241387,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.8251,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0036133694670280035,
21
+ "grad_norm": 2.8814188855606915,
22
+ "learning_rate": 3.5714285714285716e-07,
23
+ "loss": 0.8284,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.005420054200542005,
28
+ "grad_norm": 2.8877082225775945,
29
+ "learning_rate": 7.142857142857143e-07,
30
+ "loss": 0.8432,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.007226738934056007,
35
+ "grad_norm": 2.84706824634251,
36
+ "learning_rate": 1.0714285714285714e-06,
37
+ "loss": 0.8395,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.009033423667570008,
42
+ "grad_norm": 2.763620649396407,
43
+ "learning_rate": 1.4285714285714286e-06,
44
+ "loss": 0.8291,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.01084010840108401,
49
+ "grad_norm": 2.7250326443499935,
50
+ "learning_rate": 1.7857142857142859e-06,
51
+ "loss": 0.8289,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.012646793134598013,
56
+ "grad_norm": 2.5921911890865355,
57
+ "learning_rate": 2.1428571428571427e-06,
58
+ "loss": 0.8081,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.014453477868112014,
63
+ "grad_norm": 2.5976860246328948,
64
+ "learning_rate": 2.5e-06,
65
+ "loss": 0.8152,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.016260162601626018,
70
+ "grad_norm": 2.1600249112189367,
71
+ "learning_rate": 2.8571428571428573e-06,
72
+ "loss": 0.8041,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.018066847335140017,
77
+ "grad_norm": 2.05676893822907,
78
+ "learning_rate": 3.2142857142857147e-06,
79
+ "loss": 0.7978,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.01987353206865402,
84
+ "grad_norm": 1.5227088422406245,
85
+ "learning_rate": 3.5714285714285718e-06,
86
+ "loss": 0.7766,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.02168021680216802,
91
+ "grad_norm": 1.4305134864471831,
92
+ "learning_rate": 3.928571428571429e-06,
93
+ "loss": 0.7865,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.023486901535682024,
98
+ "grad_norm": 1.3403916222492462,
99
+ "learning_rate": 4.2857142857142855e-06,
100
+ "loss": 0.7734,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.025293586269196026,
105
+ "grad_norm": 1.2438356291232484,
106
+ "learning_rate": 4.642857142857144e-06,
107
+ "loss": 0.7668,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.02710027100271003,
112
+ "grad_norm": 1.4470043220956499,
113
+ "learning_rate": 5e-06,
114
+ "loss": 0.7518,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.028906955736224028,
119
+ "grad_norm": 1.6508105965347686,
120
+ "learning_rate": 5.357142857142857e-06,
121
+ "loss": 0.7428,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.03071364046973803,
126
+ "grad_norm": 1.8197388085593902,
127
+ "learning_rate": 5.7142857142857145e-06,
128
+ "loss": 0.7504,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.032520325203252036,
133
+ "grad_norm": 1.6628024493622566,
134
+ "learning_rate": 6.071428571428571e-06,
135
+ "loss": 0.7406,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.03432700993676603,
140
+ "grad_norm": 1.3996342649224327,
141
+ "learning_rate": 6.4285714285714295e-06,
142
+ "loss": 0.7317,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.036133694670280034,
147
+ "grad_norm": 0.8529424931984829,
148
+ "learning_rate": 6.785714285714287e-06,
149
+ "loss": 0.7029,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.037940379403794036,
154
+ "grad_norm": 1.012307815845279,
155
+ "learning_rate": 7.1428571428571436e-06,
156
+ "loss": 0.7052,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.03974706413730804,
161
+ "grad_norm": 0.996083810328283,
162
+ "learning_rate": 7.500000000000001e-06,
163
+ "loss": 0.6937,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.04155374887082204,
168
+ "grad_norm": 0.9027655260544101,
169
+ "learning_rate": 7.857142857142858e-06,
170
+ "loss": 0.691,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.04336043360433604,
175
+ "grad_norm": 1.9068544177754214,
176
+ "learning_rate": 8.214285714285714e-06,
177
+ "loss": 0.697,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.045167118337850046,
182
+ "grad_norm": 0.7710305137202722,
183
+ "learning_rate": 8.571428571428571e-06,
184
+ "loss": 0.677,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.04697380307136405,
189
+ "grad_norm": 0.6673976579110235,
190
+ "learning_rate": 8.92857142857143e-06,
191
+ "loss": 0.6911,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.04878048780487805,
196
+ "grad_norm": 0.6017238871929963,
197
+ "learning_rate": 9.285714285714288e-06,
198
+ "loss": 0.667,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.05058717253839205,
203
+ "grad_norm": 0.6176897562760387,
204
+ "learning_rate": 9.642857142857144e-06,
205
+ "loss": 0.6685,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.052393857271906055,
210
+ "grad_norm": 0.5460140411641373,
211
+ "learning_rate": 1e-05,
212
+ "loss": 0.6788,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.05420054200542006,
217
+ "grad_norm": 0.5024441002282133,
218
+ "learning_rate": 9.999910480045805e-06,
219
+ "loss": 0.6776,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.05600722673893405,
224
+ "grad_norm": 0.5327568235598038,
225
+ "learning_rate": 9.999641923388745e-06,
226
+ "loss": 0.666,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.057813911472448055,
231
+ "grad_norm": 0.45860832293770903,
232
+ "learning_rate": 9.999194339645292e-06,
233
+ "loss": 0.6537,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.05962059620596206,
238
+ "grad_norm": 0.462200098378075,
239
+ "learning_rate": 9.998567744842518e-06,
240
+ "loss": 0.6639,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.06142728093947606,
245
+ "grad_norm": 0.44108437546829815,
246
+ "learning_rate": 9.997762161417517e-06,
247
+ "loss": 0.6507,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.06323396567299007,
252
+ "grad_norm": 0.4056783549136984,
253
+ "learning_rate": 9.996777618216608e-06,
254
+ "loss": 0.6559,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.06504065040650407,
259
+ "grad_norm": 0.3860777271649062,
260
+ "learning_rate": 9.995614150494293e-06,
261
+ "loss": 0.6503,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.06684733514001806,
266
+ "grad_norm": 0.434533435588928,
267
+ "learning_rate": 9.994271799912004e-06,
268
+ "loss": 0.6541,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.06865401987353206,
273
+ "grad_norm": 0.4371779969673632,
274
+ "learning_rate": 9.992750614536606e-06,
275
+ "loss": 0.6469,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.07046070460704607,
280
+ "grad_norm": 0.36457045763018364,
281
+ "learning_rate": 9.991050648838676e-06,
282
+ "loss": 0.6475,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.07226738934056007,
287
+ "grad_norm": 0.322635334253873,
288
+ "learning_rate": 9.989171963690556e-06,
289
+ "loss": 0.6366,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.07407407407407407,
294
+ "grad_norm": 0.35059303076021425,
295
+ "learning_rate": 9.987114626364172e-06,
296
+ "loss": 0.6431,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.07588075880758807,
301
+ "grad_norm": 0.36612621878509766,
302
+ "learning_rate": 9.984878710528615e-06,
303
+ "loss": 0.6339,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.07768744354110207,
308
+ "grad_norm": 0.3365894359412745,
309
+ "learning_rate": 9.982464296247523e-06,
310
+ "loss": 0.6343,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.07949412827461608,
315
+ "grad_norm": 0.3035590675895417,
316
+ "learning_rate": 9.979871469976197e-06,
317
+ "loss": 0.6275,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.08130081300813008,
322
+ "grad_norm": 0.2858077116353655,
323
+ "learning_rate": 9.97710032455851e-06,
324
+ "loss": 0.6344,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.08310749774164408,
329
+ "grad_norm": 0.2752507660143639,
330
+ "learning_rate": 9.974150959223591e-06,
331
+ "loss": 0.6362,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.08491418247515808,
336
+ "grad_norm": 0.3109343353140871,
337
+ "learning_rate": 9.971023479582258e-06,
338
+ "loss": 0.6389,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.08672086720867209,
343
+ "grad_norm": 0.27841301256018586,
344
+ "learning_rate": 9.967717997623245e-06,
345
+ "loss": 0.6256,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.08852755194218609,
350
+ "grad_norm": 0.3002752587221535,
351
+ "learning_rate": 9.964234631709188e-06,
352
+ "loss": 0.6316,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.09033423667570009,
357
+ "grad_norm": 0.24995397436718791,
358
+ "learning_rate": 9.960573506572391e-06,
359
+ "loss": 0.6303,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.0921409214092141,
364
+ "grad_norm": 0.2592033541282412,
365
+ "learning_rate": 9.956734753310355e-06,
366
+ "loss": 0.6199,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.0939476061427281,
371
+ "grad_norm": 0.26267469782137715,
372
+ "learning_rate": 9.952718509381086e-06,
373
+ "loss": 0.6381,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.0957542908762421,
378
+ "grad_norm": 0.2841156370165673,
379
+ "learning_rate": 9.948524918598175e-06,
380
+ "loss": 0.6223,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.0975609756097561,
385
+ "grad_norm": 0.2602382902911376,
386
+ "learning_rate": 9.944154131125643e-06,
387
+ "loss": 0.613,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.0993676603432701,
392
+ "grad_norm": 0.2548980055658011,
393
+ "learning_rate": 9.93960630347257e-06,
394
+ "loss": 0.6265,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.1011743450767841,
399
+ "grad_norm": 0.23755160689461077,
400
+ "learning_rate": 9.934881598487478e-06,
401
+ "loss": 0.6318,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.10298102981029811,
406
+ "grad_norm": 0.24890312911017654,
407
+ "learning_rate": 9.929980185352525e-06,
408
+ "loss": 0.6175,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.10478771454381211,
413
+ "grad_norm": 0.2773541758032373,
414
+ "learning_rate": 9.924902239577419e-06,
415
+ "loss": 0.6253,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.10659439927732611,
420
+ "grad_norm": 0.25242119733836627,
421
+ "learning_rate": 9.91964794299315e-06,
422
+ "loss": 0.611,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.10840108401084012,
427
+ "grad_norm": 0.2684984552226452,
428
+ "learning_rate": 9.914217483745472e-06,
429
+ "loss": 0.6119,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.1102077687443541,
434
+ "grad_norm": 0.2574590656590093,
435
+ "learning_rate": 9.90861105628817e-06,
436
+ "loss": 0.6159,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.1120144534778681,
441
+ "grad_norm": 0.25603682816247697,
442
+ "learning_rate": 9.902828861376101e-06,
443
+ "loss": 0.621,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.11382113821138211,
448
+ "grad_norm": 0.24731176189318566,
449
+ "learning_rate": 9.896871106057989e-06,
450
+ "loss": 0.6205,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.11562782294489611,
455
+ "grad_norm": 0.27598163635496337,
456
+ "learning_rate": 9.890738003669029e-06,
457
+ "loss": 0.6188,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.11743450767841011,
462
+ "grad_norm": 0.26447533420584596,
463
+ "learning_rate": 9.884429773823238e-06,
464
+ "loss": 0.6134,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.11924119241192412,
469
+ "grad_norm": 0.2764756892440485,
470
+ "learning_rate": 9.877946642405598e-06,
471
+ "loss": 0.6153,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.12104787714543812,
476
+ "grad_norm": 0.2878202327908946,
477
+ "learning_rate": 9.871288841563956e-06,
478
+ "loss": 0.6057,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.12285456187895212,
483
+ "grad_norm": 0.25954176321509254,
484
+ "learning_rate": 9.864456609700726e-06,
485
+ "loss": 0.6213,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.12466124661246612,
490
+ "grad_norm": 0.25912508931378314,
491
+ "learning_rate": 9.857450191464337e-06,
492
+ "loss": 0.6233,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.12646793134598014,
497
+ "grad_norm": 0.2698506612904357,
498
+ "learning_rate": 9.85026983774049e-06,
499
+ "loss": 0.6285,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.12827461607949414,
504
+ "grad_norm": 0.23787370000958719,
505
+ "learning_rate": 9.842915805643156e-06,
506
+ "loss": 0.5996,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.13008130081300814,
511
+ "grad_norm": 0.21973413712743903,
512
+ "learning_rate": 9.835388358505383e-06,
513
+ "loss": 0.6171,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.13188798554652212,
518
+ "grad_norm": 0.2542097049285353,
519
+ "learning_rate": 9.827687765869859e-06,
520
+ "loss": 0.6159,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.13369467028003612,
525
+ "grad_norm": 0.28885915694073955,
526
+ "learning_rate": 9.819814303479268e-06,
527
+ "loss": 0.6081,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.13550135501355012,
532
+ "grad_norm": 0.2732542861288398,
533
+ "learning_rate": 9.811768253266401e-06,
534
+ "loss": 0.606,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.13730803974706413,
539
+ "grad_norm": 0.2639987596902754,
540
+ "learning_rate": 9.803549903344081e-06,
541
+ "loss": 0.6016,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.13911472448057813,
546
+ "grad_norm": 0.2625743746400295,
547
+ "learning_rate": 9.79515954799483e-06,
548
+ "loss": 0.5963,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.14092140921409213,
553
+ "grad_norm": 0.2636110963817243,
554
+ "learning_rate": 9.786597487660336e-06,
555
+ "loss": 0.6082,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.14272809394760613,
560
+ "grad_norm": 0.2548650343445913,
561
+ "learning_rate": 9.777864028930705e-06,
562
+ "loss": 0.6173,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.14453477868112014,
567
+ "grad_norm": 0.24198639697590743,
568
+ "learning_rate": 9.768959484533461e-06,
569
+ "loss": 0.6262,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.14634146341463414,
574
+ "grad_norm": 0.23616390413838728,
575
+ "learning_rate": 9.75988417332237e-06,
576
+ "loss": 0.6087,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.14814814814814814,
581
+ "grad_norm": 0.24740792444302148,
582
+ "learning_rate": 9.750638420266008e-06,
583
+ "loss": 0.6023,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.14995483288166214,
588
+ "grad_norm": 0.2708089867070639,
589
+ "learning_rate": 9.741222556436132e-06,
590
+ "loss": 0.6133,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.15176151761517614,
595
+ "grad_norm": 0.23019955730854466,
596
+ "learning_rate": 9.731636918995821e-06,
597
+ "loss": 0.606,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.15356820234869015,
602
+ "grad_norm": 0.24984754231513484,
603
+ "learning_rate": 9.721881851187406e-06,
604
+ "loss": 0.6082,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.15537488708220415,
609
+ "grad_norm": 0.2514290283088365,
610
+ "learning_rate": 9.711957702320176e-06,
611
+ "loss": 0.6082,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.15718157181571815,
616
+ "grad_norm": 0.25050319285982814,
617
+ "learning_rate": 9.701864827757868e-06,
618
+ "loss": 0.6103,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.15898825654923215,
623
+ "grad_norm": 0.27127901136367444,
624
+ "learning_rate": 9.691603588905956e-06,
625
+ "loss": 0.6146,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.16079494128274616,
630
+ "grad_norm": 0.2538064222847297,
631
+ "learning_rate": 9.681174353198687e-06,
632
+ "loss": 0.6103,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.16260162601626016,
637
+ "grad_norm": 0.23895346723279925,
638
+ "learning_rate": 9.670577494085945e-06,
639
+ "loss": 0.6034,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.16440831074977416,
644
+ "grad_norm": 0.23015986092903712,
645
+ "learning_rate": 9.659813391019867e-06,
646
+ "loss": 0.6013,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.16621499548328816,
651
+ "grad_norm": 0.23826711464547476,
652
+ "learning_rate": 9.648882429441258e-06,
653
+ "loss": 0.6048,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.16802168021680217,
658
+ "grad_norm": 0.27338890022372714,
659
+ "learning_rate": 9.637785000765789e-06,
660
+ "loss": 0.6114,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.16982836495031617,
665
+ "grad_norm": 0.3426444715164819,
666
+ "learning_rate": 9.626521502369984e-06,
667
+ "loss": 0.6104,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.17163504968383017,
672
+ "grad_norm": 0.23367032192171455,
673
+ "learning_rate": 9.615092337576987e-06,
674
+ "loss": 0.6027,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.17344173441734417,
679
+ "grad_norm": 0.25432897179920155,
680
+ "learning_rate": 9.603497915642122e-06,
681
+ "loss": 0.6016,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.17524841915085818,
686
+ "grad_norm": 0.26462048665974897,
687
+ "learning_rate": 9.591738651738235e-06,
688
+ "loss": 0.6073,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.17705510388437218,
693
+ "grad_norm": 0.24672431475599113,
694
+ "learning_rate": 9.579814966940833e-06,
695
+ "loss": 0.6013,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.17886178861788618,
700
+ "grad_norm": 0.23213124494510456,
701
+ "learning_rate": 9.567727288213005e-06,
702
+ "loss": 0.6138,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.18066847335140018,
707
+ "grad_norm": 0.22763203934971926,
708
+ "learning_rate": 9.55547604839013e-06,
709
+ "loss": 0.5873,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.18247515808491419,
714
+ "grad_norm": 0.26501816102015613,
715
+ "learning_rate": 9.543061686164374e-06,
716
+ "loss": 0.6035,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.1842818428184282,
721
+ "grad_norm": 0.2413240831373431,
722
+ "learning_rate": 9.530484646068996e-06,
723
+ "loss": 0.6216,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.1860885275519422,
728
+ "grad_norm": 0.2455642901112215,
729
+ "learning_rate": 9.517745378462417e-06,
730
+ "loss": 0.6003,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.1878952122854562,
735
+ "grad_norm": 0.2372588122094204,
736
+ "learning_rate": 9.504844339512096e-06,
737
+ "loss": 0.5987,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.1897018970189702,
742
+ "grad_norm": 0.2369535320245091,
743
+ "learning_rate": 9.491781991178203e-06,
744
+ "loss": 0.5909,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.1915085817524842,
749
+ "grad_norm": 0.24116406271180205,
750
+ "learning_rate": 9.478558801197065e-06,
751
+ "loss": 0.5927,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.1933152664859982,
756
+ "grad_norm": 0.2536103123094775,
757
+ "learning_rate": 9.465175243064428e-06,
758
+ "loss": 0.5988,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.1951219512195122,
763
+ "grad_norm": 0.23921310478785365,
764
+ "learning_rate": 9.451631796018495e-06,
765
+ "loss": 0.597,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.1969286359530262,
770
+ "grad_norm": 0.26269878735675534,
771
+ "learning_rate": 9.437928945022772e-06,
772
+ "loss": 0.6068,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.1987353206865402,
777
+ "grad_norm": 0.24370446927617562,
778
+ "learning_rate": 9.424067180748692e-06,
779
+ "loss": 0.588,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.2005420054200542,
784
+ "grad_norm": 0.25487924476218216,
785
+ "learning_rate": 9.410046999558062e-06,
786
+ "loss": 0.6073,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.2023486901535682,
791
+ "grad_norm": 0.22826520458316987,
792
+ "learning_rate": 9.395868903485269e-06,
793
+ "loss": 0.6007,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.2041553748870822,
798
+ "grad_norm": 0.26322160681669377,
799
+ "learning_rate": 9.381533400219319e-06,
800
+ "loss": 0.6043,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.20596205962059622,
805
+ "grad_norm": 0.2501950853430307,
806
+ "learning_rate": 9.36704100308565e-06,
807
+ "loss": 0.5872,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.20776874435411022,
812
+ "grad_norm": 0.23922028420502847,
813
+ "learning_rate": 9.352392231027752e-06,
814
+ "loss": 0.6035,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.20957542908762422,
819
+ "grad_norm": 0.24040487245272643,
820
+ "learning_rate": 9.337587608588588e-06,
821
+ "loss": 0.5975,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.21138211382113822,
826
+ "grad_norm": 0.2535195388665429,
827
+ "learning_rate": 9.322627665891807e-06,
828
+ "loss": 0.6078,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.21318879855465223,
833
+ "grad_norm": 0.25208953663999395,
834
+ "learning_rate": 9.307512938622762e-06,
835
+ "loss": 0.5952,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.21499548328816623,
840
+ "grad_norm": 0.3012991411883545,
841
+ "learning_rate": 9.292243968009332e-06,
842
+ "loss": 0.5865,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.21680216802168023,
847
+ "grad_norm": 0.24955916880092432,
848
+ "learning_rate": 9.276821300802535e-06,
849
+ "loss": 0.6043,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.2186088527551942,
854
+ "grad_norm": 0.25955737667557055,
855
+ "learning_rate": 9.261245489256956e-06,
856
+ "loss": 0.6002,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.2204155374887082,
861
+ "grad_norm": 0.2713812159916643,
862
+ "learning_rate": 9.24551709111097e-06,
863
+ "loss": 0.6047,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.2222222222222222,
868
+ "grad_norm": 0.256661948228577,
869
+ "learning_rate": 9.229636669566769e-06,
870
+ "loss": 0.5961,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.2240289069557362,
875
+ "grad_norm": 0.2570022633057745,
876
+ "learning_rate": 9.213604793270196e-06,
877
+ "loss": 0.5821,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.22583559168925021,
882
+ "grad_norm": 0.24737028748051598,
883
+ "learning_rate": 9.197422036290386e-06,
884
+ "loss": 0.5886,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.22764227642276422,
889
+ "grad_norm": 0.23200373796347,
890
+ "learning_rate": 9.181088978099203e-06,
891
+ "loss": 0.6013,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.22944896115627822,
896
+ "grad_norm": 0.2614594061693726,
897
+ "learning_rate": 9.164606203550498e-06,
898
+ "loss": 0.5934,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.23125564588979222,
903
+ "grad_norm": 0.24202475192708897,
904
+ "learning_rate": 9.147974302859158e-06,
905
+ "loss": 0.5925,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.23306233062330622,
910
+ "grad_norm": 0.24504631186486292,
911
+ "learning_rate": 9.131193871579975e-06,
912
+ "loss": 0.5883,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.23486901535682023,
917
+ "grad_norm": 0.241479245168364,
918
+ "learning_rate": 9.114265510586329e-06,
919
+ "loss": 0.6067,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.23667570009033423,
924
+ "grad_norm": 0.25269889538291007,
925
+ "learning_rate": 9.09718982604866e-06,
926
+ "loss": 0.6005,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.23848238482384823,
931
+ "grad_norm": 0.22912564655640813,
932
+ "learning_rate": 9.079967429412766e-06,
933
+ "loss": 0.5796,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.24028906955736223,
938
+ "grad_norm": 0.31576321467577306,
939
+ "learning_rate": 9.062598937377911e-06,
940
+ "loss": 0.5952,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.24209575429087624,
945
+ "grad_norm": 0.25569462450215846,
946
+ "learning_rate": 9.045084971874738e-06,
947
+ "loss": 0.5959,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.24390243902439024,
952
+ "grad_norm": 0.23822844770081567,
953
+ "learning_rate": 9.027426160043005e-06,
954
+ "loss": 0.5926,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.24570912375790424,
959
+ "grad_norm": 0.24131282447033375,
960
+ "learning_rate": 9.00962313420912e-06,
961
+ "loss": 0.5969,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.24751580849141824,
966
+ "grad_norm": 0.22227856877632468,
967
+ "learning_rate": 8.991676531863507e-06,
968
+ "loss": 0.5801,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.24932249322493225,
973
+ "grad_norm": 0.23734800622262067,
974
+ "learning_rate": 8.973586995637778e-06,
975
+ "loss": 0.5977,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.25112917795844625,
980
+ "grad_norm": 0.23876828633881889,
981
+ "learning_rate": 8.955355173281709e-06,
982
+ "loss": 0.6007,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.2529358626919603,
987
+ "grad_norm": 0.25712286168873755,
988
+ "learning_rate": 8.936981717640061e-06,
989
+ "loss": 0.6003,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.25474254742547425,
994
+ "grad_norm": 0.27391107054484026,
995
+ "learning_rate": 8.9184672866292e-06,
996
+ "loss": 0.5808,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.2565492321589883,
1001
+ "grad_norm": 0.24435732405268018,
1002
+ "learning_rate": 8.899812543213532e-06,
1003
+ "loss": 0.601,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.25835591689250226,
1008
+ "grad_norm": 0.23867286575502863,
1009
+ "learning_rate": 8.881018155381766e-06,
1010
+ "loss": 0.5921,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.2601626016260163,
1015
+ "grad_norm": 0.2422479510828615,
1016
+ "learning_rate": 8.862084796122998e-06,
1017
+ "loss": 0.5814,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.26196928635953026,
1022
+ "grad_norm": 0.2576783987177789,
1023
+ "learning_rate": 8.84301314340261e-06,
1024
+ "loss": 0.594,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.26377597109304424,
1029
+ "grad_norm": 0.23125790193661352,
1030
+ "learning_rate": 8.823803880137993e-06,
1031
+ "loss": 0.597,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.26558265582655827,
1036
+ "grad_norm": 0.42006165912724247,
1037
+ "learning_rate": 8.804457694174093e-06,
1038
+ "loss": 0.5883,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.26738934056007224,
1043
+ "grad_norm": 0.26469920234134653,
1044
+ "learning_rate": 8.784975278258783e-06,
1045
+ "loss": 0.5896,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.26919602529358627,
1050
+ "grad_norm": 0.22003631431564813,
1051
+ "learning_rate": 8.765357330018056e-06,
1052
+ "loss": 0.5868,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.27100271002710025,
1057
+ "grad_norm": 0.22526003515742166,
1058
+ "learning_rate": 8.745604551931042e-06,
1059
+ "loss": 0.5957,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.2728093947606143,
1064
+ "grad_norm": 0.2479830093779378,
1065
+ "learning_rate": 8.725717651304856e-06,
1066
+ "loss": 0.5795,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.27461607949412825,
1071
+ "grad_norm": 0.23742908063794085,
1072
+ "learning_rate": 8.705697340249275e-06,
1073
+ "loss": 0.5851,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.2764227642276423,
1078
+ "grad_norm": 0.25930775547454743,
1079
+ "learning_rate": 8.685544335651226e-06,
1080
+ "loss": 0.5862,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.27822944896115626,
1085
+ "grad_norm": 0.23422254555588726,
1086
+ "learning_rate": 8.665259359149132e-06,
1087
+ "loss": 0.5911,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.2800361336946703,
1092
+ "grad_norm": 0.24216095846438934,
1093
+ "learning_rate": 8.644843137107058e-06,
1094
+ "loss": 0.582,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.28184281842818426,
1099
+ "grad_norm": 0.24125281024439596,
1100
+ "learning_rate": 8.62429640058871e-06,
1101
+ "loss": 0.5831,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.2836495031616983,
1106
+ "grad_norm": 0.2793788877010957,
1107
+ "learning_rate": 8.603619885331251e-06,
1108
+ "loss": 0.5958,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.28545618789521227,
1113
+ "grad_norm": 0.25516033375875935,
1114
+ "learning_rate": 8.582814331718961e-06,
1115
+ "loss": 0.593,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.2872628726287263,
1120
+ "grad_norm": 0.22739931552418488,
1121
+ "learning_rate": 8.561880484756726e-06,
1122
+ "loss": 0.5743,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.28906955736224027,
1127
+ "grad_norm": 0.2468158715198243,
1128
+ "learning_rate": 8.540819094043349e-06,
1129
+ "loss": 0.583,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.2908762420957543,
1134
+ "grad_norm": 0.25128717740643786,
1135
+ "learning_rate": 8.519630913744726e-06,
1136
+ "loss": 0.5899,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.2926829268292683,
1141
+ "grad_norm": 0.24595325998036194,
1142
+ "learning_rate": 8.498316702566828e-06,
1143
+ "loss": 0.576,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.2944896115627823,
1148
+ "grad_norm": 0.24724060243158863,
1149
+ "learning_rate": 8.476877223728539e-06,
1150
+ "loss": 0.5857,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.2962962962962963,
1155
+ "grad_norm": 0.24138093249405998,
1156
+ "learning_rate": 8.455313244934324e-06,
1157
+ "loss": 0.5948,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.2981029810298103,
1162
+ "grad_norm": 0.23669686589328862,
1163
+ "learning_rate": 8.433625538346742e-06,
1164
+ "loss": 0.586,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.2999096657633243,
1169
+ "grad_norm": 0.2449082662790083,
1170
+ "learning_rate": 8.41181488055879e-06,
1171
+ "loss": 0.5923,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.3017163504968383,
1176
+ "grad_norm": 0.2304832467395112,
1177
+ "learning_rate": 8.389882052566106e-06,
1178
+ "loss": 0.5913,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.3035230352303523,
1183
+ "grad_norm": 0.23899223073070122,
1184
+ "learning_rate": 8.36782783973899e-06,
1185
+ "loss": 0.5895,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.3053297199638663,
1190
+ "grad_norm": 0.2220823080610669,
1191
+ "learning_rate": 8.345653031794292e-06,
1192
+ "loss": 0.5819,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.3071364046973803,
1197
+ "grad_norm": 0.22768672377384522,
1198
+ "learning_rate": 8.32335842276713e-06,
1199
+ "loss": 0.5962,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.3089430894308943,
1204
+ "grad_norm": 0.3100181774645041,
1205
+ "learning_rate": 8.300944810982452e-06,
1206
+ "loss": 0.5788,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.3107497741644083,
1211
+ "grad_norm": 0.24057356644337244,
1212
+ "learning_rate": 8.278412999026462e-06,
1213
+ "loss": 0.5857,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.31255645889792233,
1218
+ "grad_norm": 0.21775769040396545,
1219
+ "learning_rate": 8.255763793717868e-06,
1220
+ "loss": 0.5888,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.3143631436314363,
1225
+ "grad_norm": 0.2356216154767705,
1226
+ "learning_rate": 8.232998006078998e-06,
1227
+ "loss": 0.5801,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.31616982836495033,
1232
+ "grad_norm": 0.22451312946018775,
1233
+ "learning_rate": 8.210116451306762e-06,
1234
+ "loss": 0.5845,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.3179765130984643,
1239
+ "grad_norm": 0.24215834930945668,
1240
+ "learning_rate": 8.18711994874345e-06,
1241
+ "loss": 0.5988,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.31978319783197834,
1246
+ "grad_norm": 0.22096563655138926,
1247
+ "learning_rate": 8.164009321847405e-06,
1248
+ "loss": 0.5739,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.3215898825654923,
1253
+ "grad_norm": 0.23114887937213074,
1254
+ "learning_rate": 8.140785398163535e-06,
1255
+ "loss": 0.5801,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.32339656729900634,
1260
+ "grad_norm": 0.24621261902091238,
1261
+ "learning_rate": 8.117449009293668e-06,
1262
+ "loss": 0.5903,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.3252032520325203,
1267
+ "grad_norm": 0.21755578147304513,
1268
+ "learning_rate": 8.094000990866795e-06,
1269
+ "loss": 0.5983,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.32700993676603435,
1274
+ "grad_norm": 0.4721115880502492,
1275
+ "learning_rate": 8.070442182509127e-06,
1276
+ "loss": 0.5761,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.3288166214995483,
1281
+ "grad_norm": 0.23709839720323575,
1282
+ "learning_rate": 8.046773427814043e-06,
1283
+ "loss": 0.5861,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.33062330623306235,
1288
+ "grad_norm": 0.2368260602274903,
1289
+ "learning_rate": 8.022995574311876e-06,
1290
+ "loss": 0.5975,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.3324299909665763,
1295
+ "grad_norm": 0.23910801570243506,
1296
+ "learning_rate": 7.99910947343957e-06,
1297
+ "loss": 0.5941,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.33423667570009036,
1302
+ "grad_norm": 0.23953108399048112,
1303
+ "learning_rate": 7.975115980510187e-06,
1304
+ "loss": 0.5905,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.33604336043360433,
1309
+ "grad_norm": 0.223257758342428,
1310
+ "learning_rate": 7.951015954682281e-06,
1311
+ "loss": 0.5857,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.33785004516711836,
1316
+ "grad_norm": 0.23272612825616595,
1317
+ "learning_rate": 7.926810258929138e-06,
1318
+ "loss": 0.5833,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.33965672990063234,
1323
+ "grad_norm": 0.23180332436404757,
1324
+ "learning_rate": 7.902499760007867e-06,
1325
+ "loss": 0.5829,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.34146341463414637,
1330
+ "grad_norm": 0.21858853978825646,
1331
+ "learning_rate": 7.87808532842837e-06,
1332
+ "loss": 0.5904,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.34327009936766034,
1337
+ "grad_norm": 0.2534706895576975,
1338
+ "learning_rate": 7.85356783842216e-06,
1339
+ "loss": 0.579,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.34507678410117437,
1344
+ "grad_norm": 0.22297606287457467,
1345
+ "learning_rate": 7.828948167911073e-06,
1346
+ "loss": 0.5772,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.34688346883468835,
1351
+ "grad_norm": 0.21979886538270768,
1352
+ "learning_rate": 7.804227198475823e-06,
1353
+ "loss": 0.5839,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.3486901535682023,
1358
+ "grad_norm": 0.23142173264795982,
1359
+ "learning_rate": 7.779405815324424e-06,
1360
+ "loss": 0.5862,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.35049683830171635,
1365
+ "grad_norm": 0.22254439764036268,
1366
+ "learning_rate": 7.754484907260513e-06,
1367
+ "loss": 0.5875,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.3523035230352303,
1372
+ "grad_norm": 0.21851884135006985,
1373
+ "learning_rate": 7.72946536665151e-06,
1374
+ "loss": 0.5707,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.35411020776874436,
1379
+ "grad_norm": 0.23339711422683737,
1380
+ "learning_rate": 7.704348089396667e-06,
1381
+ "loss": 0.584,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.35591689250225833,
1386
+ "grad_norm": 0.22860223954846823,
1387
+ "learning_rate": 7.679133974894984e-06,
1388
+ "loss": 0.5833,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.35772357723577236,
1393
+ "grad_norm": 0.23431317558060544,
1394
+ "learning_rate": 7.653823926013016e-06,
1395
+ "loss": 0.5605,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.35953026196928634,
1400
+ "grad_norm": 0.23915573089081735,
1401
+ "learning_rate": 7.628418849052523e-06,
1402
+ "loss": 0.5831,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.36133694670280037,
1407
+ "grad_norm": 0.24771798767259023,
1408
+ "learning_rate": 7.602919653718044e-06,
1409
+ "loss": 0.573,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.36314363143631434,
1414
+ "grad_norm": 0.22566217967051752,
1415
+ "learning_rate": 7.577327253084292e-06,
1416
+ "loss": 0.5675,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.36495031616982837,
1421
+ "grad_norm": 0.25869762451164763,
1422
+ "learning_rate": 7.551642563563481e-06,
1423
+ "loss": 0.5943,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.36675700090334235,
1428
+ "grad_norm": 0.2436116192126039,
1429
+ "learning_rate": 7.5258665048725065e-06,
1430
+ "loss": 0.5816,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.3685636856368564,
1435
+ "grad_norm": 0.2534916530296785,
1436
+ "learning_rate": 7.500000000000001e-06,
1437
+ "loss": 0.5939,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.37037037037037035,
1442
+ "grad_norm": 0.2398855410103261,
1443
+ "learning_rate": 7.4740439751732994e-06,
1444
+ "loss": 0.5842,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.3721770551038844,
1449
+ "grad_norm": 0.2490207053834905,
1450
+ "learning_rate": 7.447999359825263e-06,
1451
+ "loss": 0.5714,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.37398373983739835,
1456
+ "grad_norm": 0.2497379506431991,
1457
+ "learning_rate": 7.421867086561001e-06,
1458
+ "loss": 0.5797,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.3757904245709124,
1463
+ "grad_norm": 0.23639168380972936,
1464
+ "learning_rate": 7.395648091124476e-06,
1465
+ "loss": 0.5669,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.37759710930442636,
1470
+ "grad_norm": 0.26306682836445616,
1471
+ "learning_rate": 7.369343312364994e-06,
1472
+ "loss": 0.5881,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.3794037940379404,
1477
+ "grad_norm": 0.23899707885081173,
1478
+ "learning_rate": 7.342953692203594e-06,
1479
+ "loss": 0.5836,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.38121047877145436,
1484
+ "grad_norm": 0.21917547991525116,
1485
+ "learning_rate": 7.31648017559931e-06,
1486
+ "loss": 0.5845,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.3830171635049684,
1491
+ "grad_norm": 0.2498595873094313,
1492
+ "learning_rate": 7.289923710515338e-06,
1493
+ "loss": 0.5928,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.38482384823848237,
1498
+ "grad_norm": 0.23198183299347874,
1499
+ "learning_rate": 7.263285247885097e-06,
1500
+ "loss": 0.5916,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.3866305329719964,
1505
+ "grad_norm": 0.22870603046354684,
1506
+ "learning_rate": 7.236565741578163e-06,
1507
+ "loss": 0.5779,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.3884372177055104,
1512
+ "grad_norm": 0.232670901139665,
1513
+ "learning_rate": 7.2097661483661355e-06,
1514
+ "loss": 0.6046,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.3902439024390244,
1519
+ "grad_norm": 0.26519467596956026,
1520
+ "learning_rate": 7.182887427888351e-06,
1521
+ "loss": 0.5939,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.3920505871725384,
1526
+ "grad_norm": 0.2361374357204248,
1527
+ "learning_rate": 7.155930542617543e-06,
1528
+ "loss": 0.5935,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.3938572719060524,
1533
+ "grad_norm": 0.22982603176136704,
1534
+ "learning_rate": 7.128896457825364e-06,
1535
+ "loss": 0.5855,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.3956639566395664,
1540
+ "grad_norm": 0.24061444470093468,
1541
+ "learning_rate": 7.101786141547829e-06,
1542
+ "loss": 0.5802,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.3974706413730804,
1547
+ "grad_norm": 0.2657362469174554,
1548
+ "learning_rate": 7.074600564550643e-06,
1549
+ "loss": 0.5833,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.3992773261065944,
1554
+ "grad_norm": 0.25742709680526865,
1555
+ "learning_rate": 7.047340700294454e-06,
1556
+ "loss": 0.5717,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.4010840108401084,
1561
+ "grad_norm": 0.24674502467730397,
1562
+ "learning_rate": 7.020007524899976e-06,
1563
+ "loss": 0.5889,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.4028906955736224,
1568
+ "grad_norm": 0.2171692347779104,
1569
+ "learning_rate": 6.992602017113058e-06,
1570
+ "loss": 0.5713,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.4046973803071364,
1575
+ "grad_norm": 0.2498429422989435,
1576
+ "learning_rate": 6.965125158269619e-06,
1577
+ "loss": 0.5765,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.4065040650406504,
1582
+ "grad_norm": 0.33189852838778705,
1583
+ "learning_rate": 6.9375779322605154e-06,
1584
+ "loss": 0.5814,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.4083107497741644,
1589
+ "grad_norm": 0.26400537575803656,
1590
+ "learning_rate": 6.909961325496312e-06,
1591
+ "loss": 0.5878,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.4101174345076784,
1596
+ "grad_norm": 0.22155028748374633,
1597
+ "learning_rate": 6.88227632687196e-06,
1598
+ "loss": 0.592,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.41192411924119243,
1603
+ "grad_norm": 0.23981105169244862,
1604
+ "learning_rate": 6.854523927731383e-06,
1605
+ "loss": 0.5786,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.4137308039747064,
1610
+ "grad_norm": 0.2425346919111165,
1611
+ "learning_rate": 6.8267051218319766e-06,
1612
+ "loss": 0.5807,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.41553748870822044,
1617
+ "grad_norm": 0.24436971692539694,
1618
+ "learning_rate": 6.798820905309036e-06,
1619
+ "loss": 0.5831,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.4173441734417344,
1624
+ "grad_norm": 0.24576247596843034,
1625
+ "learning_rate": 6.7708722766400745e-06,
1626
+ "loss": 0.5832,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.41915085817524844,
1631
+ "grad_norm": 0.22279415909174483,
1632
+ "learning_rate": 6.7428602366090764e-06,
1633
+ "loss": 0.5859,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.4209575429087624,
1638
+ "grad_norm": 0.23515720046685648,
1639
+ "learning_rate": 6.714785788270658e-06,
1640
+ "loss": 0.567,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.42276422764227645,
1645
+ "grad_norm": 0.2249124149357309,
1646
+ "learning_rate": 6.686649936914151e-06,
1647
+ "loss": 0.5834,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.4245709123757904,
1652
+ "grad_norm": 0.22758860403193296,
1653
+ "learning_rate": 6.658453690027604e-06,
1654
+ "loss": 0.5781,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.42637759710930445,
1659
+ "grad_norm": 0.2381404018609259,
1660
+ "learning_rate": 6.63019805726171e-06,
1661
+ "loss": 0.5899,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.4281842818428184,
1666
+ "grad_norm": 0.23902637207284608,
1667
+ "learning_rate": 6.601884050393649e-06,
1668
+ "loss": 0.5885,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.42999096657633246,
1673
+ "grad_norm": 0.22765927211330927,
1674
+ "learning_rate": 6.57351268329086e-06,
1675
+ "loss": 0.5976,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.43179765130984643,
1680
+ "grad_norm": 0.22982897410990663,
1681
+ "learning_rate": 6.545084971874738e-06,
1682
+ "loss": 0.579,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.43360433604336046,
1687
+ "grad_norm": 0.2553936917989646,
1688
+ "learning_rate": 6.51660193408425e-06,
1689
+ "loss": 0.5795,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.43541102077687444,
1694
+ "grad_norm": 0.22510326077869028,
1695
+ "learning_rate": 6.4880645898394935e-06,
1696
+ "loss": 0.5777,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.4372177055103884,
1701
+ "grad_norm": 0.23299426062630849,
1702
+ "learning_rate": 6.459473961005168e-06,
1703
+ "loss": 0.5786,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.43902439024390244,
1708
+ "grad_norm": 0.2424647643940713,
1709
+ "learning_rate": 6.4308310713539845e-06,
1710
+ "loss": 0.5828,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.4408310749774164,
1715
+ "grad_norm": 0.23272151161384586,
1716
+ "learning_rate": 6.402136946530014e-06,
1717
+ "loss": 0.5881,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.44263775971093045,
1722
+ "grad_norm": 0.22802783213202982,
1723
+ "learning_rate": 6.373392614011952e-06,
1724
+ "loss": 0.5813,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.4444444444444444,
1729
+ "grad_norm": 0.2485353426062764,
1730
+ "learning_rate": 6.344599103076329e-06,
1731
+ "loss": 0.588,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.44625112917795845,
1736
+ "grad_norm": 0.21248935513626893,
1737
+ "learning_rate": 6.315757444760659e-06,
1738
+ "loss": 0.5706,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.4480578139114724,
1743
+ "grad_norm": 0.23498983453654892,
1744
+ "learning_rate": 6.286868671826513e-06,
1745
+ "loss": 0.5888,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.44986449864498645,
1750
+ "grad_norm": 0.21846215379927772,
1751
+ "learning_rate": 6.257933818722544e-06,
1752
+ "loss": 0.5719,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.45167118337850043,
1757
+ "grad_norm": 0.22767296186445063,
1758
+ "learning_rate": 6.228953921547441e-06,
1759
+ "loss": 0.5866,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.45347786811201446,
1764
+ "grad_norm": 0.22816978626710174,
1765
+ "learning_rate": 6.19993001801283e-06,
1766
+ "loss": 0.5745,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.45528455284552843,
1771
+ "grad_norm": 0.21916680779440528,
1772
+ "learning_rate": 6.17086314740612e-06,
1773
+ "loss": 0.5559,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.45709123757904246,
1778
+ "grad_norm": 0.2324362121259239,
1779
+ "learning_rate": 6.141754350553279e-06,
1780
+ "loss": 0.5788,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.45889792231255644,
1785
+ "grad_norm": 0.22348999950857165,
1786
+ "learning_rate": 6.112604669781572e-06,
1787
+ "loss": 0.5775,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.46070460704607047,
1792
+ "grad_norm": 0.23054541043455123,
1793
+ "learning_rate": 6.083415148882236e-06,
1794
+ "loss": 0.5715,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.46251129177958444,
1799
+ "grad_norm": 0.23068402595973864,
1800
+ "learning_rate": 6.054186833073096e-06,
1801
+ "loss": 0.5719,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.4643179765130985,
1806
+ "grad_norm": 0.23217623204156318,
1807
+ "learning_rate": 6.024920768961153e-06,
1808
+ "loss": 0.581,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.46612466124661245,
1813
+ "grad_norm": 0.22985330442952737,
1814
+ "learning_rate": 5.995618004505091e-06,
1815
+ "loss": 0.5767,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.4679313459801265,
1820
+ "grad_norm": 0.22449766670966562,
1821
+ "learning_rate": 5.9662795889777666e-06,
1822
+ "loss": 0.5804,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.46973803071364045,
1827
+ "grad_norm": 0.23055385442803344,
1828
+ "learning_rate": 5.936906572928625e-06,
1829
+ "loss": 0.5946,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.4715447154471545,
1834
+ "grad_norm": 0.26457326244915724,
1835
+ "learning_rate": 5.907500008146082e-06,
1836
+ "loss": 0.5857,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.47335140018066846,
1841
+ "grad_norm": 0.2172516653668416,
1842
+ "learning_rate": 5.878060947619877e-06,
1843
+ "loss": 0.5742,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.4751580849141825,
1848
+ "grad_norm": 0.2144178920324397,
1849
+ "learning_rate": 5.848590445503345e-06,
1850
+ "loss": 0.5784,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.47696476964769646,
1855
+ "grad_norm": 0.22867942289400467,
1856
+ "learning_rate": 5.819089557075689e-06,
1857
+ "loss": 0.5851,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.4787714543812105,
1862
+ "grad_norm": 0.20867595560023927,
1863
+ "learning_rate": 5.78955933870418e-06,
1864
+ "loss": 0.566,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.48057813911472447,
1869
+ "grad_norm": 0.2753862444054913,
1870
+ "learning_rate": 5.760000847806337e-06,
1871
+ "loss": 0.5902,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.4823848238482385,
1876
+ "grad_norm": 0.24641932570912456,
1877
+ "learning_rate": 5.730415142812059e-06,
1878
+ "loss": 0.5745,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.48419150858175247,
1883
+ "grad_norm": 0.23760140818207695,
1884
+ "learning_rate": 5.70080328312573e-06,
1885
+ "loss": 0.5754,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.4859981933152665,
1890
+ "grad_norm": 0.22025309526282863,
1891
+ "learning_rate": 5.671166329088278e-06,
1892
+ "loss": 0.581,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.4878048780487805,
1897
+ "grad_norm": 0.20669409641102707,
1898
+ "learning_rate": 5.641505341939212e-06,
1899
+ "loss": 0.5632,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.4896115627822945,
1904
+ "grad_norm": 0.23448298972119733,
1905
+ "learning_rate": 5.611821383778614e-06,
1906
+ "loss": 0.5848,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.4914182475158085,
1911
+ "grad_norm": 0.23237120061240638,
1912
+ "learning_rate": 5.582115517529114e-06,
1913
+ "loss": 0.5795,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.4932249322493225,
1918
+ "grad_norm": 0.23515585901808658,
1919
+ "learning_rate": 5.55238880689783e-06,
1920
+ "loss": 0.5875,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.4950316169828365,
1925
+ "grad_norm": 0.2527502719115226,
1926
+ "learning_rate": 5.522642316338268e-06,
1927
+ "loss": 0.5746,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.4968383017163505,
1932
+ "grad_norm": 0.24042048877480285,
1933
+ "learning_rate": 5.4928771110122185e-06,
1934
+ "loss": 0.5691,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.4986449864498645,
1939
+ "grad_norm": 0.22144199174125812,
1940
+ "learning_rate": 5.463094256751608e-06,
1941
+ "loss": 0.5617,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.5004516711833785,
1946
+ "grad_norm": 0.22117064677439477,
1947
+ "learning_rate": 5.433294820020335e-06,
1948
+ "loss": 0.5737,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.5022583559168925,
1953
+ "grad_norm": 0.22810855717519768,
1954
+ "learning_rate": 5.403479867876087e-06,
1955
+ "loss": 0.5602,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.5040650406504065,
1960
+ "grad_norm": 0.2431102529557088,
1961
+ "learning_rate": 5.373650467932122e-06,
1962
+ "loss": 0.5752,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.5058717253839206,
1967
+ "grad_norm": 0.21643082283869217,
1968
+ "learning_rate": 5.343807688319047e-06,
1969
+ "loss": 0.5715,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.5076784101174345,
1974
+ "grad_norm": 0.2106247958442796,
1975
+ "learning_rate": 5.3139525976465675e-06,
1976
+ "loss": 0.5726,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.5094850948509485,
1981
+ "grad_norm": 0.20535156199197266,
1982
+ "learning_rate": 5.284086264965224e-06,
1983
+ "loss": 0.5663,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.5112917795844625,
1988
+ "grad_norm": 0.2178927295972816,
1989
+ "learning_rate": 5.2542097597281095e-06,
1990
+ "loss": 0.5825,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.5130984643179766,
1995
+ "grad_norm": 0.2261778592064716,
1996
+ "learning_rate": 5.224324151752575e-06,
1997
+ "loss": 0.5703,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.5149051490514905,
2002
+ "grad_norm": 0.22392216246707566,
2003
+ "learning_rate": 5.194430511181925e-06,
2004
+ "loss": 0.5637,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.5167118337850045,
2009
+ "grad_norm": 0.2404878535442045,
2010
+ "learning_rate": 5.1645299084470936e-06,
2011
+ "loss": 0.563,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.5185185185185185,
2016
+ "grad_norm": 0.22254146427879729,
2017
+ "learning_rate": 5.134623414228315e-06,
2018
+ "loss": 0.5848,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.5203252032520326,
2023
+ "grad_norm": 0.21304622454449643,
2024
+ "learning_rate": 5.1047120994167855e-06,
2025
+ "loss": 0.5813,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.5221318879855466,
2030
+ "grad_norm": 0.22271135560602576,
2031
+ "learning_rate": 5.074797035076319e-06,
2032
+ "loss": 0.5657,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.5239385727190605,
2037
+ "grad_norm": 0.23005954607679505,
2038
+ "learning_rate": 5.04487929240499e-06,
2039
+ "loss": 0.5778,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.5257452574525745,
2044
+ "grad_norm": 0.21478376662682697,
2045
+ "learning_rate": 5.014959942696782e-06,
2046
+ "loss": 0.5821,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.5275519421860885,
2051
+ "grad_norm": 0.21969184987666926,
2052
+ "learning_rate": 4.98504005730322e-06,
2053
+ "loss": 0.5852,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.5293586269196026,
2058
+ "grad_norm": 0.21975967673073044,
2059
+ "learning_rate": 4.955120707595011e-06,
2060
+ "loss": 0.5788,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.5311653116531165,
2065
+ "grad_norm": 0.21951856116759466,
2066
+ "learning_rate": 4.9252029649236835e-06,
2067
+ "loss": 0.5708,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.5329719963866305,
2072
+ "grad_norm": 0.22120179120056116,
2073
+ "learning_rate": 4.895287900583216e-06,
2074
+ "loss": 0.5689,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.5347786811201445,
2079
+ "grad_norm": 0.22555663183495606,
2080
+ "learning_rate": 4.865376585771687e-06,
2081
+ "loss": 0.5722,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.5365853658536586,
2086
+ "grad_norm": 0.24465888318717097,
2087
+ "learning_rate": 4.835470091552906e-06,
2088
+ "loss": 0.578,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.5383920505871725,
2093
+ "grad_norm": 0.21974179994892612,
2094
+ "learning_rate": 4.805569488818077e-06,
2095
+ "loss": 0.5724,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.5401987353206865,
2100
+ "grad_norm": 0.21884986461240788,
2101
+ "learning_rate": 4.775675848247427e-06,
2102
+ "loss": 0.5885,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.5420054200542005,
2107
+ "grad_norm": 0.22111504748994093,
2108
+ "learning_rate": 4.745790240271892e-06,
2109
+ "loss": 0.576,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.5438121047877146,
2114
+ "grad_norm": 0.2120166681445097,
2115
+ "learning_rate": 4.715913735034779e-06,
2116
+ "loss": 0.5773,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.5456187895212286,
2121
+ "grad_norm": 0.21089341870029393,
2122
+ "learning_rate": 4.686047402353433e-06,
2123
+ "loss": 0.5896,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.5474254742547425,
2128
+ "grad_norm": 0.2254482836833871,
2129
+ "learning_rate": 4.6561923116809545e-06,
2130
+ "loss": 0.5709,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.5492321589882565,
2135
+ "grad_norm": 0.2106071545714772,
2136
+ "learning_rate": 4.626349532067879e-06,
2137
+ "loss": 0.5657,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.5510388437217706,
2142
+ "grad_norm": 0.22207021742532604,
2143
+ "learning_rate": 4.596520132123915e-06,
2144
+ "loss": 0.5723,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.5528455284552846,
2149
+ "grad_norm": 0.21341260540637924,
2150
+ "learning_rate": 4.566705179979665e-06,
2151
+ "loss": 0.57,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.5546522131887985,
2156
+ "grad_norm": 0.2085210802540439,
2157
+ "learning_rate": 4.536905743248394e-06,
2158
+ "loss": 0.5877,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.5564588979223125,
2163
+ "grad_norm": 0.20872893231471018,
2164
+ "learning_rate": 4.507122888987782e-06,
2165
+ "loss": 0.5673,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.5582655826558266,
2170
+ "grad_norm": 0.21452564527296392,
2171
+ "learning_rate": 4.477357683661734e-06,
2172
+ "loss": 0.5764,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.5600722673893406,
2177
+ "grad_norm": 0.2220712438136986,
2178
+ "learning_rate": 4.447611193102171e-06,
2179
+ "loss": 0.5594,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.5618789521228545,
2184
+ "grad_norm": 0.20739127928939716,
2185
+ "learning_rate": 4.417884482470887e-06,
2186
+ "loss": 0.5777,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.5636856368563685,
2191
+ "grad_norm": 0.20327606439871923,
2192
+ "learning_rate": 4.388178616221389e-06,
2193
+ "loss": 0.577,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.5654923215898826,
2198
+ "grad_norm": 0.21650542787101193,
2199
+ "learning_rate": 4.35849465806079e-06,
2200
+ "loss": 0.5789,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.5672990063233966,
2205
+ "grad_norm": 0.20691358553040365,
2206
+ "learning_rate": 4.3288336709117246e-06,
2207
+ "loss": 0.5707,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.5691056910569106,
2212
+ "grad_norm": 0.23453104931805596,
2213
+ "learning_rate": 4.299196716874271e-06,
2214
+ "loss": 0.5706,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 0.5709123757904245,
2219
+ "grad_norm": 0.21953655360969157,
2220
+ "learning_rate": 4.269584857187942e-06,
2221
+ "loss": 0.5676,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 0.5727190605239386,
2226
+ "grad_norm": 0.2092430697715485,
2227
+ "learning_rate": 4.239999152193664e-06,
2228
+ "loss": 0.5622,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 0.5745257452574526,
2233
+ "grad_norm": 0.20317177561948455,
2234
+ "learning_rate": 4.2104406612958216e-06,
2235
+ "loss": 0.5743,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 0.5763324299909666,
2240
+ "grad_norm": 0.21517519346533806,
2241
+ "learning_rate": 4.180910442924312e-06,
2242
+ "loss": 0.5843,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 0.5781391147244805,
2247
+ "grad_norm": 0.211034863639269,
2248
+ "learning_rate": 4.1514095544966556e-06,
2249
+ "loss": 0.5671,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 0.5799457994579946,
2254
+ "grad_norm": 0.21293791768630807,
2255
+ "learning_rate": 4.121939052380125e-06,
2256
+ "loss": 0.5634,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 0.5817524841915086,
2261
+ "grad_norm": 0.23990516473010776,
2262
+ "learning_rate": 4.092499991853919e-06,
2263
+ "loss": 0.5851,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 0.5835591689250226,
2268
+ "grad_norm": 0.21305791476970695,
2269
+ "learning_rate": 4.063093427071376e-06,
2270
+ "loss": 0.5708,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 0.5853658536585366,
2275
+ "grad_norm": 0.22152034591999475,
2276
+ "learning_rate": 4.033720411022235e-06,
2277
+ "loss": 0.551,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 0.5871725383920506,
2282
+ "grad_norm": 0.24741746440422901,
2283
+ "learning_rate": 4.0043819954949105e-06,
2284
+ "loss": 0.5693,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 0.5889792231255646,
2289
+ "grad_norm": 0.23319543650728994,
2290
+ "learning_rate": 3.975079231038848e-06,
2291
+ "loss": 0.5781,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 0.5907859078590786,
2296
+ "grad_norm": 0.2562877844594374,
2297
+ "learning_rate": 3.9458131669269066e-06,
2298
+ "loss": 0.5656,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 0.5925925925925926,
2303
+ "grad_norm": 0.21153036788677582,
2304
+ "learning_rate": 3.916584851117766e-06,
2305
+ "loss": 0.5712,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 0.5943992773261066,
2310
+ "grad_norm": 0.2036962689195446,
2311
+ "learning_rate": 3.887395330218429e-06,
2312
+ "loss": 0.5622,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 0.5962059620596206,
2317
+ "grad_norm": 0.22556374814001054,
2318
+ "learning_rate": 3.8582456494467214e-06,
2319
+ "loss": 0.5693,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 0.5980126467931346,
2324
+ "grad_norm": 0.22342745745182274,
2325
+ "learning_rate": 3.829136852593881e-06,
2326
+ "loss": 0.5742,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 0.5998193315266486,
2331
+ "grad_norm": 0.2130691852685183,
2332
+ "learning_rate": 3.8000699819871704e-06,
2333
+ "loss": 0.5569,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 0.6016260162601627,
2338
+ "grad_norm": 0.19727091458414242,
2339
+ "learning_rate": 3.7710460784525617e-06,
2340
+ "loss": 0.5776,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 0.6034327009936766,
2345
+ "grad_norm": 0.2146233826191007,
2346
+ "learning_rate": 3.7420661812774577e-06,
2347
+ "loss": 0.5904,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 0.6052393857271906,
2352
+ "grad_norm": 0.2032389532543255,
2353
+ "learning_rate": 3.7131313281734895e-06,
2354
+ "loss": 0.5728,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 0.6070460704607046,
2359
+ "grad_norm": 0.2152966373067959,
2360
+ "learning_rate": 3.6842425552393424e-06,
2361
+ "loss": 0.5701,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 0.6088527551942186,
2366
+ "grad_norm": 0.23087382458330968,
2367
+ "learning_rate": 3.655400896923672e-06,
2368
+ "loss": 0.5714,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 0.6106594399277326,
2373
+ "grad_norm": 0.20946373615215116,
2374
+ "learning_rate": 3.62660738598805e-06,
2375
+ "loss": 0.5671,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 0.6124661246612466,
2380
+ "grad_norm": 0.20810849142259824,
2381
+ "learning_rate": 3.5978630534699873e-06,
2382
+ "loss": 0.5759,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 0.6142728093947606,
2387
+ "grad_norm": 0.20530067815462075,
2388
+ "learning_rate": 3.5691689286460172e-06,
2389
+ "loss": 0.5713,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 0.6160794941282746,
2394
+ "grad_norm": 0.19818029483030003,
2395
+ "learning_rate": 3.540526038994834e-06,
2396
+ "loss": 0.5698,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 0.6178861788617886,
2401
+ "grad_norm": 0.21183226275727388,
2402
+ "learning_rate": 3.5119354101605086e-06,
2403
+ "loss": 0.5731,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 0.6196928635953026,
2408
+ "grad_norm": 0.21849196760937517,
2409
+ "learning_rate": 3.4833980659157507e-06,
2410
+ "loss": 0.5672,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 0.6214995483288166,
2415
+ "grad_norm": 0.1940531424360125,
2416
+ "learning_rate": 3.4549150281252635e-06,
2417
+ "loss": 0.5568,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 0.6233062330623306,
2422
+ "grad_norm": 0.20705949032650917,
2423
+ "learning_rate": 3.4264873167091405e-06,
2424
+ "loss": 0.571,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 0.6251129177958447,
2429
+ "grad_norm": 0.2094233428486086,
2430
+ "learning_rate": 3.398115949606352e-06,
2431
+ "loss": 0.5726,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 0.6269196025293586,
2436
+ "grad_norm": 0.19121716306533118,
2437
+ "learning_rate": 3.3698019427382912e-06,
2438
+ "loss": 0.5578,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 0.6287262872628726,
2443
+ "grad_norm": 0.20426639852726766,
2444
+ "learning_rate": 3.341546309972398e-06,
2445
+ "loss": 0.5589,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 0.6305329719963866,
2450
+ "grad_norm": 0.19738122568646607,
2451
+ "learning_rate": 3.3133500630858507e-06,
2452
+ "loss": 0.5618,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 0.6323396567299007,
2457
+ "grad_norm": 0.2051543715396433,
2458
+ "learning_rate": 3.2852142117293435e-06,
2459
+ "loss": 0.5743,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 0.6341463414634146,
2464
+ "grad_norm": 0.19808519245451528,
2465
+ "learning_rate": 3.2571397633909252e-06,
2466
+ "loss": 0.5642,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 0.6359530261969286,
2471
+ "grad_norm": 0.21808756281857763,
2472
+ "learning_rate": 3.229127723359927e-06,
2473
+ "loss": 0.5778,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 0.6377597109304426,
2478
+ "grad_norm": 0.19417668983418937,
2479
+ "learning_rate": 3.2011790946909673e-06,
2480
+ "loss": 0.5783,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 0.6395663956639567,
2485
+ "grad_norm": 0.2079586248025546,
2486
+ "learning_rate": 3.173294878168025e-06,
2487
+ "loss": 0.5733,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 0.6413730803974707,
2492
+ "grad_norm": 0.22055722119887894,
2493
+ "learning_rate": 3.1454760722686206e-06,
2494
+ "loss": 0.5625,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 0.6431797651309846,
2499
+ "grad_norm": 0.20910396932981393,
2500
+ "learning_rate": 3.11772367312804e-06,
2501
+ "loss": 0.5773,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 0.6449864498644986,
2506
+ "grad_norm": 0.2031776915729197,
2507
+ "learning_rate": 3.090038674503688e-06,
2508
+ "loss": 0.5779,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 0.6467931345980127,
2513
+ "grad_norm": 0.2336756362579364,
2514
+ "learning_rate": 3.0624220677394854e-06,
2515
+ "loss": 0.5834,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 0.6485998193315267,
2520
+ "grad_norm": 0.23182552557923047,
2521
+ "learning_rate": 3.0348748417303826e-06,
2522
+ "loss": 0.5564,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 0.6504065040650406,
2527
+ "grad_norm": 0.23582441085258554,
2528
+ "learning_rate": 3.007397982886942e-06,
2529
+ "loss": 0.5649,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 0.6522131887985546,
2534
+ "grad_norm": 0.20272398204237846,
2535
+ "learning_rate": 2.979992475100024e-06,
2536
+ "loss": 0.5707,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 0.6540198735320687,
2541
+ "grad_norm": 0.19546234691230657,
2542
+ "learning_rate": 2.9526592997055488e-06,
2543
+ "loss": 0.5818,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 0.6558265582655827,
2548
+ "grad_norm": 0.22417157116419753,
2549
+ "learning_rate": 2.9253994354493575e-06,
2550
+ "loss": 0.5726,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 0.6576332429990966,
2555
+ "grad_norm": 0.2019836311281834,
2556
+ "learning_rate": 2.8982138584521734e-06,
2557
+ "loss": 0.5713,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 0.6594399277326106,
2562
+ "grad_norm": 0.7102203405593134,
2563
+ "learning_rate": 2.871103542174637e-06,
2564
+ "loss": 0.5635,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 0.6612466124661247,
2569
+ "grad_norm": 0.20583264395654918,
2570
+ "learning_rate": 2.844069457382459e-06,
2571
+ "loss": 0.5854,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 0.6630532971996387,
2576
+ "grad_norm": 0.22941392916103912,
2577
+ "learning_rate": 2.817112572111651e-06,
2578
+ "loss": 0.5664,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 0.6648599819331527,
2583
+ "grad_norm": 0.20083466761028634,
2584
+ "learning_rate": 2.790233851633868e-06,
2585
+ "loss": 0.5782,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 0.6666666666666666,
2590
+ "grad_norm": 0.20836386937730783,
2591
+ "learning_rate": 2.7634342584218364e-06,
2592
+ "loss": 0.5791,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 0.6684733514001807,
2597
+ "grad_norm": 0.20215809708632768,
2598
+ "learning_rate": 2.7367147521149052e-06,
2599
+ "loss": 0.5775,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 0.6702800361336947,
2604
+ "grad_norm": 0.20283921573384886,
2605
+ "learning_rate": 2.7100762894846633e-06,
2606
+ "loss": 0.5657,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 0.6720867208672087,
2611
+ "grad_norm": 0.19940980557913102,
2612
+ "learning_rate": 2.683519824400693e-06,
2613
+ "loss": 0.5834,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 0.6738934056007226,
2618
+ "grad_norm": 0.1971475171725753,
2619
+ "learning_rate": 2.657046307796407e-06,
2620
+ "loss": 0.5691,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 0.6757000903342367,
2625
+ "grad_norm": 0.18670858880742722,
2626
+ "learning_rate": 2.6306566876350072e-06,
2627
+ "loss": 0.5583,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 0.6775067750677507,
2632
+ "grad_norm": 0.19963015977573684,
2633
+ "learning_rate": 2.6043519088755263e-06,
2634
+ "loss": 0.5732,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 0.6793134598012647,
2639
+ "grad_norm": 0.2022318594566399,
2640
+ "learning_rate": 2.578132913439e-06,
2641
+ "loss": 0.5578,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 0.6811201445347786,
2646
+ "grad_norm": 0.1889632843204264,
2647
+ "learning_rate": 2.55200064017474e-06,
2648
+ "loss": 0.5736,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 0.6829268292682927,
2653
+ "grad_norm": 0.1949807928013803,
2654
+ "learning_rate": 2.5259560248267022e-06,
2655
+ "loss": 0.5747,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 0.6847335140018067,
2660
+ "grad_norm": 0.20295809643739116,
2661
+ "learning_rate": 2.5000000000000015e-06,
2662
+ "loss": 0.5771,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 0.6865401987353207,
2667
+ "grad_norm": 0.18664865833445815,
2668
+ "learning_rate": 2.4741334951274948e-06,
2669
+ "loss": 0.558,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 0.6883468834688347,
2674
+ "grad_norm": 0.19667666846949652,
2675
+ "learning_rate": 2.448357436436519e-06,
2676
+ "loss": 0.5743,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 0.6901535682023487,
2681
+ "grad_norm": 0.19564857934070595,
2682
+ "learning_rate": 2.4226727469157097e-06,
2683
+ "loss": 0.5621,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 0.6919602529358627,
2688
+ "grad_norm": 0.1979603446322215,
2689
+ "learning_rate": 2.3970803462819586e-06,
2690
+ "loss": 0.5812,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 0.6937669376693767,
2695
+ "grad_norm": 0.20281766667125065,
2696
+ "learning_rate": 2.371581150947476e-06,
2697
+ "loss": 0.5795,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 0.6955736224028907,
2702
+ "grad_norm": 0.191510322636999,
2703
+ "learning_rate": 2.3461760739869865e-06,
2704
+ "loss": 0.5613,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 0.6973803071364046,
2709
+ "grad_norm": 0.19219216588342034,
2710
+ "learning_rate": 2.320866025105016e-06,
2711
+ "loss": 0.5728,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 0.6991869918699187,
2716
+ "grad_norm": 0.20519661977052045,
2717
+ "learning_rate": 2.2956519106033366e-06,
2718
+ "loss": 0.5731,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 0.7009936766034327,
2723
+ "grad_norm": 0.25836867497386395,
2724
+ "learning_rate": 2.2705346333484925e-06,
2725
+ "loss": 0.5725,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 0.7028003613369467,
2730
+ "grad_norm": 0.203911135585441,
2731
+ "learning_rate": 2.245515092739488e-06,
2732
+ "loss": 0.5755,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 0.7046070460704607,
2737
+ "grad_norm": 0.19395124713713474,
2738
+ "learning_rate": 2.2205941846755787e-06,
2739
+ "loss": 0.5687,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 0.7064137308039747,
2744
+ "grad_norm": 0.21376707652025245,
2745
+ "learning_rate": 2.1957728015241793e-06,
2746
+ "loss": 0.5694,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 0.7082204155374887,
2751
+ "grad_norm": 0.2298954337232273,
2752
+ "learning_rate": 2.171051832088928e-06,
2753
+ "loss": 0.575,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 0.7100271002710027,
2758
+ "grad_norm": 0.19451685337291036,
2759
+ "learning_rate": 2.146432161577842e-06,
2760
+ "loss": 0.5797,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 0.7118337850045167,
2765
+ "grad_norm": 0.2021060747744258,
2766
+ "learning_rate": 2.1219146715716332e-06,
2767
+ "loss": 0.5822,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 0.7136404697380307,
2772
+ "grad_norm": 0.20271170144226877,
2773
+ "learning_rate": 2.097500239992132e-06,
2774
+ "loss": 0.5775,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 0.7154471544715447,
2779
+ "grad_norm": 0.2546574681361855,
2780
+ "learning_rate": 2.0731897410708618e-06,
2781
+ "loss": 0.5713,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 0.7172538392050587,
2786
+ "grad_norm": 0.19840365539957144,
2787
+ "learning_rate": 2.0489840453177198e-06,
2788
+ "loss": 0.5704,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 0.7190605239385727,
2793
+ "grad_norm": 0.21939563906369686,
2794
+ "learning_rate": 2.0248840194898155e-06,
2795
+ "loss": 0.5718,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 0.7208672086720868,
2800
+ "grad_norm": 0.18553818391727428,
2801
+ "learning_rate": 2.0008905265604316e-06,
2802
+ "loss": 0.5759,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 0.7226738934056007,
2807
+ "grad_norm": 0.19560381575890134,
2808
+ "learning_rate": 1.977004425688126e-06,
2809
+ "loss": 0.5719,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 0.7244805781391147,
2814
+ "grad_norm": 0.1955704171413575,
2815
+ "learning_rate": 1.95322657218596e-06,
2816
+ "loss": 0.5743,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 0.7262872628726287,
2821
+ "grad_norm": 0.19385026443586315,
2822
+ "learning_rate": 1.929557817490874e-06,
2823
+ "loss": 0.5816,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 0.7280939476061428,
2828
+ "grad_norm": 0.2019803721425656,
2829
+ "learning_rate": 1.9059990091332082e-06,
2830
+ "loss": 0.563,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 0.7299006323396567,
2835
+ "grad_norm": 0.19651420035266637,
2836
+ "learning_rate": 1.8825509907063328e-06,
2837
+ "loss": 0.5677,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 0.7317073170731707,
2842
+ "grad_norm": 0.2114157269995201,
2843
+ "learning_rate": 1.8592146018364682e-06,
2844
+ "loss": 0.5665,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 0.7335140018066847,
2849
+ "grad_norm": 0.19769213583005163,
2850
+ "learning_rate": 1.8359906781525955e-06,
2851
+ "loss": 0.5729,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 0.7353206865401988,
2856
+ "grad_norm": 0.20762643479823137,
2857
+ "learning_rate": 1.8128800512565514e-06,
2858
+ "loss": 0.5648,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 0.7371273712737128,
2863
+ "grad_norm": 0.18617743174402618,
2864
+ "learning_rate": 1.7898835486932398e-06,
2865
+ "loss": 0.5593,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 0.7389340560072267,
2870
+ "grad_norm": 0.19762378326385793,
2871
+ "learning_rate": 1.7670019939210025e-06,
2872
+ "loss": 0.5775,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 0.7407407407407407,
2877
+ "grad_norm": 0.2305864761255618,
2878
+ "learning_rate": 1.7442362062821323e-06,
2879
+ "loss": 0.5788,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 0.7425474254742548,
2884
+ "grad_norm": 0.21172088224443286,
2885
+ "learning_rate": 1.7215870009735386e-06,
2886
+ "loss": 0.5809,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 0.7443541102077688,
2891
+ "grad_norm": 0.20643552873991003,
2892
+ "learning_rate": 1.6990551890175488e-06,
2893
+ "loss": 0.5542,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 0.7461607949412827,
2898
+ "grad_norm": 0.19758864444336163,
2899
+ "learning_rate": 1.6766415772328732e-06,
2900
+ "loss": 0.5702,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 0.7479674796747967,
2905
+ "grad_norm": 0.19941453180240049,
2906
+ "learning_rate": 1.6543469682057105e-06,
2907
+ "loss": 0.5581,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 0.7497741644083108,
2912
+ "grad_norm": 0.20479120015754532,
2913
+ "learning_rate": 1.632172160261012e-06,
2914
+ "loss": 0.5793,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 0.7515808491418248,
2919
+ "grad_norm": 0.19350596328984304,
2920
+ "learning_rate": 1.610117947433897e-06,
2921
+ "loss": 0.5656,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 0.7533875338753387,
2926
+ "grad_norm": 0.19423471560299505,
2927
+ "learning_rate": 1.5881851194412106e-06,
2928
+ "loss": 0.5873,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 0.7551942186088527,
2933
+ "grad_norm": 0.20077490007516463,
2934
+ "learning_rate": 1.5663744616532612e-06,
2935
+ "loss": 0.5694,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 0.7570009033423668,
2940
+ "grad_norm": 0.18838263771434816,
2941
+ "learning_rate": 1.544686755065677e-06,
2942
+ "loss": 0.5702,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 0.7588075880758808,
2947
+ "grad_norm": 0.21701148053887975,
2948
+ "learning_rate": 1.523122776271463e-06,
2949
+ "loss": 0.5847,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 0.7606142728093948,
2954
+ "grad_norm": 0.2080916174274085,
2955
+ "learning_rate": 1.5016832974331725e-06,
2956
+ "loss": 0.5657,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 0.7624209575429087,
2961
+ "grad_norm": 0.21199432876342922,
2962
+ "learning_rate": 1.4803690862552755e-06,
2963
+ "loss": 0.5691,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 0.7642276422764228,
2968
+ "grad_norm": 0.21079346404578475,
2969
+ "learning_rate": 1.459180905956653e-06,
2970
+ "loss": 0.5783,
2971
+ "step": 423
2972
+ },
2973
+ {
2974
+ "epoch": 0.7660343270099368,
2975
+ "grad_norm": 0.19794884095923385,
2976
+ "learning_rate": 1.438119515243277e-06,
2977
+ "loss": 0.5818,
2978
+ "step": 424
2979
+ },
2980
+ {
2981
+ "epoch": 0.7678410117434508,
2982
+ "grad_norm": 0.18648321380496394,
2983
+ "learning_rate": 1.4171856682810386e-06,
2984
+ "loss": 0.5603,
2985
+ "step": 425
2986
+ },
2987
+ {
2988
+ "epoch": 0.7696476964769647,
2989
+ "grad_norm": 0.19012424528816732,
2990
+ "learning_rate": 1.39638011466875e-06,
2991
+ "loss": 0.5807,
2992
+ "step": 426
2993
+ },
2994
+ {
2995
+ "epoch": 0.7714543812104788,
2996
+ "grad_norm": 0.1883015470745895,
2997
+ "learning_rate": 1.3757035994112915e-06,
2998
+ "loss": 0.5526,
2999
+ "step": 427
3000
+ },
3001
+ {
3002
+ "epoch": 0.7732610659439928,
3003
+ "grad_norm": 0.2167316937231412,
3004
+ "learning_rate": 1.3551568628929434e-06,
3005
+ "loss": 0.5731,
3006
+ "step": 428
3007
+ },
3008
+ {
3009
+ "epoch": 0.7750677506775068,
3010
+ "grad_norm": 0.2028996662499182,
3011
+ "learning_rate": 1.3347406408508695e-06,
3012
+ "loss": 0.5676,
3013
+ "step": 429
3014
+ },
3015
+ {
3016
+ "epoch": 0.7768744354110207,
3017
+ "grad_norm": 0.2046126468128694,
3018
+ "learning_rate": 1.3144556643487743e-06,
3019
+ "loss": 0.5692,
3020
+ "step": 430
3021
+ },
3022
+ {
3023
+ "epoch": 0.7786811201445348,
3024
+ "grad_norm": 0.20256042727360743,
3025
+ "learning_rate": 1.2943026597507268e-06,
3026
+ "loss": 0.578,
3027
+ "step": 431
3028
+ },
3029
+ {
3030
+ "epoch": 0.7804878048780488,
3031
+ "grad_norm": 0.18594150966030543,
3032
+ "learning_rate": 1.2742823486951434e-06,
3033
+ "loss": 0.5733,
3034
+ "step": 432
3035
+ },
3036
+ {
3037
+ "epoch": 0.7822944896115628,
3038
+ "grad_norm": 0.18598179155010222,
3039
+ "learning_rate": 1.254395448068959e-06,
3040
+ "loss": 0.5814,
3041
+ "step": 433
3042
+ },
3043
+ {
3044
+ "epoch": 0.7841011743450768,
3045
+ "grad_norm": 0.19531950934183231,
3046
+ "learning_rate": 1.234642669981946e-06,
3047
+ "loss": 0.58,
3048
+ "step": 434
3049
+ },
3050
+ {
3051
+ "epoch": 0.7859078590785907,
3052
+ "grad_norm": 0.18777486366895885,
3053
+ "learning_rate": 1.2150247217412186e-06,
3054
+ "loss": 0.5572,
3055
+ "step": 435
3056
+ },
3057
+ {
3058
+ "epoch": 0.7877145438121048,
3059
+ "grad_norm": 0.19677766481310113,
3060
+ "learning_rate": 1.195542305825908e-06,
3061
+ "loss": 0.5713,
3062
+ "step": 436
3063
+ },
3064
+ {
3065
+ "epoch": 0.7895212285456188,
3066
+ "grad_norm": 0.18260137587600686,
3067
+ "learning_rate": 1.1761961198620081e-06,
3068
+ "loss": 0.5699,
3069
+ "step": 437
3070
+ },
3071
+ {
3072
+ "epoch": 0.7913279132791328,
3073
+ "grad_norm": 0.19986344346713772,
3074
+ "learning_rate": 1.1569868565973912e-06,
3075
+ "loss": 0.5615,
3076
+ "step": 438
3077
+ },
3078
+ {
3079
+ "epoch": 0.7931345980126467,
3080
+ "grad_norm": 0.19605426450561478,
3081
+ "learning_rate": 1.137915203877003e-06,
3082
+ "loss": 0.5786,
3083
+ "step": 439
3084
+ },
3085
+ {
3086
+ "epoch": 0.7949412827461608,
3087
+ "grad_norm": 0.1942457012335732,
3088
+ "learning_rate": 1.118981844618236e-06,
3089
+ "loss": 0.5701,
3090
+ "step": 440
3091
+ },
3092
+ {
3093
+ "epoch": 0.7967479674796748,
3094
+ "grad_norm": 0.18017956817789316,
3095
+ "learning_rate": 1.1001874567864696e-06,
3096
+ "loss": 0.5548,
3097
+ "step": 441
3098
+ },
3099
+ {
3100
+ "epoch": 0.7985546522131888,
3101
+ "grad_norm": 0.19282482451446936,
3102
+ "learning_rate": 1.0815327133708015e-06,
3103
+ "loss": 0.5645,
3104
+ "step": 442
3105
+ },
3106
+ {
3107
+ "epoch": 0.8003613369467028,
3108
+ "grad_norm": 0.2073987161742136,
3109
+ "learning_rate": 1.06301828235994e-06,
3110
+ "loss": 0.5724,
3111
+ "step": 443
3112
+ },
3113
+ {
3114
+ "epoch": 0.8021680216802168,
3115
+ "grad_norm": 0.19760791073433562,
3116
+ "learning_rate": 1.044644826718295e-06,
3117
+ "loss": 0.5779,
3118
+ "step": 444
3119
+ },
3120
+ {
3121
+ "epoch": 0.8039747064137308,
3122
+ "grad_norm": 0.18977162869468303,
3123
+ "learning_rate": 1.0264130043622245e-06,
3124
+ "loss": 0.5661,
3125
+ "step": 445
3126
+ },
3127
+ {
3128
+ "epoch": 0.8057813911472448,
3129
+ "grad_norm": 0.22751473565597174,
3130
+ "learning_rate": 1.0083234681364934e-06,
3131
+ "loss": 0.5636,
3132
+ "step": 446
3133
+ },
3134
+ {
3135
+ "epoch": 0.8075880758807588,
3136
+ "grad_norm": 0.1866035783785984,
3137
+ "learning_rate": 9.903768657908803e-07,
3138
+ "loss": 0.5685,
3139
+ "step": 447
3140
+ },
3141
+ {
3142
+ "epoch": 0.8093947606142728,
3143
+ "grad_norm": 0.18025173354051788,
3144
+ "learning_rate": 9.725738399569968e-07,
3145
+ "loss": 0.571,
3146
+ "step": 448
3147
+ },
3148
+ {
3149
+ "epoch": 0.8112014453477868,
3150
+ "grad_norm": 0.25843108031766465,
3151
+ "learning_rate": 9.549150281252633e-07,
3152
+ "loss": 0.5662,
3153
+ "step": 449
3154
+ },
3155
+ {
3156
+ "epoch": 0.8130081300813008,
3157
+ "grad_norm": 0.1889222566305079,
3158
+ "learning_rate": 9.374010626220908e-07,
3159
+ "loss": 0.5767,
3160
+ "step": 450
3161
+ },
3162
+ {
3163
+ "epoch": 0.8148148148148148,
3164
+ "grad_norm": 0.2079298160547098,
3165
+ "learning_rate": 9.200325705872342e-07,
3166
+ "loss": 0.5782,
3167
+ "step": 451
3168
+ },
3169
+ {
3170
+ "epoch": 0.8166214995483289,
3171
+ "grad_norm": 0.19872345058724483,
3172
+ "learning_rate": 9.028101739513406e-07,
3173
+ "loss": 0.5743,
3174
+ "step": 452
3175
+ },
3176
+ {
3177
+ "epoch": 0.8184281842818428,
3178
+ "grad_norm": 0.18984627720548802,
3179
+ "learning_rate": 8.857344894136715e-07,
3180
+ "loss": 0.5663,
3181
+ "step": 453
3182
+ },
3183
+ {
3184
+ "epoch": 0.8202348690153568,
3185
+ "grad_norm": 0.2171863569377669,
3186
+ "learning_rate": 8.688061284200266e-07,
3187
+ "loss": 0.551,
3188
+ "step": 454
3189
+ },
3190
+ {
3191
+ "epoch": 0.8220415537488708,
3192
+ "grad_norm": 0.31205401342756556,
3193
+ "learning_rate": 8.520256971408453e-07,
3194
+ "loss": 0.5745,
3195
+ "step": 455
3196
+ },
3197
+ {
3198
+ "epoch": 0.8238482384823849,
3199
+ "grad_norm": 0.19197282383619316,
3200
+ "learning_rate": 8.353937964495029e-07,
3201
+ "loss": 0.5666,
3202
+ "step": 456
3203
+ },
3204
+ {
3205
+ "epoch": 0.8256549232158988,
3206
+ "grad_norm": 0.18978462666210455,
3207
+ "learning_rate": 8.189110219007967e-07,
3208
+ "loss": 0.5807,
3209
+ "step": 457
3210
+ },
3211
+ {
3212
+ "epoch": 0.8274616079494128,
3213
+ "grad_norm": 0.1881230488368621,
3214
+ "learning_rate": 8.025779637096138e-07,
3215
+ "loss": 0.5731,
3216
+ "step": 458
3217
+ },
3218
+ {
3219
+ "epoch": 0.8292682926829268,
3220
+ "grad_norm": 0.18499416483139547,
3221
+ "learning_rate": 7.863952067298042e-07,
3222
+ "loss": 0.5629,
3223
+ "step": 459
3224
+ },
3225
+ {
3226
+ "epoch": 0.8310749774164409,
3227
+ "grad_norm": 0.1956610098209481,
3228
+ "learning_rate": 7.70363330433233e-07,
3229
+ "loss": 0.5719,
3230
+ "step": 460
3231
+ },
3232
+ {
3233
+ "epoch": 0.8328816621499548,
3234
+ "grad_norm": 0.19237490479516348,
3235
+ "learning_rate": 7.544829088890326e-07,
3236
+ "loss": 0.56,
3237
+ "step": 461
3238
+ },
3239
+ {
3240
+ "epoch": 0.8346883468834688,
3241
+ "grad_norm": 0.18443561080860438,
3242
+ "learning_rate": 7.387545107430455e-07,
3243
+ "loss": 0.568,
3244
+ "step": 462
3245
+ },
3246
+ {
3247
+ "epoch": 0.8364950316169828,
3248
+ "grad_norm": 0.1787709060352765,
3249
+ "learning_rate": 7.23178699197467e-07,
3250
+ "loss": 0.5723,
3251
+ "step": 463
3252
+ },
3253
+ {
3254
+ "epoch": 0.8383017163504969,
3255
+ "grad_norm": 0.19805029001335558,
3256
+ "learning_rate": 7.077560319906696e-07,
3257
+ "loss": 0.5747,
3258
+ "step": 464
3259
+ },
3260
+ {
3261
+ "epoch": 0.8401084010840109,
3262
+ "grad_norm": 0.20031602040796653,
3263
+ "learning_rate": 6.924870613772388e-07,
3264
+ "loss": 0.5841,
3265
+ "step": 465
3266
+ },
3267
+ {
3268
+ "epoch": 0.8419150858175248,
3269
+ "grad_norm": 0.19620408006336973,
3270
+ "learning_rate": 6.773723341081945e-07,
3271
+ "loss": 0.5676,
3272
+ "step": 466
3273
+ },
3274
+ {
3275
+ "epoch": 0.8437217705510388,
3276
+ "grad_norm": 0.18466300633175925,
3277
+ "learning_rate": 6.624123914114122e-07,
3278
+ "loss": 0.5643,
3279
+ "step": 467
3280
+ },
3281
+ {
3282
+ "epoch": 0.8455284552845529,
3283
+ "grad_norm": 0.18010825886215534,
3284
+ "learning_rate": 6.476077689722487e-07,
3285
+ "loss": 0.575,
3286
+ "step": 468
3287
+ },
3288
+ {
3289
+ "epoch": 0.8473351400180669,
3290
+ "grad_norm": 0.19390872239198673,
3291
+ "learning_rate": 6.329589969143518e-07,
3292
+ "loss": 0.564,
3293
+ "step": 469
3294
+ },
3295
+ {
3296
+ "epoch": 0.8491418247515808,
3297
+ "grad_norm": 0.2016995782903763,
3298
+ "learning_rate": 6.184665997806832e-07,
3299
+ "loss": 0.5596,
3300
+ "step": 470
3301
+ },
3302
+ {
3303
+ "epoch": 0.8509485094850948,
3304
+ "grad_norm": 0.20130261573098188,
3305
+ "learning_rate": 6.041310965147318e-07,
3306
+ "loss": 0.5892,
3307
+ "step": 471
3308
+ },
3309
+ {
3310
+ "epoch": 0.8527551942186089,
3311
+ "grad_norm": 0.1889905749156045,
3312
+ "learning_rate": 5.899530004419396e-07,
3313
+ "loss": 0.5605,
3314
+ "step": 472
3315
+ },
3316
+ {
3317
+ "epoch": 0.8545618789521229,
3318
+ "grad_norm": 0.18839588656086062,
3319
+ "learning_rate": 5.759328192513075e-07,
3320
+ "loss": 0.5794,
3321
+ "step": 473
3322
+ },
3323
+ {
3324
+ "epoch": 0.8563685636856369,
3325
+ "grad_norm": 0.18265997264247555,
3326
+ "learning_rate": 5.620710549772295e-07,
3327
+ "loss": 0.5749,
3328
+ "step": 474
3329
+ },
3330
+ {
3331
+ "epoch": 0.8581752484191508,
3332
+ "grad_norm": 0.2902211914572893,
3333
+ "learning_rate": 5.483682039815059e-07,
3334
+ "loss": 0.5646,
3335
+ "step": 475
3336
+ },
3337
+ {
3338
+ "epoch": 0.8599819331526649,
3339
+ "grad_norm": 0.1886242353787816,
3340
+ "learning_rate": 5.348247569355736e-07,
3341
+ "loss": 0.5715,
3342
+ "step": 476
3343
+ },
3344
+ {
3345
+ "epoch": 0.8617886178861789,
3346
+ "grad_norm": 0.17985820815334427,
3347
+ "learning_rate": 5.214411988029355e-07,
3348
+ "loss": 0.5683,
3349
+ "step": 477
3350
+ },
3351
+ {
3352
+ "epoch": 0.8635953026196929,
3353
+ "grad_norm": 0.1932334144030631,
3354
+ "learning_rate": 5.082180088217981e-07,
3355
+ "loss": 0.5793,
3356
+ "step": 478
3357
+ },
3358
+ {
3359
+ "epoch": 0.8654019873532068,
3360
+ "grad_norm": 0.19846804700374185,
3361
+ "learning_rate": 4.951556604879049e-07,
3362
+ "loss": 0.5656,
3363
+ "step": 479
3364
+ },
3365
+ {
3366
+ "epoch": 0.8672086720867209,
3367
+ "grad_norm": 0.19097544246883594,
3368
+ "learning_rate": 4.822546215375851e-07,
3369
+ "loss": 0.5637,
3370
+ "step": 480
3371
+ },
3372
+ {
3373
+ "epoch": 0.8690153568202349,
3374
+ "grad_norm": 0.20251701539113373,
3375
+ "learning_rate": 4.6951535393100654e-07,
3376
+ "loss": 0.5738,
3377
+ "step": 481
3378
+ },
3379
+ {
3380
+ "epoch": 0.8708220415537489,
3381
+ "grad_norm": 0.18387137241320917,
3382
+ "learning_rate": 4.569383138356276e-07,
3383
+ "loss": 0.5779,
3384
+ "step": 482
3385
+ },
3386
+ {
3387
+ "epoch": 0.8726287262872628,
3388
+ "grad_norm": 0.18016240078214524,
3389
+ "learning_rate": 4.4452395160987314e-07,
3390
+ "loss": 0.5626,
3391
+ "step": 483
3392
+ },
3393
+ {
3394
+ "epoch": 0.8744354110207768,
3395
+ "grad_norm": 0.18401325938899177,
3396
+ "learning_rate": 4.322727117869951e-07,
3397
+ "loss": 0.5596,
3398
+ "step": 484
3399
+ },
3400
+ {
3401
+ "epoch": 0.8762420957542909,
3402
+ "grad_norm": 0.1964814901834314,
3403
+ "learning_rate": 4.201850330591678e-07,
3404
+ "loss": 0.5693,
3405
+ "step": 485
3406
+ },
3407
+ {
3408
+ "epoch": 0.8780487804878049,
3409
+ "grad_norm": 0.20214900977512928,
3410
+ "learning_rate": 4.082613482617664e-07,
3411
+ "loss": 0.5757,
3412
+ "step": 486
3413
+ },
3414
+ {
3415
+ "epoch": 0.8798554652213189,
3416
+ "grad_norm": 0.18568992727418057,
3417
+ "learning_rate": 3.965020843578804e-07,
3418
+ "loss": 0.5632,
3419
+ "step": 487
3420
+ },
3421
+ {
3422
+ "epoch": 0.8816621499548328,
3423
+ "grad_norm": 0.2770002675977485,
3424
+ "learning_rate": 3.8490766242301356e-07,
3425
+ "loss": 0.5626,
3426
+ "step": 488
3427
+ },
3428
+ {
3429
+ "epoch": 0.8834688346883469,
3430
+ "grad_norm": 0.1824458528913731,
3431
+ "learning_rate": 3.734784976300165e-07,
3432
+ "loss": 0.5717,
3433
+ "step": 489
3434
+ },
3435
+ {
3436
+ "epoch": 0.8852755194218609,
3437
+ "grad_norm": 0.19117508774443912,
3438
+ "learning_rate": 3.6221499923421164e-07,
3439
+ "loss": 0.5687,
3440
+ "step": 490
3441
+ },
3442
+ {
3443
+ "epoch": 0.8870822041553749,
3444
+ "grad_norm": 0.18365017893423594,
3445
+ "learning_rate": 3.511175705587433e-07,
3446
+ "loss": 0.5604,
3447
+ "step": 491
3448
+ },
3449
+ {
3450
+ "epoch": 0.8888888888888888,
3451
+ "grad_norm": 0.18741146999424094,
3452
+ "learning_rate": 3.4018660898013423e-07,
3453
+ "loss": 0.5619,
3454
+ "step": 492
3455
+ },
3456
+ {
3457
+ "epoch": 0.8906955736224029,
3458
+ "grad_norm": 0.18938927116387327,
3459
+ "learning_rate": 3.2942250591405546e-07,
3460
+ "loss": 0.5562,
3461
+ "step": 493
3462
+ },
3463
+ {
3464
+ "epoch": 0.8925022583559169,
3465
+ "grad_norm": 0.18530272323579683,
3466
+ "learning_rate": 3.18825646801314e-07,
3467
+ "loss": 0.5736,
3468
+ "step": 494
3469
+ },
3470
+ {
3471
+ "epoch": 0.8943089430894309,
3472
+ "grad_norm": 0.18343515766026144,
3473
+ "learning_rate": 3.0839641109404627e-07,
3474
+ "loss": 0.5703,
3475
+ "step": 495
3476
+ },
3477
+ {
3478
+ "epoch": 0.8961156278229448,
3479
+ "grad_norm": 0.19798495531064736,
3480
+ "learning_rate": 2.9813517224213274e-07,
3481
+ "loss": 0.5827,
3482
+ "step": 496
3483
+ },
3484
+ {
3485
+ "epoch": 0.8979223125564589,
3486
+ "grad_norm": 0.1866740069336857,
3487
+ "learning_rate": 2.8804229767982637e-07,
3488
+ "loss": 0.5699,
3489
+ "step": 497
3490
+ },
3491
+ {
3492
+ "epoch": 0.8997289972899729,
3493
+ "grad_norm": 0.19720117374324211,
3494
+ "learning_rate": 2.7811814881259503e-07,
3495
+ "loss": 0.5692,
3496
+ "step": 498
3497
+ },
3498
+ {
3499
+ "epoch": 0.9015356820234869,
3500
+ "grad_norm": 0.19877461850217384,
3501
+ "learning_rate": 2.6836308100417874e-07,
3502
+ "loss": 0.5787,
3503
+ "step": 499
3504
+ },
3505
+ {
3506
+ "epoch": 0.9033423667570009,
3507
+ "grad_norm": 0.18169475905608862,
3508
+ "learning_rate": 2.587774435638679e-07,
3509
+ "loss": 0.5767,
3510
+ "step": 500
3511
+ }
3512
+ ],
3513
+ "logging_steps": 1,
3514
+ "max_steps": 553,
3515
+ "num_input_tokens_seen": 0,
3516
+ "num_train_epochs": 1,
3517
+ "save_steps": 100,
3518
+ "stateful_callbacks": {
3519
+ "TrainerControl": {
3520
+ "args": {
3521
+ "should_epoch_stop": false,
3522
+ "should_evaluate": false,
3523
+ "should_log": false,
3524
+ "should_save": true,
3525
+ "should_training_stop": false
3526
+ },
3527
+ "attributes": {}
3528
+ }
3529
+ },
3530
+ "total_flos": 579500543967232.0,
3531
+ "train_batch_size": 2,
3532
+ "trial_name": null,
3533
+ "trial_params": null
3534
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a558211b6e79cbddab8e05dfa6ad385319fb68117036484dd243f490c7047b6
3
+ size 8017
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)