fengyao1909 commited on
Commit
fcdb2ee
·
verified ·
1 Parent(s): 4812cde

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3MoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "decoder_sparse_step": 1,
9
+ "eos_token_id": 151643,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 6144,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 48,
17
+ "mlp_only_layers": [],
18
+ "model_type": "qwen3_moe",
19
+ "moe_intermediate_size": 768,
20
+ "norm_topk_prob": true,
21
+ "num_attention_heads": 32,
22
+ "num_experts": 128,
23
+ "num_experts_per_tok": 8,
24
+ "num_hidden_layers": 48,
25
+ "num_key_value_heads": 4,
26
+ "output_router_logits": false,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000.0,
30
+ "router_aux_loss_coef": 0.001,
31
+ "sliding_window": null,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.3",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "vocab_size": 151936
38
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.51.3"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step314
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98fb4fcaeb23558af36b1f8cf639c5068aaf4edfb62a8a0dd7341b571111d112
3
+ size 4997184968
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32922cba8b590d1d0c6b65d31924e36f1c2d21751f045626c9498a65d06ee4d2
3
+ size 4997741608
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb2ea3b306f552838fc59faa635ba390379aef8859888928d2afc5536419f976
3
+ size 4997742208
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08076872a45f7acfd4c30bae87792579523c34113a46588a1b8cc9cdb5f9ae1a
3
+ size 4997743184
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3db932bb8a0b7ff1c601dde28cf2e9aa74e158c38931dd3e2faf1a864b5e9b54
3
+ size 4997743184
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4db812bb9660dd1ebc3181f841d55d784227a2da7d73fb323c95b23d1286bd95
3
+ size 4997743184
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a1824296da6eeb28fd0889bc510cda06a29d6b9dd99b3391491a398e87b5501
3
+ size 4997743184
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94d865a40cff2a0a8ad8541aa97115fff8ec80658678356ca79b9f768a662bb4
3
+ size 4997743184
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2db6b06afcd9c87f99e75e1be59cfe767d78a7f14a109396457e0e782af21861
3
+ size 4997743184
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5e7a7c2b11d32c02713f17f5c23689c26bdd50a134ab2021ff1e5fb7b149be0
3
+ size 4997743184
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bd5e8b8f3fdba280b878761a8d7ec72185480dbe7276285b360250d15737908
3
+ size 4997743184
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0212f3794110b3129eceee9a0f5dcad983fdefe990c9044bb3634a20692174f6
3
+ size 4997743184
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65bc88c7f73e9178e17f6fd416f4954ada3cc98f07f1ec8cdfbb5f484e0e11d1
3
+ size 1094220288
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:478b41e9f26d338fd8f896e08cad1adab7c423b61f1b45754113bc78d256a3f9
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce29a8767a7d907dd24987aa2c3e654d4317f3042fbc13b5b72cadb46d43311a
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a48db011646b4e9a867bf12f4a233cad5dfbfe309686f8996c250196d3783a
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9562ee822472a4f01dcd6349ab3d1ef42a48915fe3b92e843a0c37db53c8421
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d2767d83c3bf27f12db022b0632e2c4f8c164274ba75e380cf18f9d5f21819
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76816358d4e5db8149d60d55234db658d67a13c0c1ce05d7404cf7125a676a5c
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1562e7520c977d178183d641f70abcf3f57da2489938756cfbebf9b6e6c1a9fd
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6b6cabaed045c5398cd1b732f7ec48bd363f3b43cd24e0e70e641a42bd00c28
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8495648f53d8976e27a1c592199d8a3e553d3ae8d7dc9a78ce8b896d66bda62e
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
trainer_state.json ADDED
@@ -0,0 +1,2232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.6666666666666666,
6
+ "eval_steps": 500,
7
+ "global_step": 314,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0021231422505307855,
14
+ "grad_norm": 6.233692311689662,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.3677,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.004246284501061571,
21
+ "grad_norm": 6.036167846313234,
22
+ "learning_rate": 4.1666666666666667e-07,
23
+ "loss": 1.4092,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.006369426751592357,
28
+ "grad_norm": 5.848179790677502,
29
+ "learning_rate": 8.333333333333333e-07,
30
+ "loss": 1.4005,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.008492569002123142,
35
+ "grad_norm": 6.0378802369914935,
36
+ "learning_rate": 1.25e-06,
37
+ "loss": 1.4013,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.010615711252653927,
42
+ "grad_norm": 5.595183474903656,
43
+ "learning_rate": 1.6666666666666667e-06,
44
+ "loss": 1.3827,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.012738853503184714,
49
+ "grad_norm": 5.382553823715441,
50
+ "learning_rate": 2.0833333333333334e-06,
51
+ "loss": 1.4028,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.014861995753715499,
56
+ "grad_norm": 5.302639986868994,
57
+ "learning_rate": 2.5e-06,
58
+ "loss": 1.2932,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.016985138004246284,
63
+ "grad_norm": 4.567653411915884,
64
+ "learning_rate": 2.916666666666667e-06,
65
+ "loss": 1.3434,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.01910828025477707,
70
+ "grad_norm": 4.288457445231689,
71
+ "learning_rate": 3.3333333333333333e-06,
72
+ "loss": 1.3357,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.021231422505307854,
77
+ "grad_norm": 4.049507973772927,
78
+ "learning_rate": 3.7500000000000005e-06,
79
+ "loss": 1.3412,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02335456475583864,
84
+ "grad_norm": 2.9217595476326017,
85
+ "learning_rate": 4.166666666666667e-06,
86
+ "loss": 1.2783,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.025477707006369428,
91
+ "grad_norm": 3.005465009214924,
92
+ "learning_rate": 4.583333333333333e-06,
93
+ "loss": 1.2584,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.027600849256900213,
98
+ "grad_norm": 2.793623616592523,
99
+ "learning_rate": 5e-06,
100
+ "loss": 1.3123,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.029723991507430998,
105
+ "grad_norm": 2.090044767584013,
106
+ "learning_rate": 5.416666666666667e-06,
107
+ "loss": 1.2184,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.03184713375796178,
112
+ "grad_norm": 2.6376790535616084,
113
+ "learning_rate": 5.833333333333334e-06,
114
+ "loss": 1.2336,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.03397027600849257,
119
+ "grad_norm": 2.461503775389557,
120
+ "learning_rate": 6.25e-06,
121
+ "loss": 1.1937,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.036093418259023353,
126
+ "grad_norm": 2.2913204705452395,
127
+ "learning_rate": 6.666666666666667e-06,
128
+ "loss": 1.158,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.03821656050955414,
133
+ "grad_norm": 2.2503979169805084,
134
+ "learning_rate": 7.083333333333335e-06,
135
+ "loss": 1.1271,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.040339702760084924,
140
+ "grad_norm": 2.466445150163946,
141
+ "learning_rate": 7.500000000000001e-06,
142
+ "loss": 1.1126,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.04246284501061571,
147
+ "grad_norm": 2.247026245104246,
148
+ "learning_rate": 7.916666666666667e-06,
149
+ "loss": 1.0246,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.044585987261146494,
154
+ "grad_norm": 2.3877387081949886,
155
+ "learning_rate": 8.333333333333334e-06,
156
+ "loss": 1.1415,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.04670912951167728,
161
+ "grad_norm": 2.413953103563364,
162
+ "learning_rate": 8.750000000000001e-06,
163
+ "loss": 1.1117,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.04883227176220807,
168
+ "grad_norm": 2.0737115581292063,
169
+ "learning_rate": 9.166666666666666e-06,
170
+ "loss": 1.0196,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.050955414012738856,
175
+ "grad_norm": 1.4762727779050233,
176
+ "learning_rate": 9.583333333333335e-06,
177
+ "loss": 1.0301,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.05307855626326964,
182
+ "grad_norm": 1.4318135959081477,
183
+ "learning_rate": 1e-05,
184
+ "loss": 1.0545,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.055201698513800426,
189
+ "grad_norm": 4.215679400721786,
190
+ "learning_rate": 9.999876512522269e-06,
191
+ "loss": 1.046,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.05732484076433121,
196
+ "grad_norm": 1.3411659207433844,
197
+ "learning_rate": 9.999506056188736e-06,
198
+ "loss": 1.089,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.059447983014861996,
203
+ "grad_norm": 1.2807986819041255,
204
+ "learning_rate": 9.99888864929809e-06,
205
+ "loss": 1.0897,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.06157112526539278,
210
+ "grad_norm": 1.1455939763312737,
211
+ "learning_rate": 9.99802432234714e-06,
212
+ "loss": 1.0569,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.06369426751592357,
217
+ "grad_norm": 1.8215374393805115,
218
+ "learning_rate": 9.996913118029306e-06,
219
+ "loss": 1.0579,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.06581740976645435,
224
+ "grad_norm": 1.0350186789586957,
225
+ "learning_rate": 9.995555091232516e-06,
226
+ "loss": 1.0399,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.06794055201698514,
231
+ "grad_norm": 0.8818644928748289,
232
+ "learning_rate": 9.99395030903649e-06,
233
+ "loss": 1.0392,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.07006369426751592,
238
+ "grad_norm": 0.9117340500480796,
239
+ "learning_rate": 9.992098850709434e-06,
240
+ "loss": 0.9961,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.07218683651804671,
245
+ "grad_norm": 0.9087780060428899,
246
+ "learning_rate": 9.990000807704114e-06,
247
+ "loss": 0.9941,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.07430997876857749,
252
+ "grad_norm": 0.8465013815457932,
253
+ "learning_rate": 9.987656283653344e-06,
254
+ "loss": 0.9976,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.07643312101910828,
259
+ "grad_norm": 0.8845003722156789,
260
+ "learning_rate": 9.985065394364869e-06,
261
+ "loss": 1.0305,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.07855626326963906,
266
+ "grad_norm": 0.9213919092982428,
267
+ "learning_rate": 9.982228267815644e-06,
268
+ "loss": 0.9694,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.08067940552016985,
273
+ "grad_norm": 0.8874641991485241,
274
+ "learning_rate": 9.979145044145506e-06,
275
+ "loss": 0.9625,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.08280254777070063,
280
+ "grad_norm": 0.8321483472211252,
281
+ "learning_rate": 9.975815875650265e-06,
282
+ "loss": 0.9474,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.08492569002123142,
287
+ "grad_norm": 0.7808697647642835,
288
+ "learning_rate": 9.972240926774167e-06,
289
+ "loss": 0.998,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.0870488322717622,
294
+ "grad_norm": 0.9040838208522329,
295
+ "learning_rate": 9.968420374101782e-06,
296
+ "loss": 0.9594,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.08917197452229299,
301
+ "grad_norm": 0.7584425916438082,
302
+ "learning_rate": 9.964354406349272e-06,
303
+ "loss": 0.9628,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.09129511677282377,
308
+ "grad_norm": 0.7620163299458729,
309
+ "learning_rate": 9.960043224355081e-06,
310
+ "loss": 0.9616,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.09341825902335456,
315
+ "grad_norm": 0.8222242622111462,
316
+ "learning_rate": 9.955487041070003e-06,
317
+ "loss": 1.0289,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.09554140127388536,
322
+ "grad_norm": 0.8421347235061095,
323
+ "learning_rate": 9.95068608154667e-06,
324
+ "loss": 1.0307,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.09766454352441614,
329
+ "grad_norm": 0.9753656204578139,
330
+ "learning_rate": 9.945640582928438e-06,
331
+ "loss": 1.0164,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.09978768577494693,
336
+ "grad_norm": 0.9292958552660628,
337
+ "learning_rate": 9.940350794437663e-06,
338
+ "loss": 0.9794,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.10191082802547771,
343
+ "grad_norm": 1.1329023477241527,
344
+ "learning_rate": 9.934816977363404e-06,
345
+ "loss": 0.9825,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.1040339702760085,
350
+ "grad_norm": 0.7480637668709176,
351
+ "learning_rate": 9.929039405048502e-06,
352
+ "loss": 0.9681,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.10615711252653928,
357
+ "grad_norm": 0.8665970954982817,
358
+ "learning_rate": 9.923018362876093e-06,
359
+ "loss": 1.0051,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.10828025477707007,
364
+ "grad_norm": 0.8205102895066251,
365
+ "learning_rate": 9.916754148255501e-06,
366
+ "loss": 0.9926,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.11040339702760085,
371
+ "grad_norm": 0.7347897450905055,
372
+ "learning_rate": 9.91024707060755e-06,
373
+ "loss": 1.0003,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.11252653927813164,
378
+ "grad_norm": 0.764879949996413,
379
+ "learning_rate": 9.903497451349286e-06,
380
+ "loss": 0.9292,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.11464968152866242,
385
+ "grad_norm": 0.717706889231986,
386
+ "learning_rate": 9.896505623878088e-06,
387
+ "loss": 0.987,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.11677282377919321,
392
+ "grad_norm": 0.7715458461663043,
393
+ "learning_rate": 9.889271933555214e-06,
394
+ "loss": 1.0261,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.11889596602972399,
399
+ "grad_norm": 0.7521393701353877,
400
+ "learning_rate": 9.881796737688732e-06,
401
+ "loss": 1.0534,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.12101910828025478,
406
+ "grad_norm": 0.7414115819906733,
407
+ "learning_rate": 9.874080405515874e-06,
408
+ "loss": 0.9913,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.12314225053078556,
413
+ "grad_norm": 0.8232230218266363,
414
+ "learning_rate": 9.866123318184803e-06,
415
+ "loss": 0.9918,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.12526539278131635,
420
+ "grad_norm": 0.8149896063868423,
421
+ "learning_rate": 9.857925868735774e-06,
422
+ "loss": 0.9868,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.12738853503184713,
427
+ "grad_norm": 0.7942302058586811,
428
+ "learning_rate": 9.84948846208173e-06,
429
+ "loss": 0.98,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.12951167728237792,
434
+ "grad_norm": 0.8138984220428053,
435
+ "learning_rate": 9.840811514988294e-06,
436
+ "loss": 0.9049,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.1316348195329087,
441
+ "grad_norm": 0.7679169662702224,
442
+ "learning_rate": 9.831895456053197e-06,
443
+ "loss": 0.9677,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.1337579617834395,
448
+ "grad_norm": 0.7874842581700767,
449
+ "learning_rate": 9.822740725685087e-06,
450
+ "loss": 0.9912,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.13588110403397027,
455
+ "grad_norm": 0.7727018614004334,
456
+ "learning_rate": 9.81334777608179e-06,
457
+ "loss": 1.0131,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.13800424628450106,
462
+ "grad_norm": 0.8942883107933416,
463
+ "learning_rate": 9.803717071207965e-06,
464
+ "loss": 1.022,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.14012738853503184,
469
+ "grad_norm": 0.7488279786454368,
470
+ "learning_rate": 9.793849086772198e-06,
471
+ "loss": 0.9611,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.14225053078556263,
476
+ "grad_norm": 0.7231313822633343,
477
+ "learning_rate": 9.783744310203492e-06,
478
+ "loss": 0.9648,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.14437367303609341,
483
+ "grad_norm": 0.8009470186289236,
484
+ "learning_rate": 9.77340324062719e-06,
485
+ "loss": 0.9616,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.1464968152866242,
490
+ "grad_norm": 0.694840815258157,
491
+ "learning_rate": 9.76282638884034e-06,
492
+ "loss": 0.9393,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.14861995753715498,
497
+ "grad_norm": 0.807816808271673,
498
+ "learning_rate": 9.752014277286433e-06,
499
+ "loss": 1.0505,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.15074309978768577,
504
+ "grad_norm": 0.8317043459433457,
505
+ "learning_rate": 9.740967440029628e-06,
506
+ "loss": 0.9914,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.15286624203821655,
511
+ "grad_norm": 0.6790810524359902,
512
+ "learning_rate": 9.729686422728353e-06,
513
+ "loss": 1.012,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.15498938428874734,
518
+ "grad_norm": 0.7310970501009117,
519
+ "learning_rate": 9.718171782608355e-06,
520
+ "loss": 0.959,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.15711252653927812,
525
+ "grad_norm": 0.7675118911080142,
526
+ "learning_rate": 9.706424088435183e-06,
527
+ "loss": 0.9373,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.1592356687898089,
532
+ "grad_norm": 0.6926951658050571,
533
+ "learning_rate": 9.694443920486083e-06,
534
+ "loss": 0.9801,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.1613588110403397,
539
+ "grad_norm": 0.7346879776016684,
540
+ "learning_rate": 9.682231870521347e-06,
541
+ "loss": 0.8983,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.16348195329087048,
546
+ "grad_norm": 0.6862950789085892,
547
+ "learning_rate": 9.669788541755072e-06,
548
+ "loss": 0.9532,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.16560509554140126,
553
+ "grad_norm": 0.7381966173799152,
554
+ "learning_rate": 9.657114548825372e-06,
555
+ "loss": 0.9686,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.16772823779193205,
560
+ "grad_norm": 0.643557401853306,
561
+ "learning_rate": 9.644210517764014e-06,
562
+ "loss": 0.9668,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.16985138004246284,
567
+ "grad_norm": 0.7765772003310986,
568
+ "learning_rate": 9.631077085965501e-06,
569
+ "loss": 1.0638,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.17197452229299362,
574
+ "grad_norm": 0.8024757246296556,
575
+ "learning_rate": 9.617714902155576e-06,
576
+ "loss": 0.9911,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.1740976645435244,
581
+ "grad_norm": 0.7800601554968952,
582
+ "learning_rate": 9.60412462635919e-06,
583
+ "loss": 1.0459,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.1762208067940552,
588
+ "grad_norm": 0.7431393505154594,
589
+ "learning_rate": 9.590306929867896e-06,
590
+ "loss": 0.9687,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.17834394904458598,
595
+ "grad_norm": 0.6824175459850116,
596
+ "learning_rate": 9.576262495206689e-06,
597
+ "loss": 0.9994,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.18046709129511676,
602
+ "grad_norm": 0.7916336363488418,
603
+ "learning_rate": 9.561992016100293e-06,
604
+ "loss": 0.9783,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.18259023354564755,
609
+ "grad_norm": 0.6976948182235398,
610
+ "learning_rate": 9.547496197438896e-06,
611
+ "loss": 1.0076,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.18471337579617833,
616
+ "grad_norm": 0.7093988344101032,
617
+ "learning_rate": 9.532775755243334e-06,
618
+ "loss": 1.0075,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.18683651804670912,
623
+ "grad_norm": 0.752335224864414,
624
+ "learning_rate": 9.517831416629717e-06,
625
+ "loss": 0.9428,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.18895966029723993,
630
+ "grad_norm": 0.7535135712750508,
631
+ "learning_rate": 9.502663919773516e-06,
632
+ "loss": 0.9228,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.1910828025477707,
637
+ "grad_norm": 0.6836684618511217,
638
+ "learning_rate": 9.487274013873104e-06,
639
+ "loss": 0.9915,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.1932059447983015,
644
+ "grad_norm": 0.7168371002333184,
645
+ "learning_rate": 9.471662459112747e-06,
646
+ "loss": 0.9146,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.19532908704883228,
651
+ "grad_norm": 0.7590517179947264,
652
+ "learning_rate": 9.455830026625053e-06,
653
+ "loss": 0.9537,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.19745222929936307,
658
+ "grad_norm": 0.783311626765522,
659
+ "learning_rate": 9.439777498452883e-06,
660
+ "loss": 0.9673,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.19957537154989385,
665
+ "grad_norm": 0.7583109403403397,
666
+ "learning_rate": 9.423505667510724e-06,
667
+ "loss": 0.9488,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.20169851380042464,
672
+ "grad_norm": 0.6665250800247178,
673
+ "learning_rate": 9.40701533754552e-06,
674
+ "loss": 1.0014,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.20382165605095542,
679
+ "grad_norm": 0.7534757180486034,
680
+ "learning_rate": 9.390307323096972e-06,
681
+ "loss": 0.9486,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.2059447983014862,
686
+ "grad_norm": 0.7633774921562732,
687
+ "learning_rate": 9.373382449457305e-06,
688
+ "loss": 0.9486,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.208067940552017,
693
+ "grad_norm": 0.7546302945571557,
694
+ "learning_rate": 9.356241552630503e-06,
695
+ "loss": 0.9325,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.21019108280254778,
700
+ "grad_norm": 0.7374682216888635,
701
+ "learning_rate": 9.338885479291012e-06,
702
+ "loss": 1.0019,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.21231422505307856,
707
+ "grad_norm": 0.7502571413886471,
708
+ "learning_rate": 9.321315086741916e-06,
709
+ "loss": 1.0028,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.21443736730360935,
714
+ "grad_norm": 0.7215038325133775,
715
+ "learning_rate": 9.303531242872606e-06,
716
+ "loss": 1.038,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.21656050955414013,
721
+ "grad_norm": 0.7766452530718216,
722
+ "learning_rate": 9.285534826115884e-06,
723
+ "loss": 0.9567,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.21868365180467092,
728
+ "grad_norm": 0.7660906470554663,
729
+ "learning_rate": 9.2673267254046e-06,
730
+ "loss": 0.9041,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.2208067940552017,
735
+ "grad_norm": 0.6968152389503037,
736
+ "learning_rate": 9.248907840127726e-06,
737
+ "loss": 0.9682,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.2229299363057325,
742
+ "grad_norm": 0.6843474144819354,
743
+ "learning_rate": 9.230279080085933e-06,
744
+ "loss": 0.9289,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.22505307855626328,
749
+ "grad_norm": 0.7512996746200725,
750
+ "learning_rate": 9.211441365446661e-06,
751
+ "loss": 0.9318,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.22717622080679406,
756
+ "grad_norm": 0.7245746774218922,
757
+ "learning_rate": 9.192395626698656e-06,
758
+ "loss": 0.9745,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.22929936305732485,
763
+ "grad_norm": 0.7472828991840396,
764
+ "learning_rate": 9.173142804606012e-06,
765
+ "loss": 0.9417,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.23142250530785563,
770
+ "grad_norm": 0.7433451614104158,
771
+ "learning_rate": 9.153683850161706e-06,
772
+ "loss": 0.9888,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.23354564755838642,
777
+ "grad_norm": 0.6820085118229582,
778
+ "learning_rate": 9.13401972454062e-06,
779
+ "loss": 1.0062,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.2356687898089172,
784
+ "grad_norm": 0.6597210654799798,
785
+ "learning_rate": 9.114151399052064e-06,
786
+ "loss": 0.9498,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.23779193205944799,
791
+ "grad_norm": 0.6964084111810886,
792
+ "learning_rate": 9.094079855091797e-06,
793
+ "loss": 0.9684,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.23991507430997877,
798
+ "grad_norm": 0.7723142466634979,
799
+ "learning_rate": 9.073806084093556e-06,
800
+ "loss": 0.9405,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.24203821656050956,
805
+ "grad_norm": 0.7911498715522838,
806
+ "learning_rate": 9.053331087480075e-06,
807
+ "loss": 0.9474,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.24416135881104034,
812
+ "grad_norm": 0.7154015242350461,
813
+ "learning_rate": 9.032655876613636e-06,
814
+ "loss": 0.9994,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.24628450106157113,
819
+ "grad_norm": 0.8131533865526955,
820
+ "learning_rate": 9.01178147274609e-06,
821
+ "loss": 0.9674,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.2484076433121019,
826
+ "grad_norm": 0.762660871457576,
827
+ "learning_rate": 8.990708906968431e-06,
828
+ "loss": 0.9712,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.2505307855626327,
833
+ "grad_norm": 0.749279770619595,
834
+ "learning_rate": 8.969439220159861e-06,
835
+ "loss": 0.9718,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.2526539278131635,
840
+ "grad_norm": 0.7993155759440779,
841
+ "learning_rate": 8.947973462936366e-06,
842
+ "loss": 1.002,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.25477707006369427,
847
+ "grad_norm": 0.7525506488087893,
848
+ "learning_rate": 8.926312695598837e-06,
849
+ "loss": 1.0678,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.25690021231422505,
854
+ "grad_norm": 0.7942187041189313,
855
+ "learning_rate": 8.904457988080682e-06,
856
+ "loss": 0.9531,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.25902335456475584,
861
+ "grad_norm": 0.725938463845709,
862
+ "learning_rate": 8.882410419894983e-06,
863
+ "loss": 0.9536,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.2611464968152866,
868
+ "grad_norm": 0.6926002729927859,
869
+ "learning_rate": 8.860171080081174e-06,
870
+ "loss": 1.0066,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.2632696390658174,
875
+ "grad_norm": 0.7073710959096725,
876
+ "learning_rate": 8.837741067151251e-06,
877
+ "loss": 0.9731,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.2653927813163482,
882
+ "grad_norm": 1.229783488810088,
883
+ "learning_rate": 8.8151214890355e-06,
884
+ "loss": 0.9316,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.267515923566879,
889
+ "grad_norm": 0.673125965324655,
890
+ "learning_rate": 8.792313463027777e-06,
891
+ "loss": 1.0252,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.26963906581740976,
896
+ "grad_norm": 0.6930092507451997,
897
+ "learning_rate": 8.76931811573033e-06,
898
+ "loss": 0.9374,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.27176220806794055,
903
+ "grad_norm": 0.68412243336128,
904
+ "learning_rate": 8.74613658299813e-06,
905
+ "loss": 0.8807,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.27388535031847133,
910
+ "grad_norm": 0.7081201802451947,
911
+ "learning_rate": 8.72277000988278e-06,
912
+ "loss": 0.9641,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.2760084925690021,
917
+ "grad_norm": 0.6854965625822327,
918
+ "learning_rate": 8.699219550575954e-06,
919
+ "loss": 0.9761,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.2781316348195329,
924
+ "grad_norm": 0.6538579090164267,
925
+ "learning_rate": 8.675486368352376e-06,
926
+ "loss": 0.9509,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.2802547770700637,
931
+ "grad_norm": 0.6798135259731691,
932
+ "learning_rate": 8.651571635512372e-06,
933
+ "loss": 0.9736,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.2823779193205945,
938
+ "grad_norm": 0.6711453015182969,
939
+ "learning_rate": 8.627476533323957e-06,
940
+ "loss": 0.9235,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.28450106157112526,
945
+ "grad_norm": 0.7583804715274035,
946
+ "learning_rate": 8.603202251964492e-06,
947
+ "loss": 0.9981,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.28662420382165604,
952
+ "grad_norm": 0.7176651957782098,
953
+ "learning_rate": 8.578749990461884e-06,
954
+ "loss": 1.0032,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.28874734607218683,
959
+ "grad_norm": 0.7211103037306501,
960
+ "learning_rate": 8.554120956635375e-06,
961
+ "loss": 0.9909,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.2908704883227176,
966
+ "grad_norm": 0.688485015985765,
967
+ "learning_rate": 8.52931636703587e-06,
968
+ "loss": 0.9276,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.2929936305732484,
973
+ "grad_norm": 0.6465279506859974,
974
+ "learning_rate": 8.504337446885854e-06,
975
+ "loss": 0.9398,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.2951167728237792,
980
+ "grad_norm": 0.6867853315980083,
981
+ "learning_rate": 8.47918543001886e-06,
982
+ "loss": 0.9279,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.29723991507430997,
987
+ "grad_norm": 0.7122704321655888,
988
+ "learning_rate": 8.453861558818542e-06,
989
+ "loss": 0.9884,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.29936305732484075,
994
+ "grad_norm": 0.7229336013729085,
995
+ "learning_rate": 8.428367084157292e-06,
996
+ "loss": 0.9288,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.30148619957537154,
1001
+ "grad_norm": 0.6611042572044565,
1002
+ "learning_rate": 8.402703265334455e-06,
1003
+ "loss": 1.0012,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.3036093418259023,
1008
+ "grad_norm": 0.6705484140078379,
1009
+ "learning_rate": 8.376871370014139e-06,
1010
+ "loss": 1.0219,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.3057324840764331,
1015
+ "grad_norm": 0.7118638939797448,
1016
+ "learning_rate": 8.350872674162578e-06,
1017
+ "loss": 0.8994,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.3078556263269639,
1022
+ "grad_norm": 0.7284734778507161,
1023
+ "learning_rate": 8.324708461985124e-06,
1024
+ "loss": 0.9674,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.3099787685774947,
1029
+ "grad_norm": 0.723907696270781,
1030
+ "learning_rate": 8.298380025862805e-06,
1031
+ "loss": 0.9132,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.31210191082802546,
1036
+ "grad_norm": 0.7559028348047754,
1037
+ "learning_rate": 8.271888666288488e-06,
1038
+ "loss": 0.94,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.31422505307855625,
1043
+ "grad_norm": 0.6723280638514304,
1044
+ "learning_rate": 8.245235691802644e-06,
1045
+ "loss": 1.0277,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.31634819532908703,
1050
+ "grad_norm": 0.7371820881632951,
1051
+ "learning_rate": 8.218422418928709e-06,
1052
+ "loss": 1.0206,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.3184713375796178,
1057
+ "grad_norm": 0.6827845610709571,
1058
+ "learning_rate": 8.191450172108058e-06,
1059
+ "loss": 0.9469,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.3205944798301486,
1064
+ "grad_norm": 0.7055002715463514,
1065
+ "learning_rate": 8.164320283634585e-06,
1066
+ "loss": 0.9841,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.3227176220806794,
1071
+ "grad_norm": 0.6889063122118256,
1072
+ "learning_rate": 8.137034093588885e-06,
1073
+ "loss": 0.984,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.3248407643312102,
1078
+ "grad_norm": 0.6966955432660643,
1079
+ "learning_rate": 8.109592949772076e-06,
1080
+ "loss": 1.013,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.32696390658174096,
1085
+ "grad_norm": 0.6986846471550263,
1086
+ "learning_rate": 8.081998207639212e-06,
1087
+ "loss": 1.0059,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.32908704883227174,
1092
+ "grad_norm": 0.626142059105963,
1093
+ "learning_rate": 8.054251230232333e-06,
1094
+ "loss": 0.9991,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.33121019108280253,
1099
+ "grad_norm": 0.7025129741121969,
1100
+ "learning_rate": 8.026353388113142e-06,
1101
+ "loss": 0.9797,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.3333333333333333,
1106
+ "grad_norm": 0.6696025000651015,
1107
+ "learning_rate": 7.998306059295302e-06,
1108
+ "loss": 1.0307,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.3354564755838641,
1113
+ "grad_norm": 0.6273584551839821,
1114
+ "learning_rate": 7.97011062917637e-06,
1115
+ "loss": 0.9362,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.3375796178343949,
1120
+ "grad_norm": 0.702578261973236,
1121
+ "learning_rate": 7.941768490469368e-06,
1122
+ "loss": 1.0164,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.33970276008492567,
1127
+ "grad_norm": 0.7406287649359133,
1128
+ "learning_rate": 7.913281043133978e-06,
1129
+ "loss": 0.9494,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.34182590233545646,
1134
+ "grad_norm": 0.6752561053160435,
1135
+ "learning_rate": 7.884649694307413e-06,
1136
+ "loss": 0.916,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.34394904458598724,
1141
+ "grad_norm": 0.6827707894296586,
1142
+ "learning_rate": 7.855875858234894e-06,
1143
+ "loss": 0.957,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.346072186836518,
1148
+ "grad_norm": 0.721736590005719,
1149
+ "learning_rate": 7.826960956199796e-06,
1150
+ "loss": 0.9642,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.3481953290870488,
1155
+ "grad_norm": 0.6861052725661058,
1156
+ "learning_rate": 7.797906416453445e-06,
1157
+ "loss": 1.0046,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.3503184713375796,
1162
+ "grad_norm": 0.6571115602420129,
1163
+ "learning_rate": 7.768713674144578e-06,
1164
+ "loss": 1.0109,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.3524416135881104,
1169
+ "grad_norm": 0.6826123583598673,
1170
+ "learning_rate": 7.739384171248436e-06,
1171
+ "loss": 0.9203,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.35456475583864117,
1176
+ "grad_norm": 0.7528479464049002,
1177
+ "learning_rate": 7.709919356495555e-06,
1178
+ "loss": 0.954,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.35668789808917195,
1183
+ "grad_norm": 0.6026943812612681,
1184
+ "learning_rate": 7.6803206853002e-06,
1185
+ "loss": 1.0024,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.35881104033970274,
1190
+ "grad_norm": 0.7023232885151509,
1191
+ "learning_rate": 7.650589619688468e-06,
1192
+ "loss": 0.9751,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.3609341825902335,
1197
+ "grad_norm": 0.6635390470590239,
1198
+ "learning_rate": 7.620727628226081e-06,
1199
+ "loss": 0.908,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.3630573248407643,
1204
+ "grad_norm": 0.6202385073922436,
1205
+ "learning_rate": 7.590736185945843e-06,
1206
+ "loss": 0.9455,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.3651804670912951,
1211
+ "grad_norm": 0.7074191000317777,
1212
+ "learning_rate": 7.560616774274775e-06,
1213
+ "loss": 0.9342,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.3673036093418259,
1218
+ "grad_norm": 0.6912450203775482,
1219
+ "learning_rate": 7.5303708809609514e-06,
1220
+ "loss": 0.9303,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.36942675159235666,
1225
+ "grad_norm": 0.6716646015086942,
1226
+ "learning_rate": 7.500000000000001e-06,
1227
+ "loss": 0.9717,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.37154989384288745,
1232
+ "grad_norm": 0.6478930551539204,
1233
+ "learning_rate": 7.469505631561318e-06,
1234
+ "loss": 0.9443,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.37367303609341823,
1239
+ "grad_norm": 0.7036455495923415,
1240
+ "learning_rate": 7.4388892819139625e-06,
1241
+ "loss": 0.981,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.37579617834394907,
1246
+ "grad_norm": 0.6998836705652469,
1247
+ "learning_rate": 7.408152463352249e-06,
1248
+ "loss": 0.9392,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.37791932059447986,
1253
+ "grad_norm": 0.7177208792525537,
1254
+ "learning_rate": 7.3772966941210585e-06,
1255
+ "loss": 0.9794,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.38004246284501064,
1260
+ "grad_norm": 0.7473525068625702,
1261
+ "learning_rate": 7.346323498340839e-06,
1262
+ "loss": 0.9195,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.3821656050955414,
1267
+ "grad_norm": 0.7227554431825605,
1268
+ "learning_rate": 7.3152344059323165e-06,
1269
+ "loss": 1.0082,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.3842887473460722,
1274
+ "grad_norm": 0.7080895952572748,
1275
+ "learning_rate": 7.284030952540937e-06,
1276
+ "loss": 0.9767,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.386411889596603,
1281
+ "grad_norm": 0.6629730047476243,
1282
+ "learning_rate": 7.252714679461001e-06,
1283
+ "loss": 0.994,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.3885350318471338,
1288
+ "grad_norm": 0.7045119821135271,
1289
+ "learning_rate": 7.221287133559537e-06,
1290
+ "loss": 0.9305,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.39065817409766457,
1295
+ "grad_norm": 0.6763415144165187,
1296
+ "learning_rate": 7.189749867199899e-06,
1297
+ "loss": 0.9091,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.39278131634819535,
1302
+ "grad_norm": 0.7251593181916779,
1303
+ "learning_rate": 7.1581044381650735e-06,
1304
+ "loss": 0.9801,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.39490445859872614,
1309
+ "grad_norm": 0.7318304915524612,
1310
+ "learning_rate": 7.126352409580749e-06,
1311
+ "loss": 1.0148,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.3970276008492569,
1316
+ "grad_norm": 0.636231931630425,
1317
+ "learning_rate": 7.094495349838093e-06,
1318
+ "loss": 1.0049,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.3991507430997877,
1323
+ "grad_norm": 0.7158842207998385,
1324
+ "learning_rate": 7.062534832516288e-06,
1325
+ "loss": 1.0129,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.4012738853503185,
1330
+ "grad_norm": 0.7129569595828432,
1331
+ "learning_rate": 7.0304724363048025e-06,
1332
+ "loss": 0.9263,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.4033970276008493,
1337
+ "grad_norm": 0.6864707114810514,
1338
+ "learning_rate": 6.998309744925411e-06,
1339
+ "loss": 0.8735,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.40552016985138006,
1344
+ "grad_norm": 0.6698406211001818,
1345
+ "learning_rate": 6.9660483470539704e-06,
1346
+ "loss": 0.9367,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.40764331210191085,
1351
+ "grad_norm": 0.7267969373273135,
1352
+ "learning_rate": 6.933689836241939e-06,
1353
+ "loss": 0.9406,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.40976645435244163,
1358
+ "grad_norm": 0.651813445608617,
1359
+ "learning_rate": 6.901235810837668e-06,
1360
+ "loss": 0.9736,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.4118895966029724,
1365
+ "grad_norm": 0.6683944283747483,
1366
+ "learning_rate": 6.868687873907458e-06,
1367
+ "loss": 0.9579,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.4140127388535032,
1372
+ "grad_norm": 0.6506700841660094,
1373
+ "learning_rate": 6.836047633156361e-06,
1374
+ "loss": 0.9174,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.416135881104034,
1379
+ "grad_norm": 0.6616818716028071,
1380
+ "learning_rate": 6.8033167008487784e-06,
1381
+ "loss": 0.9087,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.4182590233545648,
1386
+ "grad_norm": 0.6605052606554319,
1387
+ "learning_rate": 6.77049669372882e-06,
1388
+ "loss": 0.9679,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.42038216560509556,
1393
+ "grad_norm": 0.7082727940149344,
1394
+ "learning_rate": 6.737589232940445e-06,
1395
+ "loss": 0.9985,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.42250530785562634,
1400
+ "grad_norm": 0.6623600494563191,
1401
+ "learning_rate": 6.704595943947385e-06,
1402
+ "loss": 0.9321,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.42462845010615713,
1407
+ "grad_norm": 0.6623978762054843,
1408
+ "learning_rate": 6.671518456452859e-06,
1409
+ "loss": 0.9501,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.4267515923566879,
1414
+ "grad_norm": 0.6742018229334826,
1415
+ "learning_rate": 6.638358404319064e-06,
1416
+ "loss": 0.9684,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.4288747346072187,
1421
+ "grad_norm": 0.6502309799062719,
1422
+ "learning_rate": 6.605117425486483e-06,
1423
+ "loss": 0.9631,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.4309978768577495,
1428
+ "grad_norm": 0.6259967571338436,
1429
+ "learning_rate": 6.571797161892965e-06,
1430
+ "loss": 0.9195,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.43312101910828027,
1435
+ "grad_norm": 0.6800317584945854,
1436
+ "learning_rate": 6.538399259392637e-06,
1437
+ "loss": 0.9516,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.43524416135881105,
1442
+ "grad_norm": 0.6261983185852475,
1443
+ "learning_rate": 6.504925367674595e-06,
1444
+ "loss": 1.0328,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.43736730360934184,
1449
+ "grad_norm": 0.6449729939238322,
1450
+ "learning_rate": 6.471377140181419e-06,
1451
+ "loss": 0.9397,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.4394904458598726,
1456
+ "grad_norm": 0.706583045696564,
1457
+ "learning_rate": 6.437756234027512e-06,
1458
+ "loss": 0.9474,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.4416135881104034,
1463
+ "grad_norm": 0.6919864898373091,
1464
+ "learning_rate": 6.40406430991723e-06,
1465
+ "loss": 0.91,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.4437367303609342,
1470
+ "grad_norm": 0.6613982934744788,
1471
+ "learning_rate": 6.370303032062869e-06,
1472
+ "loss": 0.9095,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.445859872611465,
1477
+ "grad_norm": 0.6736801782820888,
1478
+ "learning_rate": 6.336474068102444e-06,
1479
+ "loss": 0.9731,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.44798301486199577,
1484
+ "grad_norm": 0.7089874077887519,
1485
+ "learning_rate": 6.302579089017328e-06,
1486
+ "loss": 0.9463,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.45010615711252655,
1491
+ "grad_norm": 0.7181675289310537,
1492
+ "learning_rate": 6.268619769049713e-06,
1493
+ "loss": 0.922,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.45222929936305734,
1498
+ "grad_norm": 0.7018430577826239,
1499
+ "learning_rate": 6.234597785619906e-06,
1500
+ "loss": 0.9219,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.4543524416135881,
1505
+ "grad_norm": 0.6853546290531675,
1506
+ "learning_rate": 6.200514819243476e-06,
1507
+ "loss": 0.907,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.4564755838641189,
1512
+ "grad_norm": 0.686355248670492,
1513
+ "learning_rate": 6.166372553448241e-06,
1514
+ "loss": 0.9159,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.4585987261146497,
1519
+ "grad_norm": 0.7339054174560321,
1520
+ "learning_rate": 6.132172674691119e-06,
1521
+ "loss": 0.9645,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.4607218683651805,
1526
+ "grad_norm": 0.6572741843944705,
1527
+ "learning_rate": 6.097916872274815e-06,
1528
+ "loss": 1.005,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.46284501061571126,
1533
+ "grad_norm": 0.6385617975237159,
1534
+ "learning_rate": 6.063606838264384e-06,
1535
+ "loss": 0.9395,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.46496815286624205,
1540
+ "grad_norm": 0.6298680692637662,
1541
+ "learning_rate": 6.029244267403652e-06,
1542
+ "loss": 0.921,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.46709129511677283,
1547
+ "grad_norm": 0.6537484240328865,
1548
+ "learning_rate": 5.9948308570315e-06,
1549
+ "loss": 0.9418,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.4692144373673036,
1554
+ "grad_norm": 0.6513186789442099,
1555
+ "learning_rate": 5.960368306998023e-06,
1556
+ "loss": 1.0093,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.4713375796178344,
1561
+ "grad_norm": 0.6198436120565162,
1562
+ "learning_rate": 5.92585831958058e-06,
1563
+ "loss": 0.8843,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.4734607218683652,
1568
+ "grad_norm": 0.6949192129540798,
1569
+ "learning_rate": 5.891302599399686e-06,
1570
+ "loss": 0.9173,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.47558386411889597,
1575
+ "grad_norm": 0.661048566711158,
1576
+ "learning_rate": 5.856702853334833e-06,
1577
+ "loss": 0.993,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.47770700636942676,
1582
+ "grad_norm": 0.6928421971972144,
1583
+ "learning_rate": 5.8220607904401725e-06,
1584
+ "loss": 0.9237,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.47983014861995754,
1589
+ "grad_norm": 0.6766405995371992,
1590
+ "learning_rate": 5.78737812186009e-06,
1591
+ "loss": 0.9212,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.4819532908704883,
1596
+ "grad_norm": 0.6387732380032056,
1597
+ "learning_rate": 5.752656560744692e-06,
1598
+ "loss": 0.9563,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.4840764331210191,
1603
+ "grad_norm": 0.6801696449031966,
1604
+ "learning_rate": 5.717897822165179e-06,
1605
+ "loss": 0.9556,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.4861995753715499,
1610
+ "grad_norm": 0.7117883554839965,
1611
+ "learning_rate": 5.6831036230291345e-06,
1612
+ "loss": 0.9756,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.4883227176220807,
1617
+ "grad_norm": 0.7055614143035667,
1618
+ "learning_rate": 5.648275681995716e-06,
1619
+ "loss": 0.9471,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.49044585987261147,
1624
+ "grad_norm": 0.6900933936326865,
1625
+ "learning_rate": 5.613415719390759e-06,
1626
+ "loss": 0.9058,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.49256900212314225,
1631
+ "grad_norm": 0.7383866221072647,
1632
+ "learning_rate": 5.578525457121807e-06,
1633
+ "loss": 1.0378,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.49469214437367304,
1638
+ "grad_norm": 0.732025682639867,
1639
+ "learning_rate": 5.543606618593053e-06,
1640
+ "loss": 0.9102,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.4968152866242038,
1645
+ "grad_norm": 0.7096362036491948,
1646
+ "learning_rate": 5.508660928620216e-06,
1647
+ "loss": 0.8952,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.4989384288747346,
1652
+ "grad_norm": 0.7099881315605873,
1653
+ "learning_rate": 5.473690113345343e-06,
1654
+ "loss": 0.9602,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.5010615711252654,
1659
+ "grad_norm": 0.6972671205744604,
1660
+ "learning_rate": 5.438695900151537e-06,
1661
+ "loss": 0.8624,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.5031847133757962,
1666
+ "grad_norm": 0.889396297433614,
1667
+ "learning_rate": 5.403680017577653e-06,
1668
+ "loss": 0.952,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.505307855626327,
1673
+ "grad_norm": 0.6402923695561287,
1674
+ "learning_rate": 5.368644195232896e-06,
1675
+ "loss": 0.9792,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.5074309978768577,
1680
+ "grad_norm": 0.6805565174215905,
1681
+ "learning_rate": 5.3335901637113985e-06,
1682
+ "loss": 0.9243,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.5095541401273885,
1687
+ "grad_norm": 0.6841794774774244,
1688
+ "learning_rate": 5.298519654506736e-06,
1689
+ "loss": 0.999,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.5116772823779193,
1694
+ "grad_norm": 0.7022154093220538,
1695
+ "learning_rate": 5.2634343999263985e-06,
1696
+ "loss": 0.9348,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.5138004246284501,
1701
+ "grad_norm": 0.6918338163749163,
1702
+ "learning_rate": 5.228336133006223e-06,
1703
+ "loss": 0.8975,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.5159235668789809,
1708
+ "grad_norm": 0.6755648031558511,
1709
+ "learning_rate": 5.193226587424793e-06,
1710
+ "loss": 0.9038,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.5180467091295117,
1715
+ "grad_norm": 0.7372704915893833,
1716
+ "learning_rate": 5.158107497417795e-06,
1717
+ "loss": 0.9826,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.5201698513800425,
1722
+ "grad_norm": 0.6463509797901226,
1723
+ "learning_rate": 5.122980597692372e-06,
1724
+ "loss": 0.9944,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.5222929936305732,
1729
+ "grad_norm": 0.6924850124684349,
1730
+ "learning_rate": 5.087847623341421e-06,
1731
+ "loss": 0.9763,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.524416135881104,
1736
+ "grad_norm": 0.6954437299483931,
1737
+ "learning_rate": 5.052710309757899e-06,
1738
+ "loss": 0.955,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.5265392781316348,
1743
+ "grad_norm": 0.6935825027209983,
1744
+ "learning_rate": 5.0175703925490936e-06,
1745
+ "loss": 0.9256,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.5286624203821656,
1750
+ "grad_norm": 0.691695101242488,
1751
+ "learning_rate": 4.982429607450907e-06,
1752
+ "loss": 0.9649,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.5307855626326964,
1757
+ "grad_norm": 0.6420506445010928,
1758
+ "learning_rate": 4.947289690242103e-06,
1759
+ "loss": 0.9767,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.5329087048832272,
1764
+ "grad_norm": 0.6983661270077597,
1765
+ "learning_rate": 4.91215237665858e-06,
1766
+ "loss": 0.9306,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.535031847133758,
1771
+ "grad_norm": 0.6859924966914502,
1772
+ "learning_rate": 4.877019402307629e-06,
1773
+ "loss": 0.9356,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.5371549893842887,
1778
+ "grad_norm": 0.7141495883745664,
1779
+ "learning_rate": 4.841892502582206e-06,
1780
+ "loss": 0.9602,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.5392781316348195,
1785
+ "grad_norm": 0.627839886124841,
1786
+ "learning_rate": 4.806773412575211e-06,
1787
+ "loss": 1.0012,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.5414012738853503,
1792
+ "grad_norm": 0.669446899340891,
1793
+ "learning_rate": 4.7716638669937784e-06,
1794
+ "loss": 0.9229,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.5435244161358811,
1799
+ "grad_norm": 0.681235443960255,
1800
+ "learning_rate": 4.736565600073602e-06,
1801
+ "loss": 0.9171,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.5456475583864119,
1806
+ "grad_norm": 0.7330756875715496,
1807
+ "learning_rate": 4.701480345493266e-06,
1808
+ "loss": 0.9257,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.5477707006369427,
1813
+ "grad_norm": 0.6630144658382536,
1814
+ "learning_rate": 4.666409836288603e-06,
1815
+ "loss": 0.9659,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.5498938428874734,
1820
+ "grad_norm": 0.7127193347963714,
1821
+ "learning_rate": 4.631355804767106e-06,
1822
+ "loss": 0.9375,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.5520169851380042,
1827
+ "grad_norm": 0.6290140804468636,
1828
+ "learning_rate": 4.596319982422348e-06,
1829
+ "loss": 0.9092,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.554140127388535,
1834
+ "grad_norm": 0.6986313542347127,
1835
+ "learning_rate": 4.561304099848464e-06,
1836
+ "loss": 0.9501,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.5562632696390658,
1841
+ "grad_norm": 0.6933713127536184,
1842
+ "learning_rate": 4.526309886654659e-06,
1843
+ "loss": 0.9977,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.5583864118895966,
1848
+ "grad_norm": 0.640132903868265,
1849
+ "learning_rate": 4.491339071379783e-06,
1850
+ "loss": 0.8758,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.5605095541401274,
1855
+ "grad_norm": 0.6822814887433616,
1856
+ "learning_rate": 4.4563933814069475e-06,
1857
+ "loss": 0.9315,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.5626326963906582,
1862
+ "grad_norm": 0.6398389559546622,
1863
+ "learning_rate": 4.4214745428781946e-06,
1864
+ "loss": 0.9847,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.564755838641189,
1869
+ "grad_norm": 0.6818041476558421,
1870
+ "learning_rate": 4.386584280609242e-06,
1871
+ "loss": 0.9819,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.5668789808917197,
1876
+ "grad_norm": 0.6679866325125441,
1877
+ "learning_rate": 4.351724318004286e-06,
1878
+ "loss": 0.9406,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.5690021231422505,
1883
+ "grad_norm": 0.6240664886135201,
1884
+ "learning_rate": 4.316896376970866e-06,
1885
+ "loss": 1.0318,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.5711252653927813,
1890
+ "grad_norm": 0.6220122266738475,
1891
+ "learning_rate": 4.282102177834822e-06,
1892
+ "loss": 0.9309,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.5732484076433121,
1897
+ "grad_norm": 0.6519539099798459,
1898
+ "learning_rate": 4.2473434392553115e-06,
1899
+ "loss": 0.9443,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.5753715498938429,
1904
+ "grad_norm": 0.6194962484361002,
1905
+ "learning_rate": 4.212621878139912e-06,
1906
+ "loss": 0.9332,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.5774946921443737,
1911
+ "grad_norm": 0.6484200470987919,
1912
+ "learning_rate": 4.177939209559828e-06,
1913
+ "loss": 0.9875,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.5796178343949044,
1918
+ "grad_norm": 0.6330847653688858,
1919
+ "learning_rate": 4.143297146665167e-06,
1920
+ "loss": 0.9074,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.5817409766454352,
1925
+ "grad_norm": 0.6413164774139387,
1926
+ "learning_rate": 4.108697400600316e-06,
1927
+ "loss": 0.9854,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.583864118895966,
1932
+ "grad_norm": 0.6779890723404448,
1933
+ "learning_rate": 4.074141680419422e-06,
1934
+ "loss": 0.9924,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.5859872611464968,
1939
+ "grad_norm": 0.7145362735963939,
1940
+ "learning_rate": 4.039631693001976e-06,
1941
+ "loss": 0.9673,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.5881104033970276,
1946
+ "grad_norm": 0.6462201481263671,
1947
+ "learning_rate": 4.005169142968503e-06,
1948
+ "loss": 0.9365,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.5902335456475584,
1953
+ "grad_norm": 0.6400041384015616,
1954
+ "learning_rate": 3.970755732596349e-06,
1955
+ "loss": 0.9345,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.5923566878980892,
1960
+ "grad_norm": 0.6705732923411916,
1961
+ "learning_rate": 3.936393161735616e-06,
1962
+ "loss": 0.9745,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.5944798301486199,
1967
+ "grad_norm": 0.6076428308867137,
1968
+ "learning_rate": 3.902083127725186e-06,
1969
+ "loss": 0.9887,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.5966029723991507,
1974
+ "grad_norm": 0.6829854410878823,
1975
+ "learning_rate": 3.867827325308882e-06,
1976
+ "loss": 0.9788,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.5987261146496815,
1981
+ "grad_norm": 0.635794721170443,
1982
+ "learning_rate": 3.83362744655176e-06,
1983
+ "loss": 0.9084,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.6008492569002123,
1988
+ "grad_norm": 0.6406247555663112,
1989
+ "learning_rate": 3.799485180756526e-06,
1990
+ "loss": 0.9696,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.6029723991507431,
1995
+ "grad_norm": 0.6836159898583682,
1996
+ "learning_rate": 3.765402214380095e-06,
1997
+ "loss": 0.9622,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.6050955414012739,
2002
+ "grad_norm": 0.6903265273050954,
2003
+ "learning_rate": 3.731380230950288e-06,
2004
+ "loss": 0.9804,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.6072186836518046,
2009
+ "grad_norm": 0.6582988195251387,
2010
+ "learning_rate": 3.6974209109826724e-06,
2011
+ "loss": 0.9198,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.6093418259023354,
2016
+ "grad_norm": 0.616448368616492,
2017
+ "learning_rate": 3.663525931897559e-06,
2018
+ "loss": 0.9158,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.6114649681528662,
2023
+ "grad_norm": 0.6673765701597619,
2024
+ "learning_rate": 3.6296969679371325e-06,
2025
+ "loss": 0.9611,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.613588110403397,
2030
+ "grad_norm": 0.6888915388418313,
2031
+ "learning_rate": 3.595935690082769e-06,
2032
+ "loss": 0.8919,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.6157112526539278,
2037
+ "grad_norm": 0.6101159334044771,
2038
+ "learning_rate": 3.56224376597249e-06,
2039
+ "loss": 0.9515,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.6178343949044586,
2044
+ "grad_norm": 0.658669764640868,
2045
+ "learning_rate": 3.528622859818582e-06,
2046
+ "loss": 0.9566,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.6199575371549894,
2051
+ "grad_norm": 0.5954645751379325,
2052
+ "learning_rate": 3.495074632325407e-06,
2053
+ "loss": 0.9686,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.6220806794055201,
2058
+ "grad_norm": 0.6417440985880237,
2059
+ "learning_rate": 3.461600740607366e-06,
2060
+ "loss": 0.9841,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.6242038216560509,
2065
+ "grad_norm": 0.6513493598293557,
2066
+ "learning_rate": 3.4282028381070366e-06,
2067
+ "loss": 0.88,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.6263269639065817,
2072
+ "grad_norm": 0.6460724764075341,
2073
+ "learning_rate": 3.3948825745135196e-06,
2074
+ "loss": 0.9395,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.6284501061571125,
2079
+ "grad_norm": 0.7273038274491741,
2080
+ "learning_rate": 3.361641595680937e-06,
2081
+ "loss": 0.9796,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.6305732484076433,
2086
+ "grad_norm": 0.63867402479588,
2087
+ "learning_rate": 3.3284815435471423e-06,
2088
+ "loss": 0.9616,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.6326963906581741,
2093
+ "grad_norm": 0.6249901633020171,
2094
+ "learning_rate": 3.295404056052616e-06,
2095
+ "loss": 0.9268,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.6348195329087049,
2100
+ "grad_norm": 0.7130471341801802,
2101
+ "learning_rate": 3.2624107670595567e-06,
2102
+ "loss": 0.97,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.6369426751592356,
2107
+ "grad_norm": 0.6679078460787682,
2108
+ "learning_rate": 3.2295033062711823e-06,
2109
+ "loss": 0.9088,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.6390658174097664,
2114
+ "grad_norm": 0.7012208037782451,
2115
+ "learning_rate": 3.1966832991512232e-06,
2116
+ "loss": 0.9859,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.6411889596602972,
2121
+ "grad_norm": 0.6533943769965103,
2122
+ "learning_rate": 3.16395236684364e-06,
2123
+ "loss": 0.9511,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.643312101910828,
2128
+ "grad_norm": 0.682194483085267,
2129
+ "learning_rate": 3.131312126092544e-06,
2130
+ "loss": 0.9403,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.6454352441613588,
2135
+ "grad_norm": 0.6703363053760469,
2136
+ "learning_rate": 3.098764189162332e-06,
2137
+ "loss": 0.9039,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.6475583864118896,
2142
+ "grad_norm": 0.6294417096433408,
2143
+ "learning_rate": 3.0663101637580626e-06,
2144
+ "loss": 0.9244,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.6496815286624203,
2149
+ "grad_norm": 0.6602293200539316,
2150
+ "learning_rate": 3.03395165294603e-06,
2151
+ "loss": 0.9533,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.6518046709129511,
2156
+ "grad_norm": 0.672086498728235,
2157
+ "learning_rate": 3.0016902550745896e-06,
2158
+ "loss": 0.953,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.6539278131634819,
2163
+ "grad_norm": 0.6146168409218723,
2164
+ "learning_rate": 2.9695275636951983e-06,
2165
+ "loss": 0.9569,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.6560509554140127,
2170
+ "grad_norm": 0.6219654134664444,
2171
+ "learning_rate": 2.9374651674837128e-06,
2172
+ "loss": 1.0229,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.6581740976645435,
2177
+ "grad_norm": 0.6353930075528244,
2178
+ "learning_rate": 2.9055046501619088e-06,
2179
+ "loss": 0.9792,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.6602972399150743,
2184
+ "grad_norm": 0.7205625550852138,
2185
+ "learning_rate": 2.8736475904192516e-06,
2186
+ "loss": 0.9297,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.6624203821656051,
2191
+ "grad_norm": 0.65227066914161,
2192
+ "learning_rate": 2.841895561834927e-06,
2193
+ "loss": 0.8995,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.6645435244161358,
2198
+ "grad_norm": 0.6736462207854454,
2199
+ "learning_rate": 2.810250132800103e-06,
2200
+ "loss": 0.9456,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.6666666666666666,
2205
+ "grad_norm": 0.6024110164676963,
2206
+ "learning_rate": 2.778712866440464e-06,
2207
+ "loss": 0.9641,
2208
+ "step": 314
2209
+ }
2210
+ ],
2211
+ "logging_steps": 1,
2212
+ "max_steps": 471,
2213
+ "num_input_tokens_seen": 0,
2214
+ "num_train_epochs": 1,
2215
+ "save_steps": 157,
2216
+ "stateful_callbacks": {
2217
+ "TrainerControl": {
2218
+ "args": {
2219
+ "should_epoch_stop": false,
2220
+ "should_evaluate": false,
2221
+ "should_log": false,
2222
+ "should_save": true,
2223
+ "should_training_stop": false
2224
+ },
2225
+ "attributes": {}
2226
+ }
2227
+ },
2228
+ "total_flos": 46655615139840.0,
2229
+ "train_batch_size": 2,
2230
+ "trial_name": null,
2231
+ "trial_params": null
2232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b034e0d83300ea1c9e38edcef801137d8d09a7d4a653638cef26385c245e0d4
3
+ size 8017
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)