Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- config.json +38 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00013.safetensors +3 -0
- model-00002-of-00013.safetensors +3 -0
- model-00003-of-00013.safetensors +3 -0
- model-00004-of-00013.safetensors +3 -0
- model-00005-of-00013.safetensors +3 -0
- model-00006-of-00013.safetensors +3 -0
- model-00007-of-00013.safetensors +3 -0
- model-00008-of-00013.safetensors +3 -0
- model-00009-of-00013.safetensors +3 -0
- model-00010-of-00013.safetensors +3 -0
- model-00011-of-00013.safetensors +3 -0
- model-00012-of-00013.safetensors +3 -0
- model-00013-of-00013.safetensors +3 -0
- model.safetensors.index.json +0 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +241 -0
- trainer_state.json +3331 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3MoeForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"decoder_sparse_step": 1,
|
9 |
+
"eos_token_id": 151643,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 6144,
|
15 |
+
"max_position_embeddings": 32768,
|
16 |
+
"max_window_layers": 48,
|
17 |
+
"mlp_only_layers": [],
|
18 |
+
"model_type": "qwen3_moe",
|
19 |
+
"moe_intermediate_size": 768,
|
20 |
+
"norm_topk_prob": true,
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_experts": 128,
|
23 |
+
"num_experts_per_tok": 8,
|
24 |
+
"num_hidden_layers": 48,
|
25 |
+
"num_key_value_heads": 4,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 1000000.0,
|
30 |
+
"router_aux_loss_coef": 0.001,
|
31 |
+
"sliding_window": null,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.51.3",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"vocab_size": 151936
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.51.3"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step471
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a76a5e43068c50f1230d42c679d71cbd692ec1533505143db3e0089fa45dbe37
|
3 |
+
size 4997184968
|
model-00002-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e9d2ccec816f35e83f0f15cb5619220894f68cbad4e958f4066910b10371c9c
|
3 |
+
size 4997741608
|
model-00003-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033bf2ee58f98b4f6e7af1202e36fa301b72808b1a6587af367913abf8eeb244
|
3 |
+
size 4997742208
|
model-00004-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac022c17c631b3c12ec68fe6719d799d498195c6484d5f39c45c763655a2318
|
3 |
+
size 4997743184
|
model-00005-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66144e77c2f47964669b616bec0925693252a1d82951fa7f62dac02cf0a8d74a
|
3 |
+
size 4997743184
|
model-00006-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f240d0a22821af3a7619464245e209b3a06e16f24bd9d6a10af6ef27f4a744f
|
3 |
+
size 4997743184
|
model-00007-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de60b9224bd38997f6a6969f40ae91212d5dce4e2cf124532de6e10f32d75090
|
3 |
+
size 4997743184
|
model-00008-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c0eaa5a25ad046149111c2ac1c8b6b1d09c9f19b87ba0f7add22a394bd93f9
|
3 |
+
size 4997743184
|
model-00009-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88424e9d88041e8fc0b1524b6b480dcadcab60ceb9e6c336b201dea12ddbf537
|
3 |
+
size 4997743184
|
model-00010-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d82a7ce5f0ae0585b959bd6e7b56249ce019c94568401f28fb09a15518fefbb
|
3 |
+
size 4997743184
|
model-00011-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f83fe008f99850cad321e87cca086b4c08ba1ffef91e619468aad21c37f6d24
|
3 |
+
size 4997743184
|
model-00012-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b17a912e1c0fca4cd4d6c6f3e4631c6a91578b27f1015ab82e53797d943cbaf
|
3 |
+
size 4997743184
|
model-00013-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b5be1e0ebe858961f3f7b95c9b9079a883dc4c5a4b5a6efef59c91b42db0d27
|
3 |
+
size 1094220288
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:478b41e9f26d338fd8f896e08cad1adab7c423b61f1b45754113bc78d256a3f9
|
3 |
+
size 16389
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce29a8767a7d907dd24987aa2c3e654d4317f3042fbc13b5b72cadb46d43311a
|
3 |
+
size 16389
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a48db011646b4e9a867bf12f4a233cad5dfbfe309686f8996c250196d3783a
|
3 |
+
size 16389
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9562ee822472a4f01dcd6349ab3d1ef42a48915fe3b92e843a0c37db53c8421
|
3 |
+
size 16389
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d2767d83c3bf27f12db022b0632e2c4f8c164274ba75e380cf18f9d5f21819
|
3 |
+
size 16389
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76816358d4e5db8149d60d55234db658d67a13c0c1ce05d7404cf7125a676a5c
|
3 |
+
size 16389
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1562e7520c977d178183d641f70abcf3f57da2489938756cfbebf9b6e6c1a9fd
|
3 |
+
size 16389
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b6cabaed045c5398cd1b732f7ec48bd363f3b43cd24e0e70e641a42bd00c28
|
3 |
+
size 16389
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a69b9d71e0374a3ffe7767166144deaf2e95552e44dacd5df10e4f1b1e948418
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"padding_side": "right",
|
238 |
+
"split_special_tokens": false,
|
239 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
240 |
+
"unk_token": null
|
241 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 471,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0021231422505307855,
|
14 |
+
"grad_norm": 6.233692311689662,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 1.3677,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.004246284501061571,
|
21 |
+
"grad_norm": 6.036167846313234,
|
22 |
+
"learning_rate": 4.1666666666666667e-07,
|
23 |
+
"loss": 1.4092,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.006369426751592357,
|
28 |
+
"grad_norm": 5.848179790677502,
|
29 |
+
"learning_rate": 8.333333333333333e-07,
|
30 |
+
"loss": 1.4005,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.008492569002123142,
|
35 |
+
"grad_norm": 6.0378802369914935,
|
36 |
+
"learning_rate": 1.25e-06,
|
37 |
+
"loss": 1.4013,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.010615711252653927,
|
42 |
+
"grad_norm": 5.595183474903656,
|
43 |
+
"learning_rate": 1.6666666666666667e-06,
|
44 |
+
"loss": 1.3827,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.012738853503184714,
|
49 |
+
"grad_norm": 5.382553823715441,
|
50 |
+
"learning_rate": 2.0833333333333334e-06,
|
51 |
+
"loss": 1.4028,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.014861995753715499,
|
56 |
+
"grad_norm": 5.302639986868994,
|
57 |
+
"learning_rate": 2.5e-06,
|
58 |
+
"loss": 1.2932,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.016985138004246284,
|
63 |
+
"grad_norm": 4.567653411915884,
|
64 |
+
"learning_rate": 2.916666666666667e-06,
|
65 |
+
"loss": 1.3434,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01910828025477707,
|
70 |
+
"grad_norm": 4.288457445231689,
|
71 |
+
"learning_rate": 3.3333333333333333e-06,
|
72 |
+
"loss": 1.3357,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.021231422505307854,
|
77 |
+
"grad_norm": 4.049507973772927,
|
78 |
+
"learning_rate": 3.7500000000000005e-06,
|
79 |
+
"loss": 1.3412,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02335456475583864,
|
84 |
+
"grad_norm": 2.9217595476326017,
|
85 |
+
"learning_rate": 4.166666666666667e-06,
|
86 |
+
"loss": 1.2783,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.025477707006369428,
|
91 |
+
"grad_norm": 3.005465009214924,
|
92 |
+
"learning_rate": 4.583333333333333e-06,
|
93 |
+
"loss": 1.2584,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.027600849256900213,
|
98 |
+
"grad_norm": 2.793623616592523,
|
99 |
+
"learning_rate": 5e-06,
|
100 |
+
"loss": 1.3123,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.029723991507430998,
|
105 |
+
"grad_norm": 2.090044767584013,
|
106 |
+
"learning_rate": 5.416666666666667e-06,
|
107 |
+
"loss": 1.2184,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.03184713375796178,
|
112 |
+
"grad_norm": 2.6376790535616084,
|
113 |
+
"learning_rate": 5.833333333333334e-06,
|
114 |
+
"loss": 1.2336,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.03397027600849257,
|
119 |
+
"grad_norm": 2.461503775389557,
|
120 |
+
"learning_rate": 6.25e-06,
|
121 |
+
"loss": 1.1937,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.036093418259023353,
|
126 |
+
"grad_norm": 2.2913204705452395,
|
127 |
+
"learning_rate": 6.666666666666667e-06,
|
128 |
+
"loss": 1.158,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03821656050955414,
|
133 |
+
"grad_norm": 2.2503979169805084,
|
134 |
+
"learning_rate": 7.083333333333335e-06,
|
135 |
+
"loss": 1.1271,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.040339702760084924,
|
140 |
+
"grad_norm": 2.466445150163946,
|
141 |
+
"learning_rate": 7.500000000000001e-06,
|
142 |
+
"loss": 1.1126,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.04246284501061571,
|
147 |
+
"grad_norm": 2.247026245104246,
|
148 |
+
"learning_rate": 7.916666666666667e-06,
|
149 |
+
"loss": 1.0246,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.044585987261146494,
|
154 |
+
"grad_norm": 2.3877387081949886,
|
155 |
+
"learning_rate": 8.333333333333334e-06,
|
156 |
+
"loss": 1.1415,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.04670912951167728,
|
161 |
+
"grad_norm": 2.413953103563364,
|
162 |
+
"learning_rate": 8.750000000000001e-06,
|
163 |
+
"loss": 1.1117,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.04883227176220807,
|
168 |
+
"grad_norm": 2.0737115581292063,
|
169 |
+
"learning_rate": 9.166666666666666e-06,
|
170 |
+
"loss": 1.0196,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.050955414012738856,
|
175 |
+
"grad_norm": 1.4762727779050233,
|
176 |
+
"learning_rate": 9.583333333333335e-06,
|
177 |
+
"loss": 1.0301,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.05307855626326964,
|
182 |
+
"grad_norm": 1.4318135959081477,
|
183 |
+
"learning_rate": 1e-05,
|
184 |
+
"loss": 1.0545,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.055201698513800426,
|
189 |
+
"grad_norm": 4.215679400721786,
|
190 |
+
"learning_rate": 9.999876512522269e-06,
|
191 |
+
"loss": 1.046,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.05732484076433121,
|
196 |
+
"grad_norm": 1.3411659207433844,
|
197 |
+
"learning_rate": 9.999506056188736e-06,
|
198 |
+
"loss": 1.089,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.059447983014861996,
|
203 |
+
"grad_norm": 1.2807986819041255,
|
204 |
+
"learning_rate": 9.99888864929809e-06,
|
205 |
+
"loss": 1.0897,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.06157112526539278,
|
210 |
+
"grad_norm": 1.1455939763312737,
|
211 |
+
"learning_rate": 9.99802432234714e-06,
|
212 |
+
"loss": 1.0569,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06369426751592357,
|
217 |
+
"grad_norm": 1.8215374393805115,
|
218 |
+
"learning_rate": 9.996913118029306e-06,
|
219 |
+
"loss": 1.0579,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.06581740976645435,
|
224 |
+
"grad_norm": 1.0350186789586957,
|
225 |
+
"learning_rate": 9.995555091232516e-06,
|
226 |
+
"loss": 1.0399,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.06794055201698514,
|
231 |
+
"grad_norm": 0.8818644928748289,
|
232 |
+
"learning_rate": 9.99395030903649e-06,
|
233 |
+
"loss": 1.0392,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.07006369426751592,
|
238 |
+
"grad_norm": 0.9117340500480796,
|
239 |
+
"learning_rate": 9.992098850709434e-06,
|
240 |
+
"loss": 0.9961,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.07218683651804671,
|
245 |
+
"grad_norm": 0.9087780060428899,
|
246 |
+
"learning_rate": 9.990000807704114e-06,
|
247 |
+
"loss": 0.9941,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.07430997876857749,
|
252 |
+
"grad_norm": 0.8465013815457932,
|
253 |
+
"learning_rate": 9.987656283653344e-06,
|
254 |
+
"loss": 0.9976,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.07643312101910828,
|
259 |
+
"grad_norm": 0.8845003722156789,
|
260 |
+
"learning_rate": 9.985065394364869e-06,
|
261 |
+
"loss": 1.0305,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07855626326963906,
|
266 |
+
"grad_norm": 0.9213919092982428,
|
267 |
+
"learning_rate": 9.982228267815644e-06,
|
268 |
+
"loss": 0.9694,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.08067940552016985,
|
273 |
+
"grad_norm": 0.8874641991485241,
|
274 |
+
"learning_rate": 9.979145044145506e-06,
|
275 |
+
"loss": 0.9625,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.08280254777070063,
|
280 |
+
"grad_norm": 0.8321483472211252,
|
281 |
+
"learning_rate": 9.975815875650265e-06,
|
282 |
+
"loss": 0.9474,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.08492569002123142,
|
287 |
+
"grad_norm": 0.7808697647642835,
|
288 |
+
"learning_rate": 9.972240926774167e-06,
|
289 |
+
"loss": 0.998,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.0870488322717622,
|
294 |
+
"grad_norm": 0.9040838208522329,
|
295 |
+
"learning_rate": 9.968420374101782e-06,
|
296 |
+
"loss": 0.9594,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08917197452229299,
|
301 |
+
"grad_norm": 0.7584425916438082,
|
302 |
+
"learning_rate": 9.964354406349272e-06,
|
303 |
+
"loss": 0.9628,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.09129511677282377,
|
308 |
+
"grad_norm": 0.7620163299458729,
|
309 |
+
"learning_rate": 9.960043224355081e-06,
|
310 |
+
"loss": 0.9616,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.09341825902335456,
|
315 |
+
"grad_norm": 0.8222242622111462,
|
316 |
+
"learning_rate": 9.955487041070003e-06,
|
317 |
+
"loss": 1.0289,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.09554140127388536,
|
322 |
+
"grad_norm": 0.8421347235061095,
|
323 |
+
"learning_rate": 9.95068608154667e-06,
|
324 |
+
"loss": 1.0307,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.09766454352441614,
|
329 |
+
"grad_norm": 0.9753656204578139,
|
330 |
+
"learning_rate": 9.945640582928438e-06,
|
331 |
+
"loss": 1.0164,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.09978768577494693,
|
336 |
+
"grad_norm": 0.9292958552660628,
|
337 |
+
"learning_rate": 9.940350794437663e-06,
|
338 |
+
"loss": 0.9794,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.10191082802547771,
|
343 |
+
"grad_norm": 1.1329023477241527,
|
344 |
+
"learning_rate": 9.934816977363404e-06,
|
345 |
+
"loss": 0.9825,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1040339702760085,
|
350 |
+
"grad_norm": 0.7480637668709176,
|
351 |
+
"learning_rate": 9.929039405048502e-06,
|
352 |
+
"loss": 0.9681,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.10615711252653928,
|
357 |
+
"grad_norm": 0.8665970954982817,
|
358 |
+
"learning_rate": 9.923018362876093e-06,
|
359 |
+
"loss": 1.0051,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.10828025477707007,
|
364 |
+
"grad_norm": 0.8205102895066251,
|
365 |
+
"learning_rate": 9.916754148255501e-06,
|
366 |
+
"loss": 0.9926,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.11040339702760085,
|
371 |
+
"grad_norm": 0.7347897450905055,
|
372 |
+
"learning_rate": 9.91024707060755e-06,
|
373 |
+
"loss": 1.0003,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.11252653927813164,
|
378 |
+
"grad_norm": 0.764879949996413,
|
379 |
+
"learning_rate": 9.903497451349286e-06,
|
380 |
+
"loss": 0.9292,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.11464968152866242,
|
385 |
+
"grad_norm": 0.717706889231986,
|
386 |
+
"learning_rate": 9.896505623878088e-06,
|
387 |
+
"loss": 0.987,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.11677282377919321,
|
392 |
+
"grad_norm": 0.7715458461663043,
|
393 |
+
"learning_rate": 9.889271933555214e-06,
|
394 |
+
"loss": 1.0261,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.11889596602972399,
|
399 |
+
"grad_norm": 0.7521393701353877,
|
400 |
+
"learning_rate": 9.881796737688732e-06,
|
401 |
+
"loss": 1.0534,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.12101910828025478,
|
406 |
+
"grad_norm": 0.7414115819906733,
|
407 |
+
"learning_rate": 9.874080405515874e-06,
|
408 |
+
"loss": 0.9913,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.12314225053078556,
|
413 |
+
"grad_norm": 0.8232230218266363,
|
414 |
+
"learning_rate": 9.866123318184803e-06,
|
415 |
+
"loss": 0.9918,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.12526539278131635,
|
420 |
+
"grad_norm": 0.8149896063868423,
|
421 |
+
"learning_rate": 9.857925868735774e-06,
|
422 |
+
"loss": 0.9868,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.12738853503184713,
|
427 |
+
"grad_norm": 0.7942302058586811,
|
428 |
+
"learning_rate": 9.84948846208173e-06,
|
429 |
+
"loss": 0.98,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.12951167728237792,
|
434 |
+
"grad_norm": 0.8138984220428053,
|
435 |
+
"learning_rate": 9.840811514988294e-06,
|
436 |
+
"loss": 0.9049,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.1316348195329087,
|
441 |
+
"grad_norm": 0.7679169662702224,
|
442 |
+
"learning_rate": 9.831895456053197e-06,
|
443 |
+
"loss": 0.9677,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.1337579617834395,
|
448 |
+
"grad_norm": 0.7874842581700767,
|
449 |
+
"learning_rate": 9.822740725685087e-06,
|
450 |
+
"loss": 0.9912,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.13588110403397027,
|
455 |
+
"grad_norm": 0.7727018614004334,
|
456 |
+
"learning_rate": 9.81334777608179e-06,
|
457 |
+
"loss": 1.0131,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.13800424628450106,
|
462 |
+
"grad_norm": 0.8942883107933416,
|
463 |
+
"learning_rate": 9.803717071207965e-06,
|
464 |
+
"loss": 1.022,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.14012738853503184,
|
469 |
+
"grad_norm": 0.7488279786454368,
|
470 |
+
"learning_rate": 9.793849086772198e-06,
|
471 |
+
"loss": 0.9611,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.14225053078556263,
|
476 |
+
"grad_norm": 0.7231313822633343,
|
477 |
+
"learning_rate": 9.783744310203492e-06,
|
478 |
+
"loss": 0.9648,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.14437367303609341,
|
483 |
+
"grad_norm": 0.8009470186289236,
|
484 |
+
"learning_rate": 9.77340324062719e-06,
|
485 |
+
"loss": 0.9616,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.1464968152866242,
|
490 |
+
"grad_norm": 0.694840815258157,
|
491 |
+
"learning_rate": 9.76282638884034e-06,
|
492 |
+
"loss": 0.9393,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.14861995753715498,
|
497 |
+
"grad_norm": 0.807816808271673,
|
498 |
+
"learning_rate": 9.752014277286433e-06,
|
499 |
+
"loss": 1.0505,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.15074309978768577,
|
504 |
+
"grad_norm": 0.8317043459433457,
|
505 |
+
"learning_rate": 9.740967440029628e-06,
|
506 |
+
"loss": 0.9914,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.15286624203821655,
|
511 |
+
"grad_norm": 0.6790810524359902,
|
512 |
+
"learning_rate": 9.729686422728353e-06,
|
513 |
+
"loss": 1.012,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.15498938428874734,
|
518 |
+
"grad_norm": 0.7310970501009117,
|
519 |
+
"learning_rate": 9.718171782608355e-06,
|
520 |
+
"loss": 0.959,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.15711252653927812,
|
525 |
+
"grad_norm": 0.7675118911080142,
|
526 |
+
"learning_rate": 9.706424088435183e-06,
|
527 |
+
"loss": 0.9373,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.1592356687898089,
|
532 |
+
"grad_norm": 0.6926951658050571,
|
533 |
+
"learning_rate": 9.694443920486083e-06,
|
534 |
+
"loss": 0.9801,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.1613588110403397,
|
539 |
+
"grad_norm": 0.7346879776016684,
|
540 |
+
"learning_rate": 9.682231870521347e-06,
|
541 |
+
"loss": 0.8983,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.16348195329087048,
|
546 |
+
"grad_norm": 0.6862950789085892,
|
547 |
+
"learning_rate": 9.669788541755072e-06,
|
548 |
+
"loss": 0.9532,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.16560509554140126,
|
553 |
+
"grad_norm": 0.7381966173799152,
|
554 |
+
"learning_rate": 9.657114548825372e-06,
|
555 |
+
"loss": 0.9686,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.16772823779193205,
|
560 |
+
"grad_norm": 0.643557401853306,
|
561 |
+
"learning_rate": 9.644210517764014e-06,
|
562 |
+
"loss": 0.9668,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.16985138004246284,
|
567 |
+
"grad_norm": 0.7765772003310986,
|
568 |
+
"learning_rate": 9.631077085965501e-06,
|
569 |
+
"loss": 1.0638,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.17197452229299362,
|
574 |
+
"grad_norm": 0.8024757246296556,
|
575 |
+
"learning_rate": 9.617714902155576e-06,
|
576 |
+
"loss": 0.9911,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.1740976645435244,
|
581 |
+
"grad_norm": 0.7800601554968952,
|
582 |
+
"learning_rate": 9.60412462635919e-06,
|
583 |
+
"loss": 1.0459,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.1762208067940552,
|
588 |
+
"grad_norm": 0.7431393505154594,
|
589 |
+
"learning_rate": 9.590306929867896e-06,
|
590 |
+
"loss": 0.9687,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.17834394904458598,
|
595 |
+
"grad_norm": 0.6824175459850116,
|
596 |
+
"learning_rate": 9.576262495206689e-06,
|
597 |
+
"loss": 0.9994,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.18046709129511676,
|
602 |
+
"grad_norm": 0.7916336363488418,
|
603 |
+
"learning_rate": 9.561992016100293e-06,
|
604 |
+
"loss": 0.9783,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.18259023354564755,
|
609 |
+
"grad_norm": 0.6976948182235398,
|
610 |
+
"learning_rate": 9.547496197438896e-06,
|
611 |
+
"loss": 1.0076,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.18471337579617833,
|
616 |
+
"grad_norm": 0.7093988344101032,
|
617 |
+
"learning_rate": 9.532775755243334e-06,
|
618 |
+
"loss": 1.0075,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.18683651804670912,
|
623 |
+
"grad_norm": 0.752335224864414,
|
624 |
+
"learning_rate": 9.517831416629717e-06,
|
625 |
+
"loss": 0.9428,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.18895966029723993,
|
630 |
+
"grad_norm": 0.7535135712750508,
|
631 |
+
"learning_rate": 9.502663919773516e-06,
|
632 |
+
"loss": 0.9228,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1910828025477707,
|
637 |
+
"grad_norm": 0.6836684618511217,
|
638 |
+
"learning_rate": 9.487274013873104e-06,
|
639 |
+
"loss": 0.9915,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.1932059447983015,
|
644 |
+
"grad_norm": 0.7168371002333184,
|
645 |
+
"learning_rate": 9.471662459112747e-06,
|
646 |
+
"loss": 0.9146,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.19532908704883228,
|
651 |
+
"grad_norm": 0.7590517179947264,
|
652 |
+
"learning_rate": 9.455830026625053e-06,
|
653 |
+
"loss": 0.9537,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.19745222929936307,
|
658 |
+
"grad_norm": 0.783311626765522,
|
659 |
+
"learning_rate": 9.439777498452883e-06,
|
660 |
+
"loss": 0.9673,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.19957537154989385,
|
665 |
+
"grad_norm": 0.7583109403403397,
|
666 |
+
"learning_rate": 9.423505667510724e-06,
|
667 |
+
"loss": 0.9488,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.20169851380042464,
|
672 |
+
"grad_norm": 0.6665250800247178,
|
673 |
+
"learning_rate": 9.40701533754552e-06,
|
674 |
+
"loss": 1.0014,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.20382165605095542,
|
679 |
+
"grad_norm": 0.7534757180486034,
|
680 |
+
"learning_rate": 9.390307323096972e-06,
|
681 |
+
"loss": 0.9486,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.2059447983014862,
|
686 |
+
"grad_norm": 0.7633774921562732,
|
687 |
+
"learning_rate": 9.373382449457305e-06,
|
688 |
+
"loss": 0.9486,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.208067940552017,
|
693 |
+
"grad_norm": 0.7546302945571557,
|
694 |
+
"learning_rate": 9.356241552630503e-06,
|
695 |
+
"loss": 0.9325,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.21019108280254778,
|
700 |
+
"grad_norm": 0.7374682216888635,
|
701 |
+
"learning_rate": 9.338885479291012e-06,
|
702 |
+
"loss": 1.0019,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.21231422505307856,
|
707 |
+
"grad_norm": 0.7502571413886471,
|
708 |
+
"learning_rate": 9.321315086741916e-06,
|
709 |
+
"loss": 1.0028,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.21443736730360935,
|
714 |
+
"grad_norm": 0.7215038325133775,
|
715 |
+
"learning_rate": 9.303531242872606e-06,
|
716 |
+
"loss": 1.038,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.21656050955414013,
|
721 |
+
"grad_norm": 0.7766452530718216,
|
722 |
+
"learning_rate": 9.285534826115884e-06,
|
723 |
+
"loss": 0.9567,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.21868365180467092,
|
728 |
+
"grad_norm": 0.7660906470554663,
|
729 |
+
"learning_rate": 9.2673267254046e-06,
|
730 |
+
"loss": 0.9041,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.2208067940552017,
|
735 |
+
"grad_norm": 0.6968152389503037,
|
736 |
+
"learning_rate": 9.248907840127726e-06,
|
737 |
+
"loss": 0.9682,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.2229299363057325,
|
742 |
+
"grad_norm": 0.6843474144819354,
|
743 |
+
"learning_rate": 9.230279080085933e-06,
|
744 |
+
"loss": 0.9289,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.22505307855626328,
|
749 |
+
"grad_norm": 0.7512996746200725,
|
750 |
+
"learning_rate": 9.211441365446661e-06,
|
751 |
+
"loss": 0.9318,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.22717622080679406,
|
756 |
+
"grad_norm": 0.7245746774218922,
|
757 |
+
"learning_rate": 9.192395626698656e-06,
|
758 |
+
"loss": 0.9745,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.22929936305732485,
|
763 |
+
"grad_norm": 0.7472828991840396,
|
764 |
+
"learning_rate": 9.173142804606012e-06,
|
765 |
+
"loss": 0.9417,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.23142250530785563,
|
770 |
+
"grad_norm": 0.7433451614104158,
|
771 |
+
"learning_rate": 9.153683850161706e-06,
|
772 |
+
"loss": 0.9888,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.23354564755838642,
|
777 |
+
"grad_norm": 0.6820085118229582,
|
778 |
+
"learning_rate": 9.13401972454062e-06,
|
779 |
+
"loss": 1.0062,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.2356687898089172,
|
784 |
+
"grad_norm": 0.6597210654799798,
|
785 |
+
"learning_rate": 9.114151399052064e-06,
|
786 |
+
"loss": 0.9498,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.23779193205944799,
|
791 |
+
"grad_norm": 0.6964084111810886,
|
792 |
+
"learning_rate": 9.094079855091797e-06,
|
793 |
+
"loss": 0.9684,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.23991507430997877,
|
798 |
+
"grad_norm": 0.7723142466634979,
|
799 |
+
"learning_rate": 9.073806084093556e-06,
|
800 |
+
"loss": 0.9405,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.24203821656050956,
|
805 |
+
"grad_norm": 0.7911498715522838,
|
806 |
+
"learning_rate": 9.053331087480075e-06,
|
807 |
+
"loss": 0.9474,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.24416135881104034,
|
812 |
+
"grad_norm": 0.7154015242350461,
|
813 |
+
"learning_rate": 9.032655876613636e-06,
|
814 |
+
"loss": 0.9994,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.24628450106157113,
|
819 |
+
"grad_norm": 0.8131533865526955,
|
820 |
+
"learning_rate": 9.01178147274609e-06,
|
821 |
+
"loss": 0.9674,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.2484076433121019,
|
826 |
+
"grad_norm": 0.762660871457576,
|
827 |
+
"learning_rate": 8.990708906968431e-06,
|
828 |
+
"loss": 0.9712,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.2505307855626327,
|
833 |
+
"grad_norm": 0.749279770619595,
|
834 |
+
"learning_rate": 8.969439220159861e-06,
|
835 |
+
"loss": 0.9718,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.2526539278131635,
|
840 |
+
"grad_norm": 0.7993155759440779,
|
841 |
+
"learning_rate": 8.947973462936366e-06,
|
842 |
+
"loss": 1.002,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.25477707006369427,
|
847 |
+
"grad_norm": 0.7525506488087893,
|
848 |
+
"learning_rate": 8.926312695598837e-06,
|
849 |
+
"loss": 1.0678,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.25690021231422505,
|
854 |
+
"grad_norm": 0.7942187041189313,
|
855 |
+
"learning_rate": 8.904457988080682e-06,
|
856 |
+
"loss": 0.9531,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.25902335456475584,
|
861 |
+
"grad_norm": 0.725938463845709,
|
862 |
+
"learning_rate": 8.882410419894983e-06,
|
863 |
+
"loss": 0.9536,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.2611464968152866,
|
868 |
+
"grad_norm": 0.6926002729927859,
|
869 |
+
"learning_rate": 8.860171080081174e-06,
|
870 |
+
"loss": 1.0066,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.2632696390658174,
|
875 |
+
"grad_norm": 0.7073710959096725,
|
876 |
+
"learning_rate": 8.837741067151251e-06,
|
877 |
+
"loss": 0.9731,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.2653927813163482,
|
882 |
+
"grad_norm": 1.229783488810088,
|
883 |
+
"learning_rate": 8.8151214890355e-06,
|
884 |
+
"loss": 0.9316,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.267515923566879,
|
889 |
+
"grad_norm": 0.673125965324655,
|
890 |
+
"learning_rate": 8.792313463027777e-06,
|
891 |
+
"loss": 1.0252,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.26963906581740976,
|
896 |
+
"grad_norm": 0.6930092507451997,
|
897 |
+
"learning_rate": 8.76931811573033e-06,
|
898 |
+
"loss": 0.9374,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.27176220806794055,
|
903 |
+
"grad_norm": 0.68412243336128,
|
904 |
+
"learning_rate": 8.74613658299813e-06,
|
905 |
+
"loss": 0.8807,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.27388535031847133,
|
910 |
+
"grad_norm": 0.7081201802451947,
|
911 |
+
"learning_rate": 8.72277000988278e-06,
|
912 |
+
"loss": 0.9641,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.2760084925690021,
|
917 |
+
"grad_norm": 0.6854965625822327,
|
918 |
+
"learning_rate": 8.699219550575954e-06,
|
919 |
+
"loss": 0.9761,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.2781316348195329,
|
924 |
+
"grad_norm": 0.6538579090164267,
|
925 |
+
"learning_rate": 8.675486368352376e-06,
|
926 |
+
"loss": 0.9509,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.2802547770700637,
|
931 |
+
"grad_norm": 0.6798135259731691,
|
932 |
+
"learning_rate": 8.651571635512372e-06,
|
933 |
+
"loss": 0.9736,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.2823779193205945,
|
938 |
+
"grad_norm": 0.6711453015182969,
|
939 |
+
"learning_rate": 8.627476533323957e-06,
|
940 |
+
"loss": 0.9235,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.28450106157112526,
|
945 |
+
"grad_norm": 0.7583804715274035,
|
946 |
+
"learning_rate": 8.603202251964492e-06,
|
947 |
+
"loss": 0.9981,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.28662420382165604,
|
952 |
+
"grad_norm": 0.7176651957782098,
|
953 |
+
"learning_rate": 8.578749990461884e-06,
|
954 |
+
"loss": 1.0032,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.28874734607218683,
|
959 |
+
"grad_norm": 0.7211103037306501,
|
960 |
+
"learning_rate": 8.554120956635375e-06,
|
961 |
+
"loss": 0.9909,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.2908704883227176,
|
966 |
+
"grad_norm": 0.688485015985765,
|
967 |
+
"learning_rate": 8.52931636703587e-06,
|
968 |
+
"loss": 0.9276,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.2929936305732484,
|
973 |
+
"grad_norm": 0.6465279506859974,
|
974 |
+
"learning_rate": 8.504337446885854e-06,
|
975 |
+
"loss": 0.9398,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.2951167728237792,
|
980 |
+
"grad_norm": 0.6867853315980083,
|
981 |
+
"learning_rate": 8.47918543001886e-06,
|
982 |
+
"loss": 0.9279,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.29723991507430997,
|
987 |
+
"grad_norm": 0.7122704321655888,
|
988 |
+
"learning_rate": 8.453861558818542e-06,
|
989 |
+
"loss": 0.9884,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.29936305732484075,
|
994 |
+
"grad_norm": 0.7229336013729085,
|
995 |
+
"learning_rate": 8.428367084157292e-06,
|
996 |
+
"loss": 0.9288,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.30148619957537154,
|
1001 |
+
"grad_norm": 0.6611042572044565,
|
1002 |
+
"learning_rate": 8.402703265334455e-06,
|
1003 |
+
"loss": 1.0012,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.3036093418259023,
|
1008 |
+
"grad_norm": 0.6705484140078379,
|
1009 |
+
"learning_rate": 8.376871370014139e-06,
|
1010 |
+
"loss": 1.0219,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.3057324840764331,
|
1015 |
+
"grad_norm": 0.7118638939797448,
|
1016 |
+
"learning_rate": 8.350872674162578e-06,
|
1017 |
+
"loss": 0.8994,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.3078556263269639,
|
1022 |
+
"grad_norm": 0.7284734778507161,
|
1023 |
+
"learning_rate": 8.324708461985124e-06,
|
1024 |
+
"loss": 0.9674,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.3099787685774947,
|
1029 |
+
"grad_norm": 0.723907696270781,
|
1030 |
+
"learning_rate": 8.298380025862805e-06,
|
1031 |
+
"loss": 0.9132,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.31210191082802546,
|
1036 |
+
"grad_norm": 0.7559028348047754,
|
1037 |
+
"learning_rate": 8.271888666288488e-06,
|
1038 |
+
"loss": 0.94,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.31422505307855625,
|
1043 |
+
"grad_norm": 0.6723280638514304,
|
1044 |
+
"learning_rate": 8.245235691802644e-06,
|
1045 |
+
"loss": 1.0277,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.31634819532908703,
|
1050 |
+
"grad_norm": 0.7371820881632951,
|
1051 |
+
"learning_rate": 8.218422418928709e-06,
|
1052 |
+
"loss": 1.0206,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.3184713375796178,
|
1057 |
+
"grad_norm": 0.6827845610709571,
|
1058 |
+
"learning_rate": 8.191450172108058e-06,
|
1059 |
+
"loss": 0.9469,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.3205944798301486,
|
1064 |
+
"grad_norm": 0.7055002715463514,
|
1065 |
+
"learning_rate": 8.164320283634585e-06,
|
1066 |
+
"loss": 0.9841,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.3227176220806794,
|
1071 |
+
"grad_norm": 0.6889063122118256,
|
1072 |
+
"learning_rate": 8.137034093588885e-06,
|
1073 |
+
"loss": 0.984,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.3248407643312102,
|
1078 |
+
"grad_norm": 0.6966955432660643,
|
1079 |
+
"learning_rate": 8.109592949772076e-06,
|
1080 |
+
"loss": 1.013,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.32696390658174096,
|
1085 |
+
"grad_norm": 0.6986846471550263,
|
1086 |
+
"learning_rate": 8.081998207639212e-06,
|
1087 |
+
"loss": 1.0059,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.32908704883227174,
|
1092 |
+
"grad_norm": 0.626142059105963,
|
1093 |
+
"learning_rate": 8.054251230232333e-06,
|
1094 |
+
"loss": 0.9991,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.33121019108280253,
|
1099 |
+
"grad_norm": 0.7025129741121969,
|
1100 |
+
"learning_rate": 8.026353388113142e-06,
|
1101 |
+
"loss": 0.9797,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.3333333333333333,
|
1106 |
+
"grad_norm": 0.6696025000651015,
|
1107 |
+
"learning_rate": 7.998306059295302e-06,
|
1108 |
+
"loss": 1.0307,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.3354564755838641,
|
1113 |
+
"grad_norm": 0.6273584551839821,
|
1114 |
+
"learning_rate": 7.97011062917637e-06,
|
1115 |
+
"loss": 0.9362,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.3375796178343949,
|
1120 |
+
"grad_norm": 0.702578261973236,
|
1121 |
+
"learning_rate": 7.941768490469368e-06,
|
1122 |
+
"loss": 1.0164,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.33970276008492567,
|
1127 |
+
"grad_norm": 0.7406287649359133,
|
1128 |
+
"learning_rate": 7.913281043133978e-06,
|
1129 |
+
"loss": 0.9494,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.34182590233545646,
|
1134 |
+
"grad_norm": 0.6752561053160435,
|
1135 |
+
"learning_rate": 7.884649694307413e-06,
|
1136 |
+
"loss": 0.916,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.34394904458598724,
|
1141 |
+
"grad_norm": 0.6827707894296586,
|
1142 |
+
"learning_rate": 7.855875858234894e-06,
|
1143 |
+
"loss": 0.957,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.346072186836518,
|
1148 |
+
"grad_norm": 0.721736590005719,
|
1149 |
+
"learning_rate": 7.826960956199796e-06,
|
1150 |
+
"loss": 0.9642,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.3481953290870488,
|
1155 |
+
"grad_norm": 0.6861052725661058,
|
1156 |
+
"learning_rate": 7.797906416453445e-06,
|
1157 |
+
"loss": 1.0046,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.3503184713375796,
|
1162 |
+
"grad_norm": 0.6571115602420129,
|
1163 |
+
"learning_rate": 7.768713674144578e-06,
|
1164 |
+
"loss": 1.0109,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.3524416135881104,
|
1169 |
+
"grad_norm": 0.6826123583598673,
|
1170 |
+
"learning_rate": 7.739384171248436e-06,
|
1171 |
+
"loss": 0.9203,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.35456475583864117,
|
1176 |
+
"grad_norm": 0.7528479464049002,
|
1177 |
+
"learning_rate": 7.709919356495555e-06,
|
1178 |
+
"loss": 0.954,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.35668789808917195,
|
1183 |
+
"grad_norm": 0.6026943812612681,
|
1184 |
+
"learning_rate": 7.6803206853002e-06,
|
1185 |
+
"loss": 1.0024,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.35881104033970274,
|
1190 |
+
"grad_norm": 0.7023232885151509,
|
1191 |
+
"learning_rate": 7.650589619688468e-06,
|
1192 |
+
"loss": 0.9751,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3609341825902335,
|
1197 |
+
"grad_norm": 0.6635390470590239,
|
1198 |
+
"learning_rate": 7.620727628226081e-06,
|
1199 |
+
"loss": 0.908,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.3630573248407643,
|
1204 |
+
"grad_norm": 0.6202385073922436,
|
1205 |
+
"learning_rate": 7.590736185945843e-06,
|
1206 |
+
"loss": 0.9455,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3651804670912951,
|
1211 |
+
"grad_norm": 0.7074191000317777,
|
1212 |
+
"learning_rate": 7.560616774274775e-06,
|
1213 |
+
"loss": 0.9342,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.3673036093418259,
|
1218 |
+
"grad_norm": 0.6912450203775482,
|
1219 |
+
"learning_rate": 7.5303708809609514e-06,
|
1220 |
+
"loss": 0.9303,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.36942675159235666,
|
1225 |
+
"grad_norm": 0.6716646015086942,
|
1226 |
+
"learning_rate": 7.500000000000001e-06,
|
1227 |
+
"loss": 0.9717,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.37154989384288745,
|
1232 |
+
"grad_norm": 0.6478930551539204,
|
1233 |
+
"learning_rate": 7.469505631561318e-06,
|
1234 |
+
"loss": 0.9443,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.37367303609341823,
|
1239 |
+
"grad_norm": 0.7036455495923415,
|
1240 |
+
"learning_rate": 7.4388892819139625e-06,
|
1241 |
+
"loss": 0.981,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.37579617834394907,
|
1246 |
+
"grad_norm": 0.6998836705652469,
|
1247 |
+
"learning_rate": 7.408152463352249e-06,
|
1248 |
+
"loss": 0.9392,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.37791932059447986,
|
1253 |
+
"grad_norm": 0.7177208792525537,
|
1254 |
+
"learning_rate": 7.3772966941210585e-06,
|
1255 |
+
"loss": 0.9794,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.38004246284501064,
|
1260 |
+
"grad_norm": 0.7473525068625702,
|
1261 |
+
"learning_rate": 7.346323498340839e-06,
|
1262 |
+
"loss": 0.9195,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3821656050955414,
|
1267 |
+
"grad_norm": 0.7227554431825605,
|
1268 |
+
"learning_rate": 7.3152344059323165e-06,
|
1269 |
+
"loss": 1.0082,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3842887473460722,
|
1274 |
+
"grad_norm": 0.7080895952572748,
|
1275 |
+
"learning_rate": 7.284030952540937e-06,
|
1276 |
+
"loss": 0.9767,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.386411889596603,
|
1281 |
+
"grad_norm": 0.6629730047476243,
|
1282 |
+
"learning_rate": 7.252714679461001e-06,
|
1283 |
+
"loss": 0.994,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.3885350318471338,
|
1288 |
+
"grad_norm": 0.7045119821135271,
|
1289 |
+
"learning_rate": 7.221287133559537e-06,
|
1290 |
+
"loss": 0.9305,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.39065817409766457,
|
1295 |
+
"grad_norm": 0.6763415144165187,
|
1296 |
+
"learning_rate": 7.189749867199899e-06,
|
1297 |
+
"loss": 0.9091,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.39278131634819535,
|
1302 |
+
"grad_norm": 0.7251593181916779,
|
1303 |
+
"learning_rate": 7.1581044381650735e-06,
|
1304 |
+
"loss": 0.9801,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.39490445859872614,
|
1309 |
+
"grad_norm": 0.7318304915524612,
|
1310 |
+
"learning_rate": 7.126352409580749e-06,
|
1311 |
+
"loss": 1.0148,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.3970276008492569,
|
1316 |
+
"grad_norm": 0.636231931630425,
|
1317 |
+
"learning_rate": 7.094495349838093e-06,
|
1318 |
+
"loss": 1.0049,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.3991507430997877,
|
1323 |
+
"grad_norm": 0.7158842207998385,
|
1324 |
+
"learning_rate": 7.062534832516288e-06,
|
1325 |
+
"loss": 1.0129,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.4012738853503185,
|
1330 |
+
"grad_norm": 0.7129569595828432,
|
1331 |
+
"learning_rate": 7.0304724363048025e-06,
|
1332 |
+
"loss": 0.9263,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.4033970276008493,
|
1337 |
+
"grad_norm": 0.6864707114810514,
|
1338 |
+
"learning_rate": 6.998309744925411e-06,
|
1339 |
+
"loss": 0.8735,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.40552016985138006,
|
1344 |
+
"grad_norm": 0.6698406211001818,
|
1345 |
+
"learning_rate": 6.9660483470539704e-06,
|
1346 |
+
"loss": 0.9367,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.40764331210191085,
|
1351 |
+
"grad_norm": 0.7267969373273135,
|
1352 |
+
"learning_rate": 6.933689836241939e-06,
|
1353 |
+
"loss": 0.9406,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.40976645435244163,
|
1358 |
+
"grad_norm": 0.651813445608617,
|
1359 |
+
"learning_rate": 6.901235810837668e-06,
|
1360 |
+
"loss": 0.9736,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.4118895966029724,
|
1365 |
+
"grad_norm": 0.6683944283747483,
|
1366 |
+
"learning_rate": 6.868687873907458e-06,
|
1367 |
+
"loss": 0.9579,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.4140127388535032,
|
1372 |
+
"grad_norm": 0.6506700841660094,
|
1373 |
+
"learning_rate": 6.836047633156361e-06,
|
1374 |
+
"loss": 0.9174,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.416135881104034,
|
1379 |
+
"grad_norm": 0.6616818716028071,
|
1380 |
+
"learning_rate": 6.8033167008487784e-06,
|
1381 |
+
"loss": 0.9087,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.4182590233545648,
|
1386 |
+
"grad_norm": 0.6605052606554319,
|
1387 |
+
"learning_rate": 6.77049669372882e-06,
|
1388 |
+
"loss": 0.9679,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.42038216560509556,
|
1393 |
+
"grad_norm": 0.7082727940149344,
|
1394 |
+
"learning_rate": 6.737589232940445e-06,
|
1395 |
+
"loss": 0.9985,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.42250530785562634,
|
1400 |
+
"grad_norm": 0.6623600494563191,
|
1401 |
+
"learning_rate": 6.704595943947385e-06,
|
1402 |
+
"loss": 0.9321,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.42462845010615713,
|
1407 |
+
"grad_norm": 0.6623978762054843,
|
1408 |
+
"learning_rate": 6.671518456452859e-06,
|
1409 |
+
"loss": 0.9501,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.4267515923566879,
|
1414 |
+
"grad_norm": 0.6742018229334826,
|
1415 |
+
"learning_rate": 6.638358404319064e-06,
|
1416 |
+
"loss": 0.9684,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.4288747346072187,
|
1421 |
+
"grad_norm": 0.6502309799062719,
|
1422 |
+
"learning_rate": 6.605117425486483e-06,
|
1423 |
+
"loss": 0.9631,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.4309978768577495,
|
1428 |
+
"grad_norm": 0.6259967571338436,
|
1429 |
+
"learning_rate": 6.571797161892965e-06,
|
1430 |
+
"loss": 0.9195,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.43312101910828027,
|
1435 |
+
"grad_norm": 0.6800317584945854,
|
1436 |
+
"learning_rate": 6.538399259392637e-06,
|
1437 |
+
"loss": 0.9516,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.43524416135881105,
|
1442 |
+
"grad_norm": 0.6261983185852475,
|
1443 |
+
"learning_rate": 6.504925367674595e-06,
|
1444 |
+
"loss": 1.0328,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.43736730360934184,
|
1449 |
+
"grad_norm": 0.6449729939238322,
|
1450 |
+
"learning_rate": 6.471377140181419e-06,
|
1451 |
+
"loss": 0.9397,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.4394904458598726,
|
1456 |
+
"grad_norm": 0.706583045696564,
|
1457 |
+
"learning_rate": 6.437756234027512e-06,
|
1458 |
+
"loss": 0.9474,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.4416135881104034,
|
1463 |
+
"grad_norm": 0.6919864898373091,
|
1464 |
+
"learning_rate": 6.40406430991723e-06,
|
1465 |
+
"loss": 0.91,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.4437367303609342,
|
1470 |
+
"grad_norm": 0.6613982934744788,
|
1471 |
+
"learning_rate": 6.370303032062869e-06,
|
1472 |
+
"loss": 0.9095,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.445859872611465,
|
1477 |
+
"grad_norm": 0.6736801782820888,
|
1478 |
+
"learning_rate": 6.336474068102444e-06,
|
1479 |
+
"loss": 0.9731,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.44798301486199577,
|
1484 |
+
"grad_norm": 0.7089874077887519,
|
1485 |
+
"learning_rate": 6.302579089017328e-06,
|
1486 |
+
"loss": 0.9463,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.45010615711252655,
|
1491 |
+
"grad_norm": 0.7181675289310537,
|
1492 |
+
"learning_rate": 6.268619769049713e-06,
|
1493 |
+
"loss": 0.922,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.45222929936305734,
|
1498 |
+
"grad_norm": 0.7018430577826239,
|
1499 |
+
"learning_rate": 6.234597785619906e-06,
|
1500 |
+
"loss": 0.9219,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.4543524416135881,
|
1505 |
+
"grad_norm": 0.6853546290531675,
|
1506 |
+
"learning_rate": 6.200514819243476e-06,
|
1507 |
+
"loss": 0.907,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.4564755838641189,
|
1512 |
+
"grad_norm": 0.686355248670492,
|
1513 |
+
"learning_rate": 6.166372553448241e-06,
|
1514 |
+
"loss": 0.9159,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.4585987261146497,
|
1519 |
+
"grad_norm": 0.7339054174560321,
|
1520 |
+
"learning_rate": 6.132172674691119e-06,
|
1521 |
+
"loss": 0.9645,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.4607218683651805,
|
1526 |
+
"grad_norm": 0.6572741843944705,
|
1527 |
+
"learning_rate": 6.097916872274815e-06,
|
1528 |
+
"loss": 1.005,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.46284501061571126,
|
1533 |
+
"grad_norm": 0.6385617975237159,
|
1534 |
+
"learning_rate": 6.063606838264384e-06,
|
1535 |
+
"loss": 0.9395,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.46496815286624205,
|
1540 |
+
"grad_norm": 0.6298680692637662,
|
1541 |
+
"learning_rate": 6.029244267403652e-06,
|
1542 |
+
"loss": 0.921,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.46709129511677283,
|
1547 |
+
"grad_norm": 0.6537484240328865,
|
1548 |
+
"learning_rate": 5.9948308570315e-06,
|
1549 |
+
"loss": 0.9418,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.4692144373673036,
|
1554 |
+
"grad_norm": 0.6513186789442099,
|
1555 |
+
"learning_rate": 5.960368306998023e-06,
|
1556 |
+
"loss": 1.0093,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.4713375796178344,
|
1561 |
+
"grad_norm": 0.6198436120565162,
|
1562 |
+
"learning_rate": 5.92585831958058e-06,
|
1563 |
+
"loss": 0.8843,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.4734607218683652,
|
1568 |
+
"grad_norm": 0.6949192129540798,
|
1569 |
+
"learning_rate": 5.891302599399686e-06,
|
1570 |
+
"loss": 0.9173,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.47558386411889597,
|
1575 |
+
"grad_norm": 0.661048566711158,
|
1576 |
+
"learning_rate": 5.856702853334833e-06,
|
1577 |
+
"loss": 0.993,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.47770700636942676,
|
1582 |
+
"grad_norm": 0.6928421971972144,
|
1583 |
+
"learning_rate": 5.8220607904401725e-06,
|
1584 |
+
"loss": 0.9237,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.47983014861995754,
|
1589 |
+
"grad_norm": 0.6766405995371992,
|
1590 |
+
"learning_rate": 5.78737812186009e-06,
|
1591 |
+
"loss": 0.9212,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.4819532908704883,
|
1596 |
+
"grad_norm": 0.6387732380032056,
|
1597 |
+
"learning_rate": 5.752656560744692e-06,
|
1598 |
+
"loss": 0.9563,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.4840764331210191,
|
1603 |
+
"grad_norm": 0.6801696449031966,
|
1604 |
+
"learning_rate": 5.717897822165179e-06,
|
1605 |
+
"loss": 0.9556,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.4861995753715499,
|
1610 |
+
"grad_norm": 0.7117883554839965,
|
1611 |
+
"learning_rate": 5.6831036230291345e-06,
|
1612 |
+
"loss": 0.9756,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.4883227176220807,
|
1617 |
+
"grad_norm": 0.7055614143035667,
|
1618 |
+
"learning_rate": 5.648275681995716e-06,
|
1619 |
+
"loss": 0.9471,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.49044585987261147,
|
1624 |
+
"grad_norm": 0.6900933936326865,
|
1625 |
+
"learning_rate": 5.613415719390759e-06,
|
1626 |
+
"loss": 0.9058,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.49256900212314225,
|
1631 |
+
"grad_norm": 0.7383866221072647,
|
1632 |
+
"learning_rate": 5.578525457121807e-06,
|
1633 |
+
"loss": 1.0378,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.49469214437367304,
|
1638 |
+
"grad_norm": 0.732025682639867,
|
1639 |
+
"learning_rate": 5.543606618593053e-06,
|
1640 |
+
"loss": 0.9102,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.4968152866242038,
|
1645 |
+
"grad_norm": 0.7096362036491948,
|
1646 |
+
"learning_rate": 5.508660928620216e-06,
|
1647 |
+
"loss": 0.8952,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.4989384288747346,
|
1652 |
+
"grad_norm": 0.7099881315605873,
|
1653 |
+
"learning_rate": 5.473690113345343e-06,
|
1654 |
+
"loss": 0.9602,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.5010615711252654,
|
1659 |
+
"grad_norm": 0.6972671205744604,
|
1660 |
+
"learning_rate": 5.438695900151537e-06,
|
1661 |
+
"loss": 0.8624,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.5031847133757962,
|
1666 |
+
"grad_norm": 0.889396297433614,
|
1667 |
+
"learning_rate": 5.403680017577653e-06,
|
1668 |
+
"loss": 0.952,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.505307855626327,
|
1673 |
+
"grad_norm": 0.6402923695561287,
|
1674 |
+
"learning_rate": 5.368644195232896e-06,
|
1675 |
+
"loss": 0.9792,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.5074309978768577,
|
1680 |
+
"grad_norm": 0.6805565174215905,
|
1681 |
+
"learning_rate": 5.3335901637113985e-06,
|
1682 |
+
"loss": 0.9243,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.5095541401273885,
|
1687 |
+
"grad_norm": 0.6841794774774244,
|
1688 |
+
"learning_rate": 5.298519654506736e-06,
|
1689 |
+
"loss": 0.999,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.5116772823779193,
|
1694 |
+
"grad_norm": 0.7022154093220538,
|
1695 |
+
"learning_rate": 5.2634343999263985e-06,
|
1696 |
+
"loss": 0.9348,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.5138004246284501,
|
1701 |
+
"grad_norm": 0.6918338163749163,
|
1702 |
+
"learning_rate": 5.228336133006223e-06,
|
1703 |
+
"loss": 0.8975,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.5159235668789809,
|
1708 |
+
"grad_norm": 0.6755648031558511,
|
1709 |
+
"learning_rate": 5.193226587424793e-06,
|
1710 |
+
"loss": 0.9038,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.5180467091295117,
|
1715 |
+
"grad_norm": 0.7372704915893833,
|
1716 |
+
"learning_rate": 5.158107497417795e-06,
|
1717 |
+
"loss": 0.9826,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.5201698513800425,
|
1722 |
+
"grad_norm": 0.6463509797901226,
|
1723 |
+
"learning_rate": 5.122980597692372e-06,
|
1724 |
+
"loss": 0.9944,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.5222929936305732,
|
1729 |
+
"grad_norm": 0.6924850124684349,
|
1730 |
+
"learning_rate": 5.087847623341421e-06,
|
1731 |
+
"loss": 0.9763,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.524416135881104,
|
1736 |
+
"grad_norm": 0.6954437299483931,
|
1737 |
+
"learning_rate": 5.052710309757899e-06,
|
1738 |
+
"loss": 0.955,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.5265392781316348,
|
1743 |
+
"grad_norm": 0.6935825027209983,
|
1744 |
+
"learning_rate": 5.0175703925490936e-06,
|
1745 |
+
"loss": 0.9256,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.5286624203821656,
|
1750 |
+
"grad_norm": 0.691695101242488,
|
1751 |
+
"learning_rate": 4.982429607450907e-06,
|
1752 |
+
"loss": 0.9649,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.5307855626326964,
|
1757 |
+
"grad_norm": 0.6420506445010928,
|
1758 |
+
"learning_rate": 4.947289690242103e-06,
|
1759 |
+
"loss": 0.9767,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.5329087048832272,
|
1764 |
+
"grad_norm": 0.6983661270077597,
|
1765 |
+
"learning_rate": 4.91215237665858e-06,
|
1766 |
+
"loss": 0.9306,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.535031847133758,
|
1771 |
+
"grad_norm": 0.6859924966914502,
|
1772 |
+
"learning_rate": 4.877019402307629e-06,
|
1773 |
+
"loss": 0.9356,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.5371549893842887,
|
1778 |
+
"grad_norm": 0.7141495883745664,
|
1779 |
+
"learning_rate": 4.841892502582206e-06,
|
1780 |
+
"loss": 0.9602,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.5392781316348195,
|
1785 |
+
"grad_norm": 0.627839886124841,
|
1786 |
+
"learning_rate": 4.806773412575211e-06,
|
1787 |
+
"loss": 1.0012,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.5414012738853503,
|
1792 |
+
"grad_norm": 0.669446899340891,
|
1793 |
+
"learning_rate": 4.7716638669937784e-06,
|
1794 |
+
"loss": 0.9229,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 0.5435244161358811,
|
1799 |
+
"grad_norm": 0.681235443960255,
|
1800 |
+
"learning_rate": 4.736565600073602e-06,
|
1801 |
+
"loss": 0.9171,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.5456475583864119,
|
1806 |
+
"grad_norm": 0.7330756875715496,
|
1807 |
+
"learning_rate": 4.701480345493266e-06,
|
1808 |
+
"loss": 0.9257,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.5477707006369427,
|
1813 |
+
"grad_norm": 0.6630144658382536,
|
1814 |
+
"learning_rate": 4.666409836288603e-06,
|
1815 |
+
"loss": 0.9659,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 0.5498938428874734,
|
1820 |
+
"grad_norm": 0.7127193347963714,
|
1821 |
+
"learning_rate": 4.631355804767106e-06,
|
1822 |
+
"loss": 0.9375,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 0.5520169851380042,
|
1827 |
+
"grad_norm": 0.6290140804468636,
|
1828 |
+
"learning_rate": 4.596319982422348e-06,
|
1829 |
+
"loss": 0.9092,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.554140127388535,
|
1834 |
+
"grad_norm": 0.6986313542347127,
|
1835 |
+
"learning_rate": 4.561304099848464e-06,
|
1836 |
+
"loss": 0.9501,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.5562632696390658,
|
1841 |
+
"grad_norm": 0.6933713127536184,
|
1842 |
+
"learning_rate": 4.526309886654659e-06,
|
1843 |
+
"loss": 0.9977,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.5583864118895966,
|
1848 |
+
"grad_norm": 0.640132903868265,
|
1849 |
+
"learning_rate": 4.491339071379783e-06,
|
1850 |
+
"loss": 0.8758,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.5605095541401274,
|
1855 |
+
"grad_norm": 0.6822814887433616,
|
1856 |
+
"learning_rate": 4.4563933814069475e-06,
|
1857 |
+
"loss": 0.9315,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 0.5626326963906582,
|
1862 |
+
"grad_norm": 0.6398389559546622,
|
1863 |
+
"learning_rate": 4.4214745428781946e-06,
|
1864 |
+
"loss": 0.9847,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 0.564755838641189,
|
1869 |
+
"grad_norm": 0.6818041476558421,
|
1870 |
+
"learning_rate": 4.386584280609242e-06,
|
1871 |
+
"loss": 0.9819,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 0.5668789808917197,
|
1876 |
+
"grad_norm": 0.6679866325125441,
|
1877 |
+
"learning_rate": 4.351724318004286e-06,
|
1878 |
+
"loss": 0.9406,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 0.5690021231422505,
|
1883 |
+
"grad_norm": 0.6240664886135201,
|
1884 |
+
"learning_rate": 4.316896376970866e-06,
|
1885 |
+
"loss": 1.0318,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.5711252653927813,
|
1890 |
+
"grad_norm": 0.6220122266738475,
|
1891 |
+
"learning_rate": 4.282102177834822e-06,
|
1892 |
+
"loss": 0.9309,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.5732484076433121,
|
1897 |
+
"grad_norm": 0.6519539099798459,
|
1898 |
+
"learning_rate": 4.2473434392553115e-06,
|
1899 |
+
"loss": 0.9443,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 0.5753715498938429,
|
1904 |
+
"grad_norm": 0.6194962484361002,
|
1905 |
+
"learning_rate": 4.212621878139912e-06,
|
1906 |
+
"loss": 0.9332,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 0.5774946921443737,
|
1911 |
+
"grad_norm": 0.6484200470987919,
|
1912 |
+
"learning_rate": 4.177939209559828e-06,
|
1913 |
+
"loss": 0.9875,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 0.5796178343949044,
|
1918 |
+
"grad_norm": 0.6330847653688858,
|
1919 |
+
"learning_rate": 4.143297146665167e-06,
|
1920 |
+
"loss": 0.9074,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 0.5817409766454352,
|
1925 |
+
"grad_norm": 0.6413164774139387,
|
1926 |
+
"learning_rate": 4.108697400600316e-06,
|
1927 |
+
"loss": 0.9854,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.583864118895966,
|
1932 |
+
"grad_norm": 0.6779890723404448,
|
1933 |
+
"learning_rate": 4.074141680419422e-06,
|
1934 |
+
"loss": 0.9924,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.5859872611464968,
|
1939 |
+
"grad_norm": 0.7145362735963939,
|
1940 |
+
"learning_rate": 4.039631693001976e-06,
|
1941 |
+
"loss": 0.9673,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 0.5881104033970276,
|
1946 |
+
"grad_norm": 0.6462201481263671,
|
1947 |
+
"learning_rate": 4.005169142968503e-06,
|
1948 |
+
"loss": 0.9365,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 0.5902335456475584,
|
1953 |
+
"grad_norm": 0.6400041384015616,
|
1954 |
+
"learning_rate": 3.970755732596349e-06,
|
1955 |
+
"loss": 0.9345,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 0.5923566878980892,
|
1960 |
+
"grad_norm": 0.6705732923411916,
|
1961 |
+
"learning_rate": 3.936393161735616e-06,
|
1962 |
+
"loss": 0.9745,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 0.5944798301486199,
|
1967 |
+
"grad_norm": 0.6076428308867137,
|
1968 |
+
"learning_rate": 3.902083127725186e-06,
|
1969 |
+
"loss": 0.9887,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.5966029723991507,
|
1974 |
+
"grad_norm": 0.6829854410878823,
|
1975 |
+
"learning_rate": 3.867827325308882e-06,
|
1976 |
+
"loss": 0.9788,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.5987261146496815,
|
1981 |
+
"grad_norm": 0.635794721170443,
|
1982 |
+
"learning_rate": 3.83362744655176e-06,
|
1983 |
+
"loss": 0.9084,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 0.6008492569002123,
|
1988 |
+
"grad_norm": 0.6406247555663112,
|
1989 |
+
"learning_rate": 3.799485180756526e-06,
|
1990 |
+
"loss": 0.9696,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.6029723991507431,
|
1995 |
+
"grad_norm": 0.6836159898583682,
|
1996 |
+
"learning_rate": 3.765402214380095e-06,
|
1997 |
+
"loss": 0.9622,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 0.6050955414012739,
|
2002 |
+
"grad_norm": 0.6903265273050954,
|
2003 |
+
"learning_rate": 3.731380230950288e-06,
|
2004 |
+
"loss": 0.9804,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 0.6072186836518046,
|
2009 |
+
"grad_norm": 0.6582988195251387,
|
2010 |
+
"learning_rate": 3.6974209109826724e-06,
|
2011 |
+
"loss": 0.9198,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.6093418259023354,
|
2016 |
+
"grad_norm": 0.616448368616492,
|
2017 |
+
"learning_rate": 3.663525931897559e-06,
|
2018 |
+
"loss": 0.9158,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.6114649681528662,
|
2023 |
+
"grad_norm": 0.6673765701597619,
|
2024 |
+
"learning_rate": 3.6296969679371325e-06,
|
2025 |
+
"loss": 0.9611,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 0.613588110403397,
|
2030 |
+
"grad_norm": 0.6888915388418313,
|
2031 |
+
"learning_rate": 3.595935690082769e-06,
|
2032 |
+
"loss": 0.8919,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.6157112526539278,
|
2037 |
+
"grad_norm": 0.6101159334044771,
|
2038 |
+
"learning_rate": 3.56224376597249e-06,
|
2039 |
+
"loss": 0.9515,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 0.6178343949044586,
|
2044 |
+
"grad_norm": 0.658669764640868,
|
2045 |
+
"learning_rate": 3.528622859818582e-06,
|
2046 |
+
"loss": 0.9566,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 0.6199575371549894,
|
2051 |
+
"grad_norm": 0.5954645751379325,
|
2052 |
+
"learning_rate": 3.495074632325407e-06,
|
2053 |
+
"loss": 0.9686,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.6220806794055201,
|
2058 |
+
"grad_norm": 0.6417440985880237,
|
2059 |
+
"learning_rate": 3.461600740607366e-06,
|
2060 |
+
"loss": 0.9841,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.6242038216560509,
|
2065 |
+
"grad_norm": 0.6513493598293557,
|
2066 |
+
"learning_rate": 3.4282028381070366e-06,
|
2067 |
+
"loss": 0.88,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 0.6263269639065817,
|
2072 |
+
"grad_norm": 0.6460724764075341,
|
2073 |
+
"learning_rate": 3.3948825745135196e-06,
|
2074 |
+
"loss": 0.9395,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.6284501061571125,
|
2079 |
+
"grad_norm": 0.7273038274491741,
|
2080 |
+
"learning_rate": 3.361641595680937e-06,
|
2081 |
+
"loss": 0.9796,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 0.6305732484076433,
|
2086 |
+
"grad_norm": 0.63867402479588,
|
2087 |
+
"learning_rate": 3.3284815435471423e-06,
|
2088 |
+
"loss": 0.9616,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 0.6326963906581741,
|
2093 |
+
"grad_norm": 0.6249901633020171,
|
2094 |
+
"learning_rate": 3.295404056052616e-06,
|
2095 |
+
"loss": 0.9268,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.6348195329087049,
|
2100 |
+
"grad_norm": 0.7130471341801802,
|
2101 |
+
"learning_rate": 3.2624107670595567e-06,
|
2102 |
+
"loss": 0.97,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.6369426751592356,
|
2107 |
+
"grad_norm": 0.6679078460787682,
|
2108 |
+
"learning_rate": 3.2295033062711823e-06,
|
2109 |
+
"loss": 0.9088,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 0.6390658174097664,
|
2114 |
+
"grad_norm": 0.7012208037782451,
|
2115 |
+
"learning_rate": 3.1966832991512232e-06,
|
2116 |
+
"loss": 0.9859,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.6411889596602972,
|
2121 |
+
"grad_norm": 0.6533943769965103,
|
2122 |
+
"learning_rate": 3.16395236684364e-06,
|
2123 |
+
"loss": 0.9511,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 0.643312101910828,
|
2128 |
+
"grad_norm": 0.682194483085267,
|
2129 |
+
"learning_rate": 3.131312126092544e-06,
|
2130 |
+
"loss": 0.9403,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 0.6454352441613588,
|
2135 |
+
"grad_norm": 0.6703363053760469,
|
2136 |
+
"learning_rate": 3.098764189162332e-06,
|
2137 |
+
"loss": 0.9039,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.6475583864118896,
|
2142 |
+
"grad_norm": 0.6294417096433408,
|
2143 |
+
"learning_rate": 3.0663101637580626e-06,
|
2144 |
+
"loss": 0.9244,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.6496815286624203,
|
2149 |
+
"grad_norm": 0.6602293200539316,
|
2150 |
+
"learning_rate": 3.03395165294603e-06,
|
2151 |
+
"loss": 0.9533,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 0.6518046709129511,
|
2156 |
+
"grad_norm": 0.672086498728235,
|
2157 |
+
"learning_rate": 3.0016902550745896e-06,
|
2158 |
+
"loss": 0.953,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.6539278131634819,
|
2163 |
+
"grad_norm": 0.6146168409218723,
|
2164 |
+
"learning_rate": 2.9695275636951983e-06,
|
2165 |
+
"loss": 0.9569,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 0.6560509554140127,
|
2170 |
+
"grad_norm": 0.6219654134664444,
|
2171 |
+
"learning_rate": 2.9374651674837128e-06,
|
2172 |
+
"loss": 1.0229,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 0.6581740976645435,
|
2177 |
+
"grad_norm": 0.6353930075528244,
|
2178 |
+
"learning_rate": 2.9055046501619088e-06,
|
2179 |
+
"loss": 0.9792,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.6602972399150743,
|
2184 |
+
"grad_norm": 0.7205625550852138,
|
2185 |
+
"learning_rate": 2.8736475904192516e-06,
|
2186 |
+
"loss": 0.9297,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.6624203821656051,
|
2191 |
+
"grad_norm": 0.65227066914161,
|
2192 |
+
"learning_rate": 2.841895561834927e-06,
|
2193 |
+
"loss": 0.8995,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 0.6645435244161358,
|
2198 |
+
"grad_norm": 0.6736462207854454,
|
2199 |
+
"learning_rate": 2.810250132800103e-06,
|
2200 |
+
"loss": 0.9456,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.6666666666666666,
|
2205 |
+
"grad_norm": 0.6024110164676963,
|
2206 |
+
"learning_rate": 2.778712866440464e-06,
|
2207 |
+
"loss": 0.9641,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.6687898089171974,
|
2212 |
+
"grad_norm": 0.6113389946603925,
|
2213 |
+
"learning_rate": 2.7472853205389997e-06,
|
2214 |
+
"loss": 0.9056,
|
2215 |
+
"step": 315
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 0.6709129511677282,
|
2219 |
+
"grad_norm": 0.6210948623918922,
|
2220 |
+
"learning_rate": 2.715969047459066e-06,
|
2221 |
+
"loss": 0.9822,
|
2222 |
+
"step": 316
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.673036093418259,
|
2226 |
+
"grad_norm": 0.5777083079726338,
|
2227 |
+
"learning_rate": 2.6847655940676843e-06,
|
2228 |
+
"loss": 0.9465,
|
2229 |
+
"step": 317
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.6751592356687898,
|
2233 |
+
"grad_norm": 0.6130380565133298,
|
2234 |
+
"learning_rate": 2.6536765016591626e-06,
|
2235 |
+
"loss": 0.9261,
|
2236 |
+
"step": 318
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 0.6772823779193206,
|
2240 |
+
"grad_norm": 0.6565809350695808,
|
2241 |
+
"learning_rate": 2.622703305878941e-06,
|
2242 |
+
"loss": 0.9336,
|
2243 |
+
"step": 319
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 0.6794055201698513,
|
2247 |
+
"grad_norm": 0.6430946456947467,
|
2248 |
+
"learning_rate": 2.5918475366477536e-06,
|
2249 |
+
"loss": 0.8734,
|
2250 |
+
"step": 320
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 0.6815286624203821,
|
2254 |
+
"grad_norm": 0.6277680261479872,
|
2255 |
+
"learning_rate": 2.5611107180860395e-06,
|
2256 |
+
"loss": 0.9785,
|
2257 |
+
"step": 321
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 0.6836518046709129,
|
2261 |
+
"grad_norm": 0.6485276925588416,
|
2262 |
+
"learning_rate": 2.530494368438683e-06,
|
2263 |
+
"loss": 0.8831,
|
2264 |
+
"step": 322
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.6857749469214437,
|
2268 |
+
"grad_norm": 0.6833232462132602,
|
2269 |
+
"learning_rate": 2.5000000000000015e-06,
|
2270 |
+
"loss": 0.9645,
|
2271 |
+
"step": 323
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.6878980891719745,
|
2275 |
+
"grad_norm": 0.6251835030722148,
|
2276 |
+
"learning_rate": 2.4696291190390494e-06,
|
2277 |
+
"loss": 0.9789,
|
2278 |
+
"step": 324
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 0.6900212314225053,
|
2282 |
+
"grad_norm": 0.6116829691587687,
|
2283 |
+
"learning_rate": 2.4393832257252253e-06,
|
2284 |
+
"loss": 0.9693,
|
2285 |
+
"step": 325
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 0.692144373673036,
|
2289 |
+
"grad_norm": 0.6108662082842766,
|
2290 |
+
"learning_rate": 2.4092638140541586e-06,
|
2291 |
+
"loss": 0.9227,
|
2292 |
+
"step": 326
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 0.6942675159235668,
|
2296 |
+
"grad_norm": 0.6589612233749778,
|
2297 |
+
"learning_rate": 2.3792723717739197e-06,
|
2298 |
+
"loss": 0.9578,
|
2299 |
+
"step": 327
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 0.6963906581740976,
|
2303 |
+
"grad_norm": 0.6230033397599749,
|
2304 |
+
"learning_rate": 2.349410380311532e-06,
|
2305 |
+
"loss": 0.8939,
|
2306 |
+
"step": 328
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.6985138004246284,
|
2310 |
+
"grad_norm": 0.6574659683569442,
|
2311 |
+
"learning_rate": 2.319679314699801e-06,
|
2312 |
+
"loss": 0.9157,
|
2313 |
+
"step": 329
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.7006369426751592,
|
2317 |
+
"grad_norm": 0.6516525682643275,
|
2318 |
+
"learning_rate": 2.290080643504446e-06,
|
2319 |
+
"loss": 0.9754,
|
2320 |
+
"step": 330
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 0.70276008492569,
|
2324 |
+
"grad_norm": 0.6367459576952064,
|
2325 |
+
"learning_rate": 2.2606158287515662e-06,
|
2326 |
+
"loss": 0.9273,
|
2327 |
+
"step": 331
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 0.7048832271762208,
|
2331 |
+
"grad_norm": 0.6858388567104907,
|
2332 |
+
"learning_rate": 2.2312863258554236e-06,
|
2333 |
+
"loss": 0.9506,
|
2334 |
+
"step": 332
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 0.7070063694267515,
|
2338 |
+
"grad_norm": 0.62080589660026,
|
2339 |
+
"learning_rate": 2.2020935835465567e-06,
|
2340 |
+
"loss": 0.9444,
|
2341 |
+
"step": 333
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 0.7091295116772823,
|
2345 |
+
"grad_norm": 0.6027880363720045,
|
2346 |
+
"learning_rate": 2.1730390438002056e-06,
|
2347 |
+
"loss": 0.9365,
|
2348 |
+
"step": 334
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.7112526539278131,
|
2352 |
+
"grad_norm": 0.5879594390832702,
|
2353 |
+
"learning_rate": 2.1441241417651072e-06,
|
2354 |
+
"loss": 0.9248,
|
2355 |
+
"step": 335
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.7133757961783439,
|
2359 |
+
"grad_norm": 0.6496113182395169,
|
2360 |
+
"learning_rate": 2.1153503056925872e-06,
|
2361 |
+
"loss": 0.9598,
|
2362 |
+
"step": 336
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 0.7154989384288747,
|
2366 |
+
"grad_norm": 0.6146395221845053,
|
2367 |
+
"learning_rate": 2.086718956866024e-06,
|
2368 |
+
"loss": 0.9825,
|
2369 |
+
"step": 337
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 0.7176220806794055,
|
2373 |
+
"grad_norm": 0.6633289646201806,
|
2374 |
+
"learning_rate": 2.0582315095306343e-06,
|
2375 |
+
"loss": 0.8998,
|
2376 |
+
"step": 338
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 0.7197452229299363,
|
2380 |
+
"grad_norm": 0.5934615720992137,
|
2381 |
+
"learning_rate": 2.0298893708236307e-06,
|
2382 |
+
"loss": 0.9496,
|
2383 |
+
"step": 339
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 0.721868365180467,
|
2387 |
+
"grad_norm": 0.6252193509965485,
|
2388 |
+
"learning_rate": 2.0016939407046987e-06,
|
2389 |
+
"loss": 0.9337,
|
2390 |
+
"step": 340
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.7239915074309978,
|
2394 |
+
"grad_norm": 0.6149894091145764,
|
2395 |
+
"learning_rate": 1.9736466118868573e-06,
|
2396 |
+
"loss": 0.9655,
|
2397 |
+
"step": 341
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.7261146496815286,
|
2401 |
+
"grad_norm": 0.5948898286170707,
|
2402 |
+
"learning_rate": 1.945748769767667e-06,
|
2403 |
+
"loss": 0.9391,
|
2404 |
+
"step": 342
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 0.7282377919320594,
|
2408 |
+
"grad_norm": 0.5933695653975112,
|
2409 |
+
"learning_rate": 1.9180017923607884e-06,
|
2410 |
+
"loss": 0.9953,
|
2411 |
+
"step": 343
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 0.7303609341825902,
|
2415 |
+
"grad_norm": 0.595676162964223,
|
2416 |
+
"learning_rate": 1.8904070502279242e-06,
|
2417 |
+
"loss": 0.9608,
|
2418 |
+
"step": 344
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 0.732484076433121,
|
2422 |
+
"grad_norm": 0.5965948946411077,
|
2423 |
+
"learning_rate": 1.8629659064111138e-06,
|
2424 |
+
"loss": 0.9043,
|
2425 |
+
"step": 345
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 0.7346072186836518,
|
2429 |
+
"grad_norm": 0.6327091755614819,
|
2430 |
+
"learning_rate": 1.8356797163654172e-06,
|
2431 |
+
"loss": 0.9714,
|
2432 |
+
"step": 346
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.7367303609341825,
|
2436 |
+
"grad_norm": 0.6290408990843179,
|
2437 |
+
"learning_rate": 1.8085498278919421e-06,
|
2438 |
+
"loss": 1.0156,
|
2439 |
+
"step": 347
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.7388535031847133,
|
2443 |
+
"grad_norm": 0.6559394364741932,
|
2444 |
+
"learning_rate": 1.7815775810712921e-06,
|
2445 |
+
"loss": 0.9302,
|
2446 |
+
"step": 348
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 0.7409766454352441,
|
2450 |
+
"grad_norm": 0.6573991255478966,
|
2451 |
+
"learning_rate": 1.754764308197358e-06,
|
2452 |
+
"loss": 0.943,
|
2453 |
+
"step": 349
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 0.7430997876857749,
|
2457 |
+
"grad_norm": 0.6517789325968134,
|
2458 |
+
"learning_rate": 1.728111333711514e-06,
|
2459 |
+
"loss": 0.8981,
|
2460 |
+
"step": 350
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 0.7452229299363057,
|
2464 |
+
"grad_norm": 0.6698302739737579,
|
2465 |
+
"learning_rate": 1.7016199741371958e-06,
|
2466 |
+
"loss": 0.9181,
|
2467 |
+
"step": 351
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 0.7473460721868365,
|
2471 |
+
"grad_norm": 0.611157322960306,
|
2472 |
+
"learning_rate": 1.6752915380148772e-06,
|
2473 |
+
"loss": 0.9525,
|
2474 |
+
"step": 352
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.7494692144373672,
|
2478 |
+
"grad_norm": 0.6335502036439663,
|
2479 |
+
"learning_rate": 1.6491273258374241e-06,
|
2480 |
+
"loss": 0.9484,
|
2481 |
+
"step": 353
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.7515923566878981,
|
2485 |
+
"grad_norm": 0.5850035749576489,
|
2486 |
+
"learning_rate": 1.6231286299858635e-06,
|
2487 |
+
"loss": 1.0146,
|
2488 |
+
"step": 354
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 0.7537154989384289,
|
2492 |
+
"grad_norm": 0.6475285422640422,
|
2493 |
+
"learning_rate": 1.5972967346655449e-06,
|
2494 |
+
"loss": 0.9038,
|
2495 |
+
"step": 355
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 0.7558386411889597,
|
2499 |
+
"grad_norm": 0.6156497813385319,
|
2500 |
+
"learning_rate": 1.5716329158427097e-06,
|
2501 |
+
"loss": 0.9592,
|
2502 |
+
"step": 356
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 0.7579617834394905,
|
2506 |
+
"grad_norm": 0.618075572492757,
|
2507 |
+
"learning_rate": 1.546138441181459e-06,
|
2508 |
+
"loss": 0.9237,
|
2509 |
+
"step": 357
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 0.7600849256900213,
|
2513 |
+
"grad_norm": 0.5999366655762712,
|
2514 |
+
"learning_rate": 1.5208145699811417e-06,
|
2515 |
+
"loss": 0.9603,
|
2516 |
+
"step": 358
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.7622080679405521,
|
2520 |
+
"grad_norm": 0.6533043664005137,
|
2521 |
+
"learning_rate": 1.4956625531141495e-06,
|
2522 |
+
"loss": 0.9742,
|
2523 |
+
"step": 359
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.7643312101910829,
|
2527 |
+
"grad_norm": 0.6413241896226646,
|
2528 |
+
"learning_rate": 1.470683632964131e-06,
|
2529 |
+
"loss": 0.9388,
|
2530 |
+
"step": 360
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 0.7664543524416136,
|
2534 |
+
"grad_norm": 0.6257884804205212,
|
2535 |
+
"learning_rate": 1.4458790433646264e-06,
|
2536 |
+
"loss": 0.8862,
|
2537 |
+
"step": 361
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 0.7685774946921444,
|
2541 |
+
"grad_norm": 0.6358739812471147,
|
2542 |
+
"learning_rate": 1.4212500095381176e-06,
|
2543 |
+
"loss": 0.9675,
|
2544 |
+
"step": 362
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 0.7707006369426752,
|
2548 |
+
"grad_norm": 0.5932476603037812,
|
2549 |
+
"learning_rate": 1.3967977480355106e-06,
|
2550 |
+
"loss": 0.906,
|
2551 |
+
"step": 363
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 0.772823779193206,
|
2555 |
+
"grad_norm": 0.6488531903977951,
|
2556 |
+
"learning_rate": 1.3725234666760428e-06,
|
2557 |
+
"loss": 0.9755,
|
2558 |
+
"step": 364
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.7749469214437368,
|
2562 |
+
"grad_norm": 0.5861709163967678,
|
2563 |
+
"learning_rate": 1.3484283644876289e-06,
|
2564 |
+
"loss": 0.9563,
|
2565 |
+
"step": 365
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.7770700636942676,
|
2569 |
+
"grad_norm": 0.6163858010865376,
|
2570 |
+
"learning_rate": 1.3245136316476253e-06,
|
2571 |
+
"loss": 0.8845,
|
2572 |
+
"step": 366
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 0.7791932059447984,
|
2576 |
+
"grad_norm": 0.6446243322303654,
|
2577 |
+
"learning_rate": 1.3007804494240478e-06,
|
2578 |
+
"loss": 0.9556,
|
2579 |
+
"step": 367
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 0.7813163481953291,
|
2583 |
+
"grad_norm": 0.6309228013928586,
|
2584 |
+
"learning_rate": 1.2772299901172198e-06,
|
2585 |
+
"loss": 0.9741,
|
2586 |
+
"step": 368
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 0.7834394904458599,
|
2590 |
+
"grad_norm": 0.6327374665668877,
|
2591 |
+
"learning_rate": 1.2538634170018727e-06,
|
2592 |
+
"loss": 0.9042,
|
2593 |
+
"step": 369
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 0.7855626326963907,
|
2597 |
+
"grad_norm": 0.6164681284196168,
|
2598 |
+
"learning_rate": 1.2306818842696716e-06,
|
2599 |
+
"loss": 0.9156,
|
2600 |
+
"step": 370
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.7876857749469215,
|
2604 |
+
"grad_norm": 0.6558713832747497,
|
2605 |
+
"learning_rate": 1.2076865369722246e-06,
|
2606 |
+
"loss": 0.9222,
|
2607 |
+
"step": 371
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.7898089171974523,
|
2611 |
+
"grad_norm": 0.6204579536390475,
|
2612 |
+
"learning_rate": 1.184878510964504e-06,
|
2613 |
+
"loss": 0.9284,
|
2614 |
+
"step": 372
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 0.7919320594479831,
|
2618 |
+
"grad_norm": 0.6356605361787612,
|
2619 |
+
"learning_rate": 1.1622589328487505e-06,
|
2620 |
+
"loss": 0.8698,
|
2621 |
+
"step": 373
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 0.7940552016985138,
|
2625 |
+
"grad_norm": 0.6492842194927315,
|
2626 |
+
"learning_rate": 1.1398289199188262e-06,
|
2627 |
+
"loss": 0.9074,
|
2628 |
+
"step": 374
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 0.7961783439490446,
|
2632 |
+
"grad_norm": 0.6034714427708525,
|
2633 |
+
"learning_rate": 1.1175895801050185e-06,
|
2634 |
+
"loss": 0.9372,
|
2635 |
+
"step": 375
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 0.7983014861995754,
|
2639 |
+
"grad_norm": 0.6063716285401753,
|
2640 |
+
"learning_rate": 1.09554201191932e-06,
|
2641 |
+
"loss": 0.9858,
|
2642 |
+
"step": 376
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.8004246284501062,
|
2646 |
+
"grad_norm": 0.6948481846705694,
|
2647 |
+
"learning_rate": 1.0736873044011632e-06,
|
2648 |
+
"loss": 0.9199,
|
2649 |
+
"step": 377
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.802547770700637,
|
2653 |
+
"grad_norm": 0.6494074049596417,
|
2654 |
+
"learning_rate": 1.052026537063634e-06,
|
2655 |
+
"loss": 0.9498,
|
2656 |
+
"step": 378
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 0.8046709129511678,
|
2660 |
+
"grad_norm": 0.6288530457025236,
|
2661 |
+
"learning_rate": 1.03056077984014e-06,
|
2662 |
+
"loss": 0.9827,
|
2663 |
+
"step": 379
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 0.8067940552016986,
|
2667 |
+
"grad_norm": 0.6155015622423128,
|
2668 |
+
"learning_rate": 1.0092910930315698e-06,
|
2669 |
+
"loss": 0.9197,
|
2670 |
+
"step": 380
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 0.8089171974522293,
|
2674 |
+
"grad_norm": 0.6099172013810954,
|
2675 |
+
"learning_rate": 9.882185272539107e-07,
|
2676 |
+
"loss": 1.0174,
|
2677 |
+
"step": 381
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 0.8110403397027601,
|
2681 |
+
"grad_norm": 0.6057657949270863,
|
2682 |
+
"learning_rate": 9.673441233863661e-07,
|
2683 |
+
"loss": 0.9781,
|
2684 |
+
"step": 382
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.8131634819532909,
|
2688 |
+
"grad_norm": 0.6223514111599328,
|
2689 |
+
"learning_rate": 9.466689125199247e-07,
|
2690 |
+
"loss": 0.9511,
|
2691 |
+
"step": 383
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.8152866242038217,
|
2695 |
+
"grad_norm": 0.5892007555050307,
|
2696 |
+
"learning_rate": 9.261939159064465e-07,
|
2697 |
+
"loss": 0.9126,
|
2698 |
+
"step": 384
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 0.8174097664543525,
|
2702 |
+
"grad_norm": 0.6402682809746223,
|
2703 |
+
"learning_rate": 9.059201449082045e-07,
|
2704 |
+
"loss": 0.9051,
|
2705 |
+
"step": 385
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 0.8195329087048833,
|
2709 |
+
"grad_norm": 0.6552075365451278,
|
2710 |
+
"learning_rate": 8.858486009479384e-07,
|
2711 |
+
"loss": 0.8815,
|
2712 |
+
"step": 386
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 0.821656050955414,
|
2716 |
+
"grad_norm": 0.6199786980818934,
|
2717 |
+
"learning_rate": 8.659802754593805e-07,
|
2718 |
+
"loss": 0.9713,
|
2719 |
+
"step": 387
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 0.8237791932059448,
|
2723 |
+
"grad_norm": 0.6302706637482156,
|
2724 |
+
"learning_rate": 8.463161498382949e-07,
|
2725 |
+
"loss": 0.9325,
|
2726 |
+
"step": 388
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.8259023354564756,
|
2730 |
+
"grad_norm": 0.6248037621301259,
|
2731 |
+
"learning_rate": 8.268571953939897e-07,
|
2732 |
+
"loss": 1.0167,
|
2733 |
+
"step": 389
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.8280254777070064,
|
2737 |
+
"grad_norm": 0.6255095398868064,
|
2738 |
+
"learning_rate": 8.07604373301345e-07,
|
2739 |
+
"loss": 0.9276,
|
2740 |
+
"step": 390
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 0.8301486199575372,
|
2744 |
+
"grad_norm": 0.6035148139845321,
|
2745 |
+
"learning_rate": 7.885586345533397e-07,
|
2746 |
+
"loss": 0.9974,
|
2747 |
+
"step": 391
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 0.832271762208068,
|
2751 |
+
"grad_norm": 0.6705104511680797,
|
2752 |
+
"learning_rate": 7.697209199140676e-07,
|
2753 |
+
"loss": 0.9248,
|
2754 |
+
"step": 392
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 0.8343949044585988,
|
2758 |
+
"grad_norm": 0.6327484587530848,
|
2759 |
+
"learning_rate": 7.510921598722765e-07,
|
2760 |
+
"loss": 0.9292,
|
2761 |
+
"step": 393
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 0.8365180467091295,
|
2765 |
+
"grad_norm": 0.6365486623314203,
|
2766 |
+
"learning_rate": 7.326732745954001e-07,
|
2767 |
+
"loss": 0.9123,
|
2768 |
+
"step": 394
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.8386411889596603,
|
2772 |
+
"grad_norm": 0.6615152202715848,
|
2773 |
+
"learning_rate": 7.144651738841174e-07,
|
2774 |
+
"loss": 0.9155,
|
2775 |
+
"step": 395
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.8407643312101911,
|
2779 |
+
"grad_norm": 0.6256930762829083,
|
2780 |
+
"learning_rate": 6.96468757127396e-07,
|
2781 |
+
"loss": 0.9353,
|
2782 |
+
"step": 396
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 0.8428874734607219,
|
2786 |
+
"grad_norm": 0.634513633607587,
|
2787 |
+
"learning_rate": 6.786849132580841e-07,
|
2788 |
+
"loss": 0.9701,
|
2789 |
+
"step": 397
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 0.8450106157112527,
|
2793 |
+
"grad_norm": 0.6535642815740839,
|
2794 |
+
"learning_rate": 6.611145207089897e-07,
|
2795 |
+
"loss": 1.0107,
|
2796 |
+
"step": 398
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 0.8471337579617835,
|
2800 |
+
"grad_norm": 0.5879933192229907,
|
2801 |
+
"learning_rate": 6.437584473694991e-07,
|
2802 |
+
"loss": 0.9368,
|
2803 |
+
"step": 399
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 0.8492569002123143,
|
2807 |
+
"grad_norm": 0.605957756420356,
|
2808 |
+
"learning_rate": 6.266175505426958e-07,
|
2809 |
+
"loss": 0.9894,
|
2810 |
+
"step": 400
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.851380042462845,
|
2814 |
+
"grad_norm": 0.7314877282571397,
|
2815 |
+
"learning_rate": 6.096926769030298e-07,
|
2816 |
+
"loss": 0.9774,
|
2817 |
+
"step": 401
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.8535031847133758,
|
2821 |
+
"grad_norm": 0.6546953805642173,
|
2822 |
+
"learning_rate": 5.929846624544821e-07,
|
2823 |
+
"loss": 0.8935,
|
2824 |
+
"step": 402
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 0.8556263269639066,
|
2828 |
+
"grad_norm": 0.6368694696464957,
|
2829 |
+
"learning_rate": 5.76494332489278e-07,
|
2830 |
+
"loss": 0.981,
|
2831 |
+
"step": 403
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 0.8577494692144374,
|
2835 |
+
"grad_norm": 0.5809741735522181,
|
2836 |
+
"learning_rate": 5.602225015471175e-07,
|
2837 |
+
"loss": 0.9366,
|
2838 |
+
"step": 404
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 0.8598726114649682,
|
2842 |
+
"grad_norm": 0.6040978855569594,
|
2843 |
+
"learning_rate": 5.441699733749479e-07,
|
2844 |
+
"loss": 0.9132,
|
2845 |
+
"step": 405
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 0.861995753715499,
|
2849 |
+
"grad_norm": 0.668801585315665,
|
2850 |
+
"learning_rate": 5.283375408872538e-07,
|
2851 |
+
"loss": 0.9692,
|
2852 |
+
"step": 406
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.8641188959660298,
|
2856 |
+
"grad_norm": 0.6184771265641804,
|
2857 |
+
"learning_rate": 5.127259861268974e-07,
|
2858 |
+
"loss": 0.9429,
|
2859 |
+
"step": 407
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.8662420382165605,
|
2863 |
+
"grad_norm": 0.6162792159994034,
|
2864 |
+
"learning_rate": 4.973360802264859e-07,
|
2865 |
+
"loss": 0.9758,
|
2866 |
+
"step": 408
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 0.8683651804670913,
|
2870 |
+
"grad_norm": 0.6209272190408437,
|
2871 |
+
"learning_rate": 4.82168583370285e-07,
|
2872 |
+
"loss": 0.9558,
|
2873 |
+
"step": 409
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.8704883227176221,
|
2877 |
+
"grad_norm": 0.6574340476437714,
|
2878 |
+
"learning_rate": 4.6722424475666715e-07,
|
2879 |
+
"loss": 0.9785,
|
2880 |
+
"step": 410
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.8726114649681529,
|
2884 |
+
"grad_norm": 0.5952333244627349,
|
2885 |
+
"learning_rate": 4.5250380256110335e-07,
|
2886 |
+
"loss": 0.9448,
|
2887 |
+
"step": 411
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.8747346072186837,
|
2891 |
+
"grad_norm": 0.6464093056676289,
|
2892 |
+
"learning_rate": 4.380079838997087e-07,
|
2893 |
+
"loss": 0.9583,
|
2894 |
+
"step": 412
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.8768577494692145,
|
2898 |
+
"grad_norm": 0.6241160996102696,
|
2899 |
+
"learning_rate": 4.237375047933118e-07,
|
2900 |
+
"loss": 0.9515,
|
2901 |
+
"step": 413
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.8789808917197452,
|
2905 |
+
"grad_norm": 0.6123834554274634,
|
2906 |
+
"learning_rate": 4.0969307013210445e-07,
|
2907 |
+
"loss": 0.9462,
|
2908 |
+
"step": 414
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.881104033970276,
|
2912 |
+
"grad_norm": 0.620526148007172,
|
2913 |
+
"learning_rate": 3.958753736408105e-07,
|
2914 |
+
"loss": 0.9843,
|
2915 |
+
"step": 415
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.8832271762208068,
|
2919 |
+
"grad_norm": 0.6042227470791746,
|
2920 |
+
"learning_rate": 3.822850978444254e-07,
|
2921 |
+
"loss": 0.9784,
|
2922 |
+
"step": 416
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.8853503184713376,
|
2926 |
+
"grad_norm": 0.6039281871109121,
|
2927 |
+
"learning_rate": 3.6892291403449963e-07,
|
2928 |
+
"loss": 0.9596,
|
2929 |
+
"step": 417
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.8874734607218684,
|
2933 |
+
"grad_norm": 0.6428481203938539,
|
2934 |
+
"learning_rate": 3.557894822359864e-07,
|
2935 |
+
"loss": 0.9738,
|
2936 |
+
"step": 418
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.8895966029723992,
|
2940 |
+
"grad_norm": 0.6473133844442116,
|
2941 |
+
"learning_rate": 3.428854511746293e-07,
|
2942 |
+
"loss": 0.8943,
|
2943 |
+
"step": 419
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.89171974522293,
|
2947 |
+
"grad_norm": 0.6127200885498997,
|
2948 |
+
"learning_rate": 3.302114582449295e-07,
|
2949 |
+
"loss": 0.9003,
|
2950 |
+
"step": 420
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 0.8938428874734607,
|
2954 |
+
"grad_norm": 0.5957698934890053,
|
2955 |
+
"learning_rate": 3.177681294786539e-07,
|
2956 |
+
"loss": 0.9105,
|
2957 |
+
"step": 421
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 0.8959660297239915,
|
2961 |
+
"grad_norm": 0.630253059490648,
|
2962 |
+
"learning_rate": 3.055560795139173e-07,
|
2963 |
+
"loss": 0.942,
|
2964 |
+
"step": 422
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 0.8980891719745223,
|
2968 |
+
"grad_norm": 0.5723532021277051,
|
2969 |
+
"learning_rate": 2.9357591156481793e-07,
|
2970 |
+
"loss": 0.9303,
|
2971 |
+
"step": 423
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 0.9002123142250531,
|
2975 |
+
"grad_norm": 0.6573702756592325,
|
2976 |
+
"learning_rate": 2.8182821739164534e-07,
|
2977 |
+
"loss": 0.9501,
|
2978 |
+
"step": 424
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.9023354564755839,
|
2982 |
+
"grad_norm": 0.6416979272393862,
|
2983 |
+
"learning_rate": 2.7031357727164865e-07,
|
2984 |
+
"loss": 0.9663,
|
2985 |
+
"step": 425
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.9044585987261147,
|
2989 |
+
"grad_norm": 0.6368738534297214,
|
2990 |
+
"learning_rate": 2.5903255997037246e-07,
|
2991 |
+
"loss": 0.945,
|
2992 |
+
"step": 426
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 0.9065817409766455,
|
2996 |
+
"grad_norm": 0.6241813808000408,
|
2997 |
+
"learning_rate": 2.479857227135685e-07,
|
2998 |
+
"loss": 0.9371,
|
2999 |
+
"step": 427
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 0.9087048832271762,
|
3003 |
+
"grad_norm": 0.6214338963494389,
|
3004 |
+
"learning_rate": 2.3717361115966343e-07,
|
3005 |
+
"loss": 0.9367,
|
3006 |
+
"step": 428
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 0.910828025477707,
|
3010 |
+
"grad_norm": 0.5699417202695343,
|
3011 |
+
"learning_rate": 2.2659675937281078e-07,
|
3012 |
+
"loss": 0.945,
|
3013 |
+
"step": 429
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 0.9129511677282378,
|
3017 |
+
"grad_norm": 0.6087900372776045,
|
3018 |
+
"learning_rate": 2.1625568979651012e-07,
|
3019 |
+
"loss": 0.915,
|
3020 |
+
"step": 430
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.9150743099787686,
|
3024 |
+
"grad_norm": 0.6238430389402493,
|
3025 |
+
"learning_rate": 2.061509132278028e-07,
|
3026 |
+
"loss": 0.9573,
|
3027 |
+
"step": 431
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.9171974522292994,
|
3031 |
+
"grad_norm": 0.616881949337204,
|
3032 |
+
"learning_rate": 1.9628292879203482e-07,
|
3033 |
+
"loss": 0.9543,
|
3034 |
+
"step": 432
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 0.9193205944798302,
|
3038 |
+
"grad_norm": 0.591399183357261,
|
3039 |
+
"learning_rate": 1.866522239182117e-07,
|
3040 |
+
"loss": 0.9501,
|
3041 |
+
"step": 433
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 0.921443736730361,
|
3045 |
+
"grad_norm": 0.6159021188693764,
|
3046 |
+
"learning_rate": 1.7725927431491375e-07,
|
3047 |
+
"loss": 0.9165,
|
3048 |
+
"step": 434
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 0.9235668789808917,
|
3052 |
+
"grad_norm": 0.591662167001162,
|
3053 |
+
"learning_rate": 1.6810454394680431e-07,
|
3054 |
+
"loss": 0.8858,
|
3055 |
+
"step": 435
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 0.9256900212314225,
|
3059 |
+
"grad_norm": 0.6055907240238464,
|
3060 |
+
"learning_rate": 1.5918848501170647e-07,
|
3061 |
+
"loss": 0.9838,
|
3062 |
+
"step": 436
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.9278131634819533,
|
3066 |
+
"grad_norm": 0.6156603689342081,
|
3067 |
+
"learning_rate": 1.505115379182731e-07,
|
3068 |
+
"loss": 0.9127,
|
3069 |
+
"step": 437
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.9299363057324841,
|
3073 |
+
"grad_norm": 0.6534186332799405,
|
3074 |
+
"learning_rate": 1.420741312642282e-07,
|
3075 |
+
"loss": 0.8968,
|
3076 |
+
"step": 438
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 0.9320594479830149,
|
3080 |
+
"grad_norm": 0.6350193488336101,
|
3081 |
+
"learning_rate": 1.338766818151982e-07,
|
3082 |
+
"loss": 0.9256,
|
3083 |
+
"step": 439
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 0.9341825902335457,
|
3087 |
+
"grad_norm": 0.6457740307863381,
|
3088 |
+
"learning_rate": 1.2591959448412628e-07,
|
3089 |
+
"loss": 0.9638,
|
3090 |
+
"step": 440
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 0.9363057324840764,
|
3094 |
+
"grad_norm": 0.6038535830990959,
|
3095 |
+
"learning_rate": 1.1820326231126944e-07,
|
3096 |
+
"loss": 0.9265,
|
3097 |
+
"step": 441
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 0.9384288747346072,
|
3101 |
+
"grad_norm": 0.5863356427820726,
|
3102 |
+
"learning_rate": 1.107280664447874e-07,
|
3103 |
+
"loss": 0.8706,
|
3104 |
+
"step": 442
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.940552016985138,
|
3108 |
+
"grad_norm": 0.6123307873009273,
|
3109 |
+
"learning_rate": 1.0349437612191259e-07,
|
3110 |
+
"loss": 0.9281,
|
3111 |
+
"step": 443
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.9426751592356688,
|
3115 |
+
"grad_norm": 0.6244960339302931,
|
3116 |
+
"learning_rate": 9.650254865071428e-08,
|
3117 |
+
"loss": 0.9015,
|
3118 |
+
"step": 444
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 0.9447983014861996,
|
3122 |
+
"grad_norm": 0.5974223724607922,
|
3123 |
+
"learning_rate": 8.975292939244928e-08,
|
3124 |
+
"loss": 0.9381,
|
3125 |
+
"step": 445
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 0.9469214437367304,
|
3129 |
+
"grad_norm": 0.663187474452003,
|
3130 |
+
"learning_rate": 8.324585174449895e-08,
|
3131 |
+
"loss": 0.9288,
|
3132 |
+
"step": 446
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 0.9490445859872612,
|
3136 |
+
"grad_norm": 0.6450153099927163,
|
3137 |
+
"learning_rate": 7.698163712390683e-08,
|
3138 |
+
"loss": 0.9303,
|
3139 |
+
"step": 447
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 0.9511677282377919,
|
3143 |
+
"grad_norm": 0.5907292118683592,
|
3144 |
+
"learning_rate": 7.096059495149855e-08,
|
3145 |
+
"loss": 0.947,
|
3146 |
+
"step": 448
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.9532908704883227,
|
3150 |
+
"grad_norm": 0.5861617757102544,
|
3151 |
+
"learning_rate": 6.518302263659737e-08,
|
3152 |
+
"loss": 0.9716,
|
3153 |
+
"step": 449
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.9554140127388535,
|
3157 |
+
"grad_norm": 0.6393445723859766,
|
3158 |
+
"learning_rate": 5.964920556233767e-08,
|
3159 |
+
"loss": 0.9496,
|
3160 |
+
"step": 450
|
3161 |
+
},
|
3162 |
+
{
|
3163 |
+
"epoch": 0.9575371549893843,
|
3164 |
+
"grad_norm": 0.613931930972996,
|
3165 |
+
"learning_rate": 5.435941707156389e-08,
|
3166 |
+
"loss": 0.9551,
|
3167 |
+
"step": 451
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 0.9596602972399151,
|
3171 |
+
"grad_norm": 0.6397454870819524,
|
3172 |
+
"learning_rate": 4.931391845333089e-08,
|
3173 |
+
"loss": 0.9551,
|
3174 |
+
"step": 452
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 0.9617834394904459,
|
3178 |
+
"grad_norm": 0.6565505050802851,
|
3179 |
+
"learning_rate": 4.451295892999863e-08,
|
3180 |
+
"loss": 0.9608,
|
3181 |
+
"step": 453
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 0.9639065817409767,
|
3185 |
+
"grad_norm": 0.5653966566723131,
|
3186 |
+
"learning_rate": 3.99567756449204e-08,
|
3187 |
+
"loss": 0.9538,
|
3188 |
+
"step": 454
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.9660297239915074,
|
3192 |
+
"grad_norm": 0.6313529335042806,
|
3193 |
+
"learning_rate": 3.5645593650728284e-08,
|
3194 |
+
"loss": 0.9416,
|
3195 |
+
"step": 455
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.9681528662420382,
|
3199 |
+
"grad_norm": 0.5912228326131986,
|
3200 |
+
"learning_rate": 3.157962589821872e-08,
|
3201 |
+
"loss": 0.9122,
|
3202 |
+
"step": 456
|
3203 |
+
},
|
3204 |
+
{
|
3205 |
+
"epoch": 0.970276008492569,
|
3206 |
+
"grad_norm": 0.5803420405058766,
|
3207 |
+
"learning_rate": 2.77590732258326e-08,
|
3208 |
+
"loss": 0.8994,
|
3209 |
+
"step": 457
|
3210 |
+
},
|
3211 |
+
{
|
3212 |
+
"epoch": 0.9723991507430998,
|
3213 |
+
"grad_norm": 0.6155253780530031,
|
3214 |
+
"learning_rate": 2.4184124349734828e-08,
|
3215 |
+
"loss": 0.901,
|
3216 |
+
"step": 458
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 0.9745222929936306,
|
3220 |
+
"grad_norm": 0.6158555999311183,
|
3221 |
+
"learning_rate": 2.085495585449404e-08,
|
3222 |
+
"loss": 0.9367,
|
3223 |
+
"step": 459
|
3224 |
+
},
|
3225 |
+
{
|
3226 |
+
"epoch": 0.9766454352441614,
|
3227 |
+
"grad_norm": 0.6102556561759572,
|
3228 |
+
"learning_rate": 1.7771732184357905e-08,
|
3229 |
+
"loss": 0.97,
|
3230 |
+
"step": 460
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.9787685774946921,
|
3234 |
+
"grad_norm": 0.6133879154761869,
|
3235 |
+
"learning_rate": 1.4934605635132383e-08,
|
3236 |
+
"loss": 0.9395,
|
3237 |
+
"step": 461
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 0.9808917197452229,
|
3241 |
+
"grad_norm": 0.6315902050946196,
|
3242 |
+
"learning_rate": 1.2343716346657209e-08,
|
3243 |
+
"loss": 0.9672,
|
3244 |
+
"step": 462
|
3245 |
+
},
|
3246 |
+
{
|
3247 |
+
"epoch": 0.9830148619957537,
|
3248 |
+
"grad_norm": 0.6265462036680295,
|
3249 |
+
"learning_rate": 9.999192295886973e-09,
|
3250 |
+
"loss": 0.8944,
|
3251 |
+
"step": 463
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 0.9851380042462845,
|
3255 |
+
"grad_norm": 0.6508926612195644,
|
3256 |
+
"learning_rate": 7.90114929056618e-09,
|
3257 |
+
"loss": 0.969,
|
3258 |
+
"step": 464
|
3259 |
+
},
|
3260 |
+
{
|
3261 |
+
"epoch": 0.9872611464968153,
|
3262 |
+
"grad_norm": 0.610539010766466,
|
3263 |
+
"learning_rate": 6.04969096350938e-09,
|
3264 |
+
"loss": 1.0041,
|
3265 |
+
"step": 465
|
3266 |
+
},
|
3267 |
+
{
|
3268 |
+
"epoch": 0.9893842887473461,
|
3269 |
+
"grad_norm": 0.6698395549114579,
|
3270 |
+
"learning_rate": 4.444908767484712e-09,
|
3271 |
+
"loss": 0.9445,
|
3272 |
+
"step": 466
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.9915074309978769,
|
3276 |
+
"grad_norm": 0.6067929394760742,
|
3277 |
+
"learning_rate": 3.0868819706947327e-09,
|
3278 |
+
"loss": 0.916,
|
3279 |
+
"step": 467
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 0.9936305732484076,
|
3283 |
+
"grad_norm": 0.5884245428838023,
|
3284 |
+
"learning_rate": 1.9756776528601085e-09,
|
3285 |
+
"loss": 0.9302,
|
3286 |
+
"step": 468
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 0.9957537154989384,
|
3290 |
+
"grad_norm": 0.567946260429274,
|
3291 |
+
"learning_rate": 1.111350701909486e-09,
|
3292 |
+
"loss": 0.9093,
|
3293 |
+
"step": 469
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 0.9978768577494692,
|
3297 |
+
"grad_norm": 0.6236094149891209,
|
3298 |
+
"learning_rate": 4.939438112638861e-10,
|
3299 |
+
"loss": 0.9338,
|
3300 |
+
"step": 470
|
3301 |
+
},
|
3302 |
+
{
|
3303 |
+
"epoch": 1.0,
|
3304 |
+
"grad_norm": 0.6765559518074722,
|
3305 |
+
"learning_rate": 1.2348747773172075e-10,
|
3306 |
+
"loss": 0.9356,
|
3307 |
+
"step": 471
|
3308 |
+
}
|
3309 |
+
],
|
3310 |
+
"logging_steps": 1,
|
3311 |
+
"max_steps": 471,
|
3312 |
+
"num_input_tokens_seen": 0,
|
3313 |
+
"num_train_epochs": 1,
|
3314 |
+
"save_steps": 157,
|
3315 |
+
"stateful_callbacks": {
|
3316 |
+
"TrainerControl": {
|
3317 |
+
"args": {
|
3318 |
+
"should_epoch_stop": false,
|
3319 |
+
"should_evaluate": false,
|
3320 |
+
"should_log": false,
|
3321 |
+
"should_save": true,
|
3322 |
+
"should_training_stop": true
|
3323 |
+
},
|
3324 |
+
"attributes": {}
|
3325 |
+
}
|
3326 |
+
},
|
3327 |
+
"total_flos": 70004199849984.0,
|
3328 |
+
"train_batch_size": 2,
|
3329 |
+
"trial_name": null,
|
3330 |
+
"trial_params": null
|
3331 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b034e0d83300ea1c9e38edcef801137d8d09a7d4a653638cef26385c245e0d4
|
3 |
+
size 8017
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|