fengyao1909 commited on
Commit
8bdc92e
·
verified ·
1 Parent(s): 5559819

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3MoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "decoder_sparse_step": 1,
9
+ "eos_token_id": 151643,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 6144,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 48,
17
+ "mlp_only_layers": [],
18
+ "model_type": "qwen3_moe",
19
+ "moe_intermediate_size": 768,
20
+ "norm_topk_prob": true,
21
+ "num_attention_heads": 32,
22
+ "num_experts": 128,
23
+ "num_experts_per_tok": 8,
24
+ "num_hidden_layers": 48,
25
+ "num_key_value_heads": 4,
26
+ "output_router_logits": false,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000.0,
30
+ "router_aux_loss_coef": 0.001,
31
+ "sliding_window": null,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.3",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "vocab_size": 151936
38
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.51.3"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step522
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5820492a785c14dd828f7f76a028a3eeb7d1a24743d5f8528c2c663ae8406103
3
+ size 4997184968
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8373f64c72c2ab5d99a89e8bf9303d5e148d439451c830590bc72db08e575f4
3
+ size 4997741608
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede7451d0a6914e69f379c4cd23a84f4103c50436ad55d2b85177aff49736078
3
+ size 4997742208
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af40ea3dbc16b5d2c0e8d3dab09bf6aa32276711a0233a1a3822f88a0fe3d281
3
+ size 4997743184
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a85374a619ed6d1d69c2953be20475ed95c2be19261082c6fe60f1ac77c501b
3
+ size 4997743184
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81e29d93ff9ffbe6acd8792f50c4cf63db06fdd6413c56fee599bc0849f3c0af
3
+ size 4997743184
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b5fefcc6d408b82d7f185159810199f490395b5683b078753e78f97e45e3f39
3
+ size 4997743184
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3bc803dd61209c55c2adfaed8fdccebbe5199656cc40dc10ceb54909ac656a3
3
+ size 4997743184
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e1f21c113ff7371c25ddab911d081bca22b8b5cb725149af8937c5ee7d1d407
3
+ size 4997743184
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:149f040c46b7b52d6bd5763b210bde13d705758a3ee36921e684c0e4c9b55b49
3
+ size 4997743184
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:731cd2614e324947d3087916389f8d95de2523c5532143eec577a4f54e73f2c9
3
+ size 4997743184
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49d985ddf101be196234df1cc8b05b32a5b54afbddbbdb50d0c804a5969d0802
3
+ size 4997743184
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2760ff510ffdbcc32ff556763a0a22e11bb390b251d3866354802ba51ed8944
3
+ size 1094220288
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:478b41e9f26d338fd8f896e08cad1adab7c423b61f1b45754113bc78d256a3f9
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce29a8767a7d907dd24987aa2c3e654d4317f3042fbc13b5b72cadb46d43311a
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a48db011646b4e9a867bf12f4a233cad5dfbfe309686f8996c250196d3783a
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9562ee822472a4f01dcd6349ab3d1ef42a48915fe3b92e843a0c37db53c8421
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d2767d83c3bf27f12db022b0632e2c4f8c164274ba75e380cf18f9d5f21819
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76816358d4e5db8149d60d55234db658d67a13c0c1ce05d7404cf7125a676a5c
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1562e7520c977d178183d641f70abcf3f57da2489938756cfbebf9b6e6c1a9fd
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6b6cabaed045c5398cd1b732f7ec48bd363f3b43cd24e0e70e641a42bd00c28
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:573fe40e93cc08d69d2438a7479c92cb69e0a816fa8881bc927cf6c33978b64a
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
trainer_state.json ADDED
@@ -0,0 +1,3688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.33408,
6
+ "eval_steps": 500,
7
+ "global_step": 522,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00064,
14
+ "grad_norm": 2.3657337561838188,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.5764,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.00128,
21
+ "grad_norm": 2.577238188562681,
22
+ "learning_rate": 6.329113924050633e-07,
23
+ "loss": 0.6154,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.00192,
28
+ "grad_norm": 2.486400760684678,
29
+ "learning_rate": 1.2658227848101265e-06,
30
+ "loss": 0.5765,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.00256,
35
+ "grad_norm": 2.427317708214583,
36
+ "learning_rate": 1.8987341772151901e-06,
37
+ "loss": 0.5898,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.0032,
42
+ "grad_norm": 2.3689778807783104,
43
+ "learning_rate": 2.531645569620253e-06,
44
+ "loss": 0.5846,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.00384,
49
+ "grad_norm": 2.533864042007203,
50
+ "learning_rate": 3.1645569620253167e-06,
51
+ "loss": 0.6002,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.00448,
56
+ "grad_norm": 1.879595075845785,
57
+ "learning_rate": 3.7974683544303802e-06,
58
+ "loss": 0.5581,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.00512,
63
+ "grad_norm": 2.056563531274739,
64
+ "learning_rate": 4.430379746835443e-06,
65
+ "loss": 0.5859,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.00576,
70
+ "grad_norm": 1.4703684433180533,
71
+ "learning_rate": 5.063291139240506e-06,
72
+ "loss": 0.5479,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.0064,
77
+ "grad_norm": 1.2614967629103893,
78
+ "learning_rate": 5.69620253164557e-06,
79
+ "loss": 0.5303,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.00704,
84
+ "grad_norm": 1.1460599905324345,
85
+ "learning_rate": 6.329113924050633e-06,
86
+ "loss": 0.5568,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.00768,
91
+ "grad_norm": 1.6204644872566638,
92
+ "learning_rate": 6.9620253164556965e-06,
93
+ "loss": 0.5111,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.00832,
98
+ "grad_norm": 1.6361395875225335,
99
+ "learning_rate": 7.5949367088607605e-06,
100
+ "loss": 0.4678,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.00896,
105
+ "grad_norm": 1.6402122162855226,
106
+ "learning_rate": 8.227848101265822e-06,
107
+ "loss": 0.4811,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.0096,
112
+ "grad_norm": 1.2490639825476322,
113
+ "learning_rate": 8.860759493670886e-06,
114
+ "loss": 0.442,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.01024,
119
+ "grad_norm": 1.0588915477376701,
120
+ "learning_rate": 9.49367088607595e-06,
121
+ "loss": 0.4263,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.01088,
126
+ "grad_norm": 1.40604786962106,
127
+ "learning_rate": 1.0126582278481012e-05,
128
+ "loss": 0.4549,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.01152,
133
+ "grad_norm": 1.242365760774633,
134
+ "learning_rate": 1.0759493670886076e-05,
135
+ "loss": 0.4531,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.01216,
140
+ "grad_norm": 0.9396101260126887,
141
+ "learning_rate": 1.139240506329114e-05,
142
+ "loss": 0.415,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.0128,
147
+ "grad_norm": 0.7578271337493023,
148
+ "learning_rate": 1.2025316455696203e-05,
149
+ "loss": 0.4268,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.01344,
154
+ "grad_norm": 0.7671817679988738,
155
+ "learning_rate": 1.2658227848101267e-05,
156
+ "loss": 0.4314,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.01408,
161
+ "grad_norm": 0.6494114557426621,
162
+ "learning_rate": 1.3291139240506329e-05,
163
+ "loss": 0.3666,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.01472,
168
+ "grad_norm": 0.6806456497077759,
169
+ "learning_rate": 1.3924050632911393e-05,
170
+ "loss": 0.3823,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.01536,
175
+ "grad_norm": 0.6595430154008608,
176
+ "learning_rate": 1.4556962025316457e-05,
177
+ "loss": 0.3529,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.016,
182
+ "grad_norm": 0.7689071362735744,
183
+ "learning_rate": 1.5189873417721521e-05,
184
+ "loss": 0.3932,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.01664,
189
+ "grad_norm": 0.6854685982052705,
190
+ "learning_rate": 1.5822784810126583e-05,
191
+ "loss": 0.3738,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.01728,
196
+ "grad_norm": 0.558852717411362,
197
+ "learning_rate": 1.6455696202531644e-05,
198
+ "loss": 0.3708,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.01792,
203
+ "grad_norm": 0.49876042518765007,
204
+ "learning_rate": 1.7088607594936708e-05,
205
+ "loss": 0.3696,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.01856,
210
+ "grad_norm": 0.5271567613623678,
211
+ "learning_rate": 1.7721518987341772e-05,
212
+ "loss": 0.3558,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.0192,
217
+ "grad_norm": 0.5978920045933569,
218
+ "learning_rate": 1.8354430379746836e-05,
219
+ "loss": 0.3827,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.01984,
224
+ "grad_norm": 0.4975313988318536,
225
+ "learning_rate": 1.89873417721519e-05,
226
+ "loss": 0.3772,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.02048,
231
+ "grad_norm": 0.5766330443378189,
232
+ "learning_rate": 1.962025316455696e-05,
233
+ "loss": 0.3832,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.02112,
238
+ "grad_norm": 0.5567055560538855,
239
+ "learning_rate": 2.0253164556962025e-05,
240
+ "loss": 0.3477,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.02176,
245
+ "grad_norm": 0.46871971492473,
246
+ "learning_rate": 2.088607594936709e-05,
247
+ "loss": 0.3604,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.0224,
252
+ "grad_norm": 0.43316810660778116,
253
+ "learning_rate": 2.1518987341772153e-05,
254
+ "loss": 0.3592,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.02304,
259
+ "grad_norm": 0.4312186195231089,
260
+ "learning_rate": 2.2151898734177217e-05,
261
+ "loss": 0.3711,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.02368,
266
+ "grad_norm": 0.46951838290882675,
267
+ "learning_rate": 2.278481012658228e-05,
268
+ "loss": 0.3618,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.02432,
273
+ "grad_norm": 0.468516818608629,
274
+ "learning_rate": 2.341772151898734e-05,
275
+ "loss": 0.3578,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.02496,
280
+ "grad_norm": 0.45909911923620816,
281
+ "learning_rate": 2.4050632911392405e-05,
282
+ "loss": 0.3521,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.0256,
287
+ "grad_norm": 0.36223572387755915,
288
+ "learning_rate": 2.468354430379747e-05,
289
+ "loss": 0.3439,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.02624,
294
+ "grad_norm": 0.41920026035277985,
295
+ "learning_rate": 2.5316455696202533e-05,
296
+ "loss": 0.3052,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.02688,
301
+ "grad_norm": 0.46410873807902825,
302
+ "learning_rate": 2.5949367088607597e-05,
303
+ "loss": 0.3324,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.02752,
308
+ "grad_norm": 0.44804958203514283,
309
+ "learning_rate": 2.6582278481012658e-05,
310
+ "loss": 0.322,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.02816,
315
+ "grad_norm": 0.4408934955100543,
316
+ "learning_rate": 2.7215189873417722e-05,
317
+ "loss": 0.3399,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.0288,
322
+ "grad_norm": 0.4536362310706478,
323
+ "learning_rate": 2.7848101265822786e-05,
324
+ "loss": 0.3508,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.02944,
329
+ "grad_norm": 0.4735438789842479,
330
+ "learning_rate": 2.848101265822785e-05,
331
+ "loss": 0.3431,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.03008,
336
+ "grad_norm": 0.3960360490220664,
337
+ "learning_rate": 2.9113924050632914e-05,
338
+ "loss": 0.3358,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.03072,
343
+ "grad_norm": 0.4449245975582831,
344
+ "learning_rate": 2.9746835443037974e-05,
345
+ "loss": 0.3472,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.03136,
350
+ "grad_norm": 0.41598379019590886,
351
+ "learning_rate": 3.0379746835443042e-05,
352
+ "loss": 0.3295,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.032,
357
+ "grad_norm": 0.39770652562313213,
358
+ "learning_rate": 3.10126582278481e-05,
359
+ "loss": 0.339,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.03264,
364
+ "grad_norm": 0.4036450937079526,
365
+ "learning_rate": 3.1645569620253167e-05,
366
+ "loss": 0.326,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.03328,
371
+ "grad_norm": 0.43082778666471144,
372
+ "learning_rate": 3.227848101265823e-05,
373
+ "loss": 0.3258,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.03392,
378
+ "grad_norm": 0.402275292978643,
379
+ "learning_rate": 3.291139240506329e-05,
380
+ "loss": 0.2905,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.03456,
385
+ "grad_norm": 0.43612618786182106,
386
+ "learning_rate": 3.354430379746836e-05,
387
+ "loss": 0.334,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.0352,
392
+ "grad_norm": 0.45984837714015897,
393
+ "learning_rate": 3.4177215189873416e-05,
394
+ "loss": 0.3283,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.03584,
399
+ "grad_norm": 0.4484461315187549,
400
+ "learning_rate": 3.4810126582278487e-05,
401
+ "loss": 0.3277,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.03648,
406
+ "grad_norm": 0.4052074034352622,
407
+ "learning_rate": 3.5443037974683544e-05,
408
+ "loss": 0.3271,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.03712,
413
+ "grad_norm": 0.46620186767863914,
414
+ "learning_rate": 3.607594936708861e-05,
415
+ "loss": 0.3464,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.03776,
420
+ "grad_norm": 0.42593292833096424,
421
+ "learning_rate": 3.670886075949367e-05,
422
+ "loss": 0.3331,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.0384,
427
+ "grad_norm": 0.4815687673225032,
428
+ "learning_rate": 3.7341772151898736e-05,
429
+ "loss": 0.3269,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.03904,
434
+ "grad_norm": 0.455342196474994,
435
+ "learning_rate": 3.79746835443038e-05,
436
+ "loss": 0.3343,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.03968,
441
+ "grad_norm": 0.4316078425366754,
442
+ "learning_rate": 3.8607594936708864e-05,
443
+ "loss": 0.3145,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.04032,
448
+ "grad_norm": 0.4604468007808017,
449
+ "learning_rate": 3.924050632911392e-05,
450
+ "loss": 0.3206,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.04096,
455
+ "grad_norm": 0.516259514156323,
456
+ "learning_rate": 3.987341772151899e-05,
457
+ "loss": 0.3538,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.0416,
462
+ "grad_norm": 0.3911206186305256,
463
+ "learning_rate": 4.050632911392405e-05,
464
+ "loss": 0.3116,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.04224,
469
+ "grad_norm": 0.5059680673369054,
470
+ "learning_rate": 4.113924050632912e-05,
471
+ "loss": 0.3461,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.04288,
476
+ "grad_norm": 0.4477077725372915,
477
+ "learning_rate": 4.177215189873418e-05,
478
+ "loss": 0.3142,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.04352,
483
+ "grad_norm": 0.4568181894979607,
484
+ "learning_rate": 4.240506329113924e-05,
485
+ "loss": 0.3258,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.04416,
490
+ "grad_norm": 0.436426112682463,
491
+ "learning_rate": 4.3037974683544305e-05,
492
+ "loss": 0.2942,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.0448,
497
+ "grad_norm": 0.4130845172287253,
498
+ "learning_rate": 4.367088607594937e-05,
499
+ "loss": 0.3293,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.04544,
504
+ "grad_norm": 0.4907470169969436,
505
+ "learning_rate": 4.430379746835443e-05,
506
+ "loss": 0.3152,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.04608,
511
+ "grad_norm": 0.44557023947548996,
512
+ "learning_rate": 4.49367088607595e-05,
513
+ "loss": 0.323,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.04672,
518
+ "grad_norm": 0.43347032964452825,
519
+ "learning_rate": 4.556962025316456e-05,
520
+ "loss": 0.3132,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.04736,
525
+ "grad_norm": 0.41315778348357357,
526
+ "learning_rate": 4.6202531645569625e-05,
527
+ "loss": 0.3076,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.048,
532
+ "grad_norm": 0.38689299616228223,
533
+ "learning_rate": 4.683544303797468e-05,
534
+ "loss": 0.2971,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.04864,
539
+ "grad_norm": 0.6649393785343345,
540
+ "learning_rate": 4.7468354430379746e-05,
541
+ "loss": 0.3196,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.04928,
546
+ "grad_norm": 0.4741860571119842,
547
+ "learning_rate": 4.810126582278481e-05,
548
+ "loss": 0.3261,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.04992,
553
+ "grad_norm": 0.39850926668653464,
554
+ "learning_rate": 4.8734177215189874e-05,
555
+ "loss": 0.2909,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.05056,
560
+ "grad_norm": 0.45993342960946926,
561
+ "learning_rate": 4.936708860759494e-05,
562
+ "loss": 0.3232,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.0512,
567
+ "grad_norm": 0.41758744126936076,
568
+ "learning_rate": 5e-05,
569
+ "loss": 0.3138,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.05184,
574
+ "grad_norm": 0.4190137054884969,
575
+ "learning_rate": 4.999994390459423e-05,
576
+ "loss": 0.324,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.05248,
581
+ "grad_norm": 0.38007532443802017,
582
+ "learning_rate": 4.999977561862863e-05,
583
+ "loss": 0.3167,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.05312,
588
+ "grad_norm": 0.3894813419979866,
589
+ "learning_rate": 4.999949514285842e-05,
590
+ "loss": 0.3169,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.05376,
595
+ "grad_norm": 0.4646671073219221,
596
+ "learning_rate": 4.999910247854227e-05,
597
+ "loss": 0.3295,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.0544,
602
+ "grad_norm": 0.46440352293136283,
603
+ "learning_rate": 4.99985976274423e-05,
604
+ "loss": 0.3259,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.05504,
609
+ "grad_norm": 0.4754742191954697,
610
+ "learning_rate": 4.9997980591824126e-05,
611
+ "loss": 0.3073,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.05568,
616
+ "grad_norm": 0.4102331568111904,
617
+ "learning_rate": 4.999725137445674e-05,
618
+ "loss": 0.3179,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.05632,
623
+ "grad_norm": 0.49865407563428993,
624
+ "learning_rate": 4.999640997861264e-05,
625
+ "loss": 0.3198,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.05696,
630
+ "grad_norm": 0.450995150648752,
631
+ "learning_rate": 4.999545640806766e-05,
632
+ "loss": 0.3215,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.0576,
637
+ "grad_norm": 0.42715082345561,
638
+ "learning_rate": 4.999439066710111e-05,
639
+ "loss": 0.3406,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.05824,
644
+ "grad_norm": 0.47007665924261693,
645
+ "learning_rate": 4.999321276049563e-05,
646
+ "loss": 0.3169,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.05888,
651
+ "grad_norm": 0.37692477648671757,
652
+ "learning_rate": 4.9991922693537226e-05,
653
+ "loss": 0.3052,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.05952,
658
+ "grad_norm": 0.5254380682221013,
659
+ "learning_rate": 4.9990520472015246e-05,
660
+ "loss": 0.2928,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.06016,
665
+ "grad_norm": 0.4524991571079602,
666
+ "learning_rate": 4.998900610222236e-05,
667
+ "loss": 0.3035,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.0608,
672
+ "grad_norm": 0.39419071585883453,
673
+ "learning_rate": 4.998737959095449e-05,
674
+ "loss": 0.2764,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.06144,
679
+ "grad_norm": 0.44021580096048935,
680
+ "learning_rate": 4.998564094551081e-05,
681
+ "loss": 0.3137,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.06208,
686
+ "grad_norm": 0.4397078772822271,
687
+ "learning_rate": 4.998379017369375e-05,
688
+ "loss": 0.3092,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.06272,
693
+ "grad_norm": 0.4612518337175716,
694
+ "learning_rate": 4.9981827283808855e-05,
695
+ "loss": 0.3065,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.06336,
700
+ "grad_norm": 0.4491229684653282,
701
+ "learning_rate": 4.997975228466489e-05,
702
+ "loss": 0.3327,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.064,
707
+ "grad_norm": 0.40909998580765855,
708
+ "learning_rate": 4.997756518557368e-05,
709
+ "loss": 0.2787,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.06464,
714
+ "grad_norm": 0.3785712105730604,
715
+ "learning_rate": 4.997526599635011e-05,
716
+ "loss": 0.2837,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.06528,
721
+ "grad_norm": 0.5009245567404541,
722
+ "learning_rate": 4.997285472731211e-05,
723
+ "loss": 0.3325,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.06592,
728
+ "grad_norm": 0.41940515716785753,
729
+ "learning_rate": 4.997033138928056e-05,
730
+ "loss": 0.3126,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.06656,
735
+ "grad_norm": 0.4356254674524969,
736
+ "learning_rate": 4.996769599357927e-05,
737
+ "loss": 0.3079,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.0672,
742
+ "grad_norm": 0.4485794513852225,
743
+ "learning_rate": 4.996494855203493e-05,
744
+ "loss": 0.3227,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.06784,
749
+ "grad_norm": 0.5339271359603054,
750
+ "learning_rate": 4.996208907697706e-05,
751
+ "loss": 0.3197,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.06848,
756
+ "grad_norm": 0.47913200680485823,
757
+ "learning_rate": 4.995911758123791e-05,
758
+ "loss": 0.2829,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.06912,
763
+ "grad_norm": 0.48619705540043057,
764
+ "learning_rate": 4.995603407815249e-05,
765
+ "loss": 0.295,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.06976,
770
+ "grad_norm": 0.44791381540090275,
771
+ "learning_rate": 4.9952838581558406e-05,
772
+ "loss": 0.3009,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.0704,
777
+ "grad_norm": 0.4217427510368746,
778
+ "learning_rate": 4.994953110579588e-05,
779
+ "loss": 0.3124,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.07104,
784
+ "grad_norm": 0.44605995933104997,
785
+ "learning_rate": 4.9946111665707645e-05,
786
+ "loss": 0.3232,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.07168,
791
+ "grad_norm": 0.3580173680896881,
792
+ "learning_rate": 4.99425802766389e-05,
793
+ "loss": 0.288,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.07232,
798
+ "grad_norm": 0.4281198427243427,
799
+ "learning_rate": 4.993893695443721e-05,
800
+ "loss": 0.3008,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.07296,
805
+ "grad_norm": 0.3748012845273175,
806
+ "learning_rate": 4.993518171545247e-05,
807
+ "loss": 0.2898,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.0736,
812
+ "grad_norm": 0.41133247941906176,
813
+ "learning_rate": 4.993131457653682e-05,
814
+ "loss": 0.3007,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.07424,
819
+ "grad_norm": 0.4049279526177947,
820
+ "learning_rate": 4.992733555504454e-05,
821
+ "loss": 0.3156,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.07488,
826
+ "grad_norm": 0.3907854290589919,
827
+ "learning_rate": 4.9923244668832025e-05,
828
+ "loss": 0.305,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.07552,
833
+ "grad_norm": 3.3672297158831523,
834
+ "learning_rate": 4.991904193625768e-05,
835
+ "loss": 0.3099,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.07616,
840
+ "grad_norm": 0.45896342700641674,
841
+ "learning_rate": 4.991472737618181e-05,
842
+ "loss": 0.2766,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.0768,
847
+ "grad_norm": 0.41249483633287526,
848
+ "learning_rate": 4.991030100796659e-05,
849
+ "loss": 0.3026,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.07744,
854
+ "grad_norm": 0.39435147330028136,
855
+ "learning_rate": 4.9905762851475915e-05,
856
+ "loss": 0.3151,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.07808,
861
+ "grad_norm": 0.38174217860012233,
862
+ "learning_rate": 4.990111292707537e-05,
863
+ "loss": 0.3132,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.07872,
868
+ "grad_norm": 0.4106762400890441,
869
+ "learning_rate": 4.989635125563211e-05,
870
+ "loss": 0.2883,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.07936,
875
+ "grad_norm": 0.3777494709551966,
876
+ "learning_rate": 4.989147785851477e-05,
877
+ "loss": 0.3075,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.08,
882
+ "grad_norm": 0.3812281839176885,
883
+ "learning_rate": 4.988649275759335e-05,
884
+ "loss": 0.3173,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.08064,
889
+ "grad_norm": 0.3800442807387135,
890
+ "learning_rate": 4.988139597523916e-05,
891
+ "loss": 0.2897,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.08128,
896
+ "grad_norm": 0.4101363073522896,
897
+ "learning_rate": 4.98761875343247e-05,
898
+ "loss": 0.2822,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.08192,
903
+ "grad_norm": 0.3515414786001439,
904
+ "learning_rate": 4.987086745822352e-05,
905
+ "loss": 0.2831,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.08256,
910
+ "grad_norm": 0.38143533758711873,
911
+ "learning_rate": 4.986543577081017e-05,
912
+ "loss": 0.3193,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.0832,
917
+ "grad_norm": 0.44066201212578954,
918
+ "learning_rate": 4.985989249646007e-05,
919
+ "loss": 0.3006,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.08384,
924
+ "grad_norm": 0.3699946189372801,
925
+ "learning_rate": 4.985423766004939e-05,
926
+ "loss": 0.309,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.08448,
931
+ "grad_norm": 0.4732003041900607,
932
+ "learning_rate": 4.9848471286954965e-05,
933
+ "loss": 0.3253,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.08512,
938
+ "grad_norm": 0.35724915771132804,
939
+ "learning_rate": 4.984259340305416e-05,
940
+ "loss": 0.2876,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.08576,
945
+ "grad_norm": 0.39925687072469707,
946
+ "learning_rate": 4.9836604034724753e-05,
947
+ "loss": 0.2906,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.0864,
952
+ "grad_norm": 0.43582991089095635,
953
+ "learning_rate": 4.9830503208844835e-05,
954
+ "loss": 0.2928,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.08704,
959
+ "grad_norm": 0.3638802742085539,
960
+ "learning_rate": 4.982429095279266e-05,
961
+ "loss": 0.2924,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.08768,
966
+ "grad_norm": 0.44414884826796713,
967
+ "learning_rate": 4.981796729444655e-05,
968
+ "loss": 0.3225,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.08832,
973
+ "grad_norm": 0.4179539121719692,
974
+ "learning_rate": 4.981153226218477e-05,
975
+ "loss": 0.3067,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.08896,
980
+ "grad_norm": 0.3518602463362222,
981
+ "learning_rate": 4.9804985884885366e-05,
982
+ "loss": 0.2854,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.0896,
987
+ "grad_norm": 0.4013030661247676,
988
+ "learning_rate": 4.979832819192608e-05,
989
+ "loss": 0.3113,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.09024,
994
+ "grad_norm": 0.3700912839771966,
995
+ "learning_rate": 4.97915592131842e-05,
996
+ "loss": 0.2873,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.09088,
1001
+ "grad_norm": 0.41429834446700914,
1002
+ "learning_rate": 4.97846789790364e-05,
1003
+ "loss": 0.3064,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.09152,
1008
+ "grad_norm": 0.3743350290044281,
1009
+ "learning_rate": 4.977768752035865e-05,
1010
+ "loss": 0.311,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.09216,
1015
+ "grad_norm": 0.4436631708270473,
1016
+ "learning_rate": 4.9770584868526046e-05,
1017
+ "loss": 0.3105,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.0928,
1022
+ "grad_norm": 0.4341903366251428,
1023
+ "learning_rate": 4.9763371055412685e-05,
1024
+ "loss": 0.307,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.09344,
1029
+ "grad_norm": 0.4147022361169306,
1030
+ "learning_rate": 4.9756046113391496e-05,
1031
+ "loss": 0.3288,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.09408,
1036
+ "grad_norm": 0.3884970059580215,
1037
+ "learning_rate": 4.974861007533413e-05,
1038
+ "loss": 0.2847,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.09472,
1043
+ "grad_norm": 0.4258271028958422,
1044
+ "learning_rate": 4.97410629746108e-05,
1045
+ "loss": 0.2908,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.09536,
1050
+ "grad_norm": 0.41527352386736543,
1051
+ "learning_rate": 4.9733404845090116e-05,
1052
+ "loss": 0.2828,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.096,
1057
+ "grad_norm": 0.41352693469232554,
1058
+ "learning_rate": 4.972563572113894e-05,
1059
+ "loss": 0.2895,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.09664,
1064
+ "grad_norm": 0.4391732737160089,
1065
+ "learning_rate": 4.971775563762226e-05,
1066
+ "loss": 0.2908,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.09728,
1071
+ "grad_norm": 0.42637768991672836,
1072
+ "learning_rate": 4.970976462990299e-05,
1073
+ "loss": 0.3103,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.09792,
1078
+ "grad_norm": 0.38123935717217666,
1079
+ "learning_rate": 4.970166273384183e-05,
1080
+ "loss": 0.2859,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.09856,
1085
+ "grad_norm": 0.3432072306652636,
1086
+ "learning_rate": 4.969344998579712e-05,
1087
+ "loss": 0.2653,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.0992,
1092
+ "grad_norm": 0.38378318854854493,
1093
+ "learning_rate": 4.9685126422624644e-05,
1094
+ "loss": 0.3135,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.09984,
1099
+ "grad_norm": 0.3871767364493639,
1100
+ "learning_rate": 4.96766920816775e-05,
1101
+ "loss": 0.3129,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.10048,
1106
+ "grad_norm": 0.361665333999729,
1107
+ "learning_rate": 4.966814700080592e-05,
1108
+ "loss": 0.3175,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.10112,
1113
+ "grad_norm": 0.394466639141269,
1114
+ "learning_rate": 4.965949121835707e-05,
1115
+ "loss": 0.333,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.10176,
1120
+ "grad_norm": 0.396292343881353,
1121
+ "learning_rate": 4.965072477317493e-05,
1122
+ "loss": 0.3084,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.1024,
1127
+ "grad_norm": 0.3468981265806776,
1128
+ "learning_rate": 4.964184770460007e-05,
1129
+ "loss": 0.2927,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.10304,
1134
+ "grad_norm": 0.39865168519337385,
1135
+ "learning_rate": 4.963286005246953e-05,
1136
+ "loss": 0.2815,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.10368,
1141
+ "grad_norm": 0.37451640530098157,
1142
+ "learning_rate": 4.9623761857116594e-05,
1143
+ "loss": 0.3188,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.10432,
1148
+ "grad_norm": 0.37483826123841657,
1149
+ "learning_rate": 4.961455315937059e-05,
1150
+ "loss": 0.2813,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.10496,
1155
+ "grad_norm": 0.33130533329924106,
1156
+ "learning_rate": 4.960523400055679e-05,
1157
+ "loss": 0.2924,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.1056,
1162
+ "grad_norm": 0.3364997696428208,
1163
+ "learning_rate": 4.959580442249615e-05,
1164
+ "loss": 0.3001,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.10624,
1169
+ "grad_norm": 0.3183485250122132,
1170
+ "learning_rate": 4.958626446750515e-05,
1171
+ "loss": 0.3195,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.10688,
1176
+ "grad_norm": 0.3417933668875517,
1177
+ "learning_rate": 4.9576614178395595e-05,
1178
+ "loss": 0.2991,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.10752,
1183
+ "grad_norm": 0.3487109852934047,
1184
+ "learning_rate": 4.956685359847445e-05,
1185
+ "loss": 0.2959,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.10816,
1190
+ "grad_norm": 0.31315058374358634,
1191
+ "learning_rate": 4.95569827715436e-05,
1192
+ "loss": 0.2799,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.1088,
1197
+ "grad_norm": 0.35913320358975465,
1198
+ "learning_rate": 4.9547001741899693e-05,
1199
+ "loss": 0.297,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.10944,
1204
+ "grad_norm": 0.3331478821334656,
1205
+ "learning_rate": 4.953691055433391e-05,
1206
+ "loss": 0.2901,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.11008,
1211
+ "grad_norm": 0.39224813006559756,
1212
+ "learning_rate": 4.952670925413182e-05,
1213
+ "loss": 0.3026,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.11072,
1218
+ "grad_norm": 0.3480414792318722,
1219
+ "learning_rate": 4.951639788707307e-05,
1220
+ "loss": 0.2845,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.11136,
1225
+ "grad_norm": 0.34970614984057585,
1226
+ "learning_rate": 4.950597649943132e-05,
1227
+ "loss": 0.2775,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.112,
1232
+ "grad_norm": 0.347207358588287,
1233
+ "learning_rate": 4.9495445137973905e-05,
1234
+ "loss": 0.2923,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.11264,
1239
+ "grad_norm": 0.34884090954360897,
1240
+ "learning_rate": 4.948480384996172e-05,
1241
+ "loss": 0.2862,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.11328,
1246
+ "grad_norm": 0.32979237586574495,
1247
+ "learning_rate": 4.947405268314894e-05,
1248
+ "loss": 0.2983,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.11392,
1253
+ "grad_norm": 0.43991275496703847,
1254
+ "learning_rate": 4.9463191685782865e-05,
1255
+ "loss": 0.3068,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.11456,
1260
+ "grad_norm": 0.3039302314073942,
1261
+ "learning_rate": 4.945222090660364e-05,
1262
+ "loss": 0.2841,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.1152,
1267
+ "grad_norm": 0.38589337384034356,
1268
+ "learning_rate": 4.944114039484411e-05,
1269
+ "loss": 0.3091,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.11584,
1274
+ "grad_norm": 0.34105198100381573,
1275
+ "learning_rate": 4.942995020022954e-05,
1276
+ "loss": 0.3228,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.11648,
1281
+ "grad_norm": 0.34780611263986955,
1282
+ "learning_rate": 4.9418650372977384e-05,
1283
+ "loss": 0.2874,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.11712,
1288
+ "grad_norm": 0.32541445621708004,
1289
+ "learning_rate": 4.940724096379714e-05,
1290
+ "loss": 0.282,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.11776,
1295
+ "grad_norm": 0.3082894269244735,
1296
+ "learning_rate": 4.9395722023890035e-05,
1297
+ "loss": 0.2799,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.1184,
1302
+ "grad_norm": 0.32812745331187065,
1303
+ "learning_rate": 4.938409360494883e-05,
1304
+ "loss": 0.2827,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.11904,
1309
+ "grad_norm": 0.34755898651365463,
1310
+ "learning_rate": 4.937235575915761e-05,
1311
+ "loss": 0.2917,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.11968,
1316
+ "grad_norm": 0.3413504764617461,
1317
+ "learning_rate": 4.93605085391915e-05,
1318
+ "loss": 0.2918,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.12032,
1323
+ "grad_norm": 0.3705985820501455,
1324
+ "learning_rate": 4.934855199821647e-05,
1325
+ "loss": 0.2826,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.12096,
1330
+ "grad_norm": 0.3414000814514884,
1331
+ "learning_rate": 4.93364861898891e-05,
1332
+ "loss": 0.276,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.1216,
1337
+ "grad_norm": 0.3589734824395955,
1338
+ "learning_rate": 4.932431116835628e-05,
1339
+ "loss": 0.2959,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.12224,
1344
+ "grad_norm": 0.345670488984043,
1345
+ "learning_rate": 4.931202698825503e-05,
1346
+ "loss": 0.281,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.12288,
1351
+ "grad_norm": 0.3235692312545686,
1352
+ "learning_rate": 4.929963370471226e-05,
1353
+ "loss": 0.2886,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.12352,
1358
+ "grad_norm": 0.3034427958798936,
1359
+ "learning_rate": 4.928713137334445e-05,
1360
+ "loss": 0.2812,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.12416,
1365
+ "grad_norm": 0.34712496586477004,
1366
+ "learning_rate": 4.927452005025748e-05,
1367
+ "loss": 0.3018,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.1248,
1372
+ "grad_norm": 0.3222467927855389,
1373
+ "learning_rate": 4.926179979204633e-05,
1374
+ "loss": 0.3023,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.12544,
1379
+ "grad_norm": 0.3243348951725544,
1380
+ "learning_rate": 4.9248970655794836e-05,
1381
+ "loss": 0.2917,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.12608,
1386
+ "grad_norm": 0.3096795363251828,
1387
+ "learning_rate": 4.923603269907545e-05,
1388
+ "loss": 0.2737,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.12672,
1393
+ "grad_norm": 0.31152060487499617,
1394
+ "learning_rate": 4.922298597994897e-05,
1395
+ "loss": 0.2828,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.12736,
1400
+ "grad_norm": 0.3405465489598549,
1401
+ "learning_rate": 4.920983055696428e-05,
1402
+ "loss": 0.2927,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.128,
1407
+ "grad_norm": 0.3423946912166355,
1408
+ "learning_rate": 4.919656648915807e-05,
1409
+ "loss": 0.2835,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.12864,
1414
+ "grad_norm": 0.3464727040800733,
1415
+ "learning_rate": 4.918319383605462e-05,
1416
+ "loss": 0.2575,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.12928,
1421
+ "grad_norm": 0.3620779326329196,
1422
+ "learning_rate": 4.916971265766547e-05,
1423
+ "loss": 0.2944,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.12992,
1428
+ "grad_norm": 0.3699616777622434,
1429
+ "learning_rate": 4.915612301448919e-05,
1430
+ "loss": 0.2942,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.13056,
1435
+ "grad_norm": 0.38798124559835534,
1436
+ "learning_rate": 4.914242496751111e-05,
1437
+ "loss": 0.2882,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.1312,
1442
+ "grad_norm": 0.4306348775923099,
1443
+ "learning_rate": 4.912861857820303e-05,
1444
+ "loss": 0.3026,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.13184,
1449
+ "grad_norm": 0.37275998073469474,
1450
+ "learning_rate": 4.911470390852295e-05,
1451
+ "loss": 0.3008,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.13248,
1456
+ "grad_norm": 0.33076859723493407,
1457
+ "learning_rate": 4.91006810209148e-05,
1458
+ "loss": 0.2881,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.13312,
1463
+ "grad_norm": 0.38285708110841127,
1464
+ "learning_rate": 4.9086549978308125e-05,
1465
+ "loss": 0.299,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.13376,
1470
+ "grad_norm": 0.3130925296009032,
1471
+ "learning_rate": 4.9072310844117875e-05,
1472
+ "loss": 0.2714,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.1344,
1477
+ "grad_norm": 0.3556404363171034,
1478
+ "learning_rate": 4.9057963682244045e-05,
1479
+ "loss": 0.291,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.13504,
1484
+ "grad_norm": 0.33759319834147206,
1485
+ "learning_rate": 4.904350855707142e-05,
1486
+ "loss": 0.2868,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.13568,
1491
+ "grad_norm": 0.3171722280640699,
1492
+ "learning_rate": 4.9028945533469276e-05,
1493
+ "loss": 0.2646,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.13632,
1498
+ "grad_norm": 0.39240914087101075,
1499
+ "learning_rate": 4.9014274676791134e-05,
1500
+ "loss": 0.302,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.13696,
1505
+ "grad_norm": 0.34184628116877047,
1506
+ "learning_rate": 4.899949605287439e-05,
1507
+ "loss": 0.2792,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.1376,
1512
+ "grad_norm": 0.3700664187254164,
1513
+ "learning_rate": 4.898460972804009e-05,
1514
+ "loss": 0.3088,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.13824,
1519
+ "grad_norm": 0.36421921549881453,
1520
+ "learning_rate": 4.896961576909258e-05,
1521
+ "loss": 0.2808,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.13888,
1526
+ "grad_norm": 0.3565240796039332,
1527
+ "learning_rate": 4.895451424331924e-05,
1528
+ "loss": 0.2714,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.13952,
1533
+ "grad_norm": 0.3396297883795516,
1534
+ "learning_rate": 4.893930521849016e-05,
1535
+ "loss": 0.267,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.14016,
1540
+ "grad_norm": 0.39278607376772506,
1541
+ "learning_rate": 4.892398876285785e-05,
1542
+ "loss": 0.2896,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.1408,
1547
+ "grad_norm": 0.38437399542076783,
1548
+ "learning_rate": 4.890856494515696e-05,
1549
+ "loss": 0.2875,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.14144,
1554
+ "grad_norm": 0.37920192384172824,
1555
+ "learning_rate": 4.889303383460389e-05,
1556
+ "loss": 0.2806,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.14208,
1561
+ "grad_norm": 0.35504283495161315,
1562
+ "learning_rate": 4.887739550089656e-05,
1563
+ "loss": 0.2781,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.14272,
1568
+ "grad_norm": 0.3866107761723795,
1569
+ "learning_rate": 4.886165001421408e-05,
1570
+ "loss": 0.3091,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.14336,
1575
+ "grad_norm": 0.30439690273605985,
1576
+ "learning_rate": 4.884579744521638e-05,
1577
+ "loss": 0.2842,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.144,
1582
+ "grad_norm": 0.3551417352689114,
1583
+ "learning_rate": 4.8829837865043984e-05,
1584
+ "loss": 0.2909,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.14464,
1589
+ "grad_norm": 0.309111612445454,
1590
+ "learning_rate": 4.881377134531762e-05,
1591
+ "loss": 0.268,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.14528,
1596
+ "grad_norm": 0.3282993602648903,
1597
+ "learning_rate": 4.8797597958137914e-05,
1598
+ "loss": 0.28,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.14592,
1603
+ "grad_norm": 0.3581890513495606,
1604
+ "learning_rate": 4.878131777608509e-05,
1605
+ "loss": 0.2842,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.14656,
1610
+ "grad_norm": 0.32315603560305584,
1611
+ "learning_rate": 4.876493087221862e-05,
1612
+ "loss": 0.2961,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.1472,
1617
+ "grad_norm": 0.33067996529729515,
1618
+ "learning_rate": 4.87484373200769e-05,
1619
+ "loss": 0.2891,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.14784,
1624
+ "grad_norm": 0.3178546016599421,
1625
+ "learning_rate": 4.8731837193676944e-05,
1626
+ "loss": 0.2781,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.14848,
1631
+ "grad_norm": 0.3414289060571217,
1632
+ "learning_rate": 4.871513056751401e-05,
1633
+ "loss": 0.2983,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.14912,
1638
+ "grad_norm": 0.3420355616767074,
1639
+ "learning_rate": 4.8698317516561295e-05,
1640
+ "loss": 0.2987,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.14976,
1645
+ "grad_norm": 0.347117902288678,
1646
+ "learning_rate": 4.8681398116269596e-05,
1647
+ "loss": 0.2857,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.1504,
1652
+ "grad_norm": 0.31648517023684664,
1653
+ "learning_rate": 4.8664372442566954e-05,
1654
+ "loss": 0.2921,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.15104,
1659
+ "grad_norm": 0.3308519821164363,
1660
+ "learning_rate": 4.864724057185834e-05,
1661
+ "loss": 0.2672,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.15168,
1666
+ "grad_norm": 0.31208238851833453,
1667
+ "learning_rate": 4.86300025810253e-05,
1668
+ "loss": 0.2798,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.15232,
1673
+ "grad_norm": 0.2945629591271816,
1674
+ "learning_rate": 4.861265854742559e-05,
1675
+ "loss": 0.2732,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.15296,
1680
+ "grad_norm": 0.3383764371143183,
1681
+ "learning_rate": 4.859520854889287e-05,
1682
+ "loss": 0.2923,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.1536,
1687
+ "grad_norm": 0.2935231514068793,
1688
+ "learning_rate": 4.857765266373631e-05,
1689
+ "loss": 0.2945,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.15424,
1694
+ "grad_norm": 0.3265200869108488,
1695
+ "learning_rate": 4.855999097074027e-05,
1696
+ "loss": 0.2925,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.15488,
1701
+ "grad_norm": 0.301565323998506,
1702
+ "learning_rate": 4.8542223549163946e-05,
1703
+ "loss": 0.271,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.15552,
1708
+ "grad_norm": 0.3121729061732836,
1709
+ "learning_rate": 4.8524350478740985e-05,
1710
+ "loss": 0.266,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.15616,
1715
+ "grad_norm": 0.3612945591439241,
1716
+ "learning_rate": 4.850637183967917e-05,
1717
+ "loss": 0.2825,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.1568,
1722
+ "grad_norm": 0.32526112140366076,
1723
+ "learning_rate": 4.848828771266002e-05,
1724
+ "loss": 0.2875,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.15744,
1729
+ "grad_norm": 0.3724034080949958,
1730
+ "learning_rate": 4.847009817883844e-05,
1731
+ "loss": 0.2829,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.15808,
1736
+ "grad_norm": 0.31233652215083263,
1737
+ "learning_rate": 4.845180331984239e-05,
1738
+ "loss": 0.2713,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.15872,
1743
+ "grad_norm": 0.3480570732169317,
1744
+ "learning_rate": 4.843340321777246e-05,
1745
+ "loss": 0.2641,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.15936,
1750
+ "grad_norm": 0.320447396199795,
1751
+ "learning_rate": 4.8414897955201556e-05,
1752
+ "loss": 0.261,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.16,
1757
+ "grad_norm": 0.30011124568595027,
1758
+ "learning_rate": 4.8396287615174484e-05,
1759
+ "loss": 0.2566,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.16064,
1764
+ "grad_norm": 0.3416591207698499,
1765
+ "learning_rate": 4.837757228120762e-05,
1766
+ "loss": 0.2886,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.16128,
1771
+ "grad_norm": 0.3347844484474534,
1772
+ "learning_rate": 4.835875203728849e-05,
1773
+ "loss": 0.2546,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.16192,
1778
+ "grad_norm": 0.3805038941147735,
1779
+ "learning_rate": 4.8339826967875443e-05,
1780
+ "loss": 0.2867,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.16256,
1785
+ "grad_norm": 0.36899369410322225,
1786
+ "learning_rate": 4.832079715789724e-05,
1787
+ "loss": 0.2969,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.1632,
1792
+ "grad_norm": 0.3671046083988311,
1793
+ "learning_rate": 4.830166269275267e-05,
1794
+ "loss": 0.2903,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.16384,
1799
+ "grad_norm": 0.3268166037896424,
1800
+ "learning_rate": 4.828242365831016e-05,
1801
+ "loss": 0.2744,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.16448,
1806
+ "grad_norm": 0.38930768380996184,
1807
+ "learning_rate": 4.8263080140907455e-05,
1808
+ "loss": 0.2898,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.16512,
1813
+ "grad_norm": 0.3527164726419632,
1814
+ "learning_rate": 4.824363222735114e-05,
1815
+ "loss": 0.2751,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.16576,
1820
+ "grad_norm": 0.3831694490194351,
1821
+ "learning_rate": 4.82240800049163e-05,
1822
+ "loss": 0.2797,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.1664,
1827
+ "grad_norm": 0.39066664017067054,
1828
+ "learning_rate": 4.820442356134612e-05,
1829
+ "loss": 0.2716,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.16704,
1834
+ "grad_norm": 0.36528936400377576,
1835
+ "learning_rate": 4.8184662984851505e-05,
1836
+ "loss": 0.3001,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.16768,
1841
+ "grad_norm": 0.3720797744652676,
1842
+ "learning_rate": 4.816479836411065e-05,
1843
+ "loss": 0.2819,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.16832,
1848
+ "grad_norm": 0.4121620669424255,
1849
+ "learning_rate": 4.8144829788268674e-05,
1850
+ "loss": 0.2951,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.16896,
1855
+ "grad_norm": 0.3687003642746144,
1856
+ "learning_rate": 4.8124757346937214e-05,
1857
+ "loss": 0.2637,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.1696,
1862
+ "grad_norm": 0.3380727248902014,
1863
+ "learning_rate": 4.810458113019401e-05,
1864
+ "loss": 0.2749,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.17024,
1869
+ "grad_norm": 0.3295868074806808,
1870
+ "learning_rate": 4.8084301228582485e-05,
1871
+ "loss": 0.2579,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.17088,
1876
+ "grad_norm": 0.37764930926091167,
1877
+ "learning_rate": 4.8063917733111406e-05,
1878
+ "loss": 0.3095,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.17152,
1883
+ "grad_norm": 0.3403308904612826,
1884
+ "learning_rate": 4.8043430735254404e-05,
1885
+ "loss": 0.2806,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.17216,
1890
+ "grad_norm": 0.36741715154564875,
1891
+ "learning_rate": 4.8022840326949595e-05,
1892
+ "loss": 0.2806,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.1728,
1897
+ "grad_norm": 0.3915206701251456,
1898
+ "learning_rate": 4.800214660059916e-05,
1899
+ "loss": 0.2789,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.17344,
1904
+ "grad_norm": 0.3396593508328933,
1905
+ "learning_rate": 4.798134964906894e-05,
1906
+ "loss": 0.2865,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.17408,
1911
+ "grad_norm": 0.3711393932873003,
1912
+ "learning_rate": 4.7960449565688e-05,
1913
+ "loss": 0.263,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.17472,
1918
+ "grad_norm": 0.3481318617474482,
1919
+ "learning_rate": 4.793944644424826e-05,
1920
+ "loss": 0.285,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.17536,
1925
+ "grad_norm": 0.36766456982327766,
1926
+ "learning_rate": 4.7918340379003985e-05,
1927
+ "loss": 0.2872,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.176,
1932
+ "grad_norm": 0.3322741327391994,
1933
+ "learning_rate": 4.7897131464671444e-05,
1934
+ "loss": 0.2997,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.17664,
1939
+ "grad_norm": 0.3658059319194032,
1940
+ "learning_rate": 4.787581979642845e-05,
1941
+ "loss": 0.2557,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.17728,
1946
+ "grad_norm": 0.3273286462475089,
1947
+ "learning_rate": 4.7854405469913944e-05,
1948
+ "loss": 0.273,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.17792,
1953
+ "grad_norm": 0.3111759107193226,
1954
+ "learning_rate": 4.7832888581227545e-05,
1955
+ "loss": 0.2756,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.17856,
1960
+ "grad_norm": 0.3412050823331732,
1961
+ "learning_rate": 4.7811269226929135e-05,
1962
+ "loss": 0.2788,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.1792,
1967
+ "grad_norm": 0.34902342482932425,
1968
+ "learning_rate": 4.7789547504038443e-05,
1969
+ "loss": 0.269,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.17984,
1974
+ "grad_norm": 0.33701110337193746,
1975
+ "learning_rate": 4.776772351003458e-05,
1976
+ "loss": 0.2801,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.18048,
1981
+ "grad_norm": 0.34838767763355505,
1982
+ "learning_rate": 4.774579734285559e-05,
1983
+ "loss": 0.2872,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.18112,
1988
+ "grad_norm": 0.3268119544044272,
1989
+ "learning_rate": 4.772376910089808e-05,
1990
+ "loss": 0.2781,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.18176,
1995
+ "grad_norm": 0.3260714138226823,
1996
+ "learning_rate": 4.770163888301668e-05,
1997
+ "loss": 0.2696,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.1824,
2002
+ "grad_norm": 0.3263806440232551,
2003
+ "learning_rate": 4.7679406788523685e-05,
2004
+ "loss": 0.277,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.18304,
2009
+ "grad_norm": 0.3048596244321711,
2010
+ "learning_rate": 4.765707291718856e-05,
2011
+ "loss": 0.2748,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.18368,
2016
+ "grad_norm": 0.33173051881106563,
2017
+ "learning_rate": 4.7634637369237526e-05,
2018
+ "loss": 0.2765,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.18432,
2023
+ "grad_norm": 0.34287198001014474,
2024
+ "learning_rate": 4.7612100245353045e-05,
2025
+ "loss": 0.2865,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.18496,
2030
+ "grad_norm": 0.3273490271016689,
2031
+ "learning_rate": 4.758946164667347e-05,
2032
+ "loss": 0.2905,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.1856,
2037
+ "grad_norm": 0.3587640664765252,
2038
+ "learning_rate": 4.7566721674792515e-05,
2039
+ "loss": 0.2776,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.18624,
2044
+ "grad_norm": 0.31221104587356835,
2045
+ "learning_rate": 4.7543880431758805e-05,
2046
+ "loss": 0.2779,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.18688,
2051
+ "grad_norm": 0.30655584340609615,
2052
+ "learning_rate": 4.752093802007543e-05,
2053
+ "loss": 0.3008,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.18752,
2058
+ "grad_norm": 0.3017825263683308,
2059
+ "learning_rate": 4.7497894542699534e-05,
2060
+ "loss": 0.2607,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.18816,
2065
+ "grad_norm": 0.3262092930986735,
2066
+ "learning_rate": 4.747475010304175e-05,
2067
+ "loss": 0.2792,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.1888,
2072
+ "grad_norm": 0.2931602837859308,
2073
+ "learning_rate": 4.745150480496583e-05,
2074
+ "loss": 0.2965,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.18944,
2079
+ "grad_norm": 0.31963993149008735,
2080
+ "learning_rate": 4.742815875278811e-05,
2081
+ "loss": 0.2955,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.19008,
2086
+ "grad_norm": 0.3325849928268489,
2087
+ "learning_rate": 4.7404712051277115e-05,
2088
+ "loss": 0.2552,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.19072,
2093
+ "grad_norm": 0.34547053393459853,
2094
+ "learning_rate": 4.738116480565301e-05,
2095
+ "loss": 0.2944,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.19136,
2100
+ "grad_norm": 0.3085593082553946,
2101
+ "learning_rate": 4.7357517121587183e-05,
2102
+ "loss": 0.2778,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.192,
2107
+ "grad_norm": 0.31353055101488136,
2108
+ "learning_rate": 4.7333769105201735e-05,
2109
+ "loss": 0.2429,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.19264,
2114
+ "grad_norm": 0.31858274733561903,
2115
+ "learning_rate": 4.730992086306906e-05,
2116
+ "loss": 0.2829,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.19328,
2121
+ "grad_norm": 0.30709940331794794,
2122
+ "learning_rate": 4.728597250221129e-05,
2123
+ "loss": 0.2829,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.19392,
2128
+ "grad_norm": 0.32244914176650474,
2129
+ "learning_rate": 4.726192413009986e-05,
2130
+ "loss": 0.2951,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.19456,
2135
+ "grad_norm": 0.3227593884616251,
2136
+ "learning_rate": 4.723777585465503e-05,
2137
+ "loss": 0.2926,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.1952,
2142
+ "grad_norm": 0.3283415364290106,
2143
+ "learning_rate": 4.7213527784245395e-05,
2144
+ "loss": 0.2761,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.19584,
2149
+ "grad_norm": 0.3015938328335281,
2150
+ "learning_rate": 4.718918002768738e-05,
2151
+ "loss": 0.2762,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.19648,
2156
+ "grad_norm": 0.29949328240066386,
2157
+ "learning_rate": 4.716473269424476e-05,
2158
+ "loss": 0.2832,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.19712,
2163
+ "grad_norm": 0.3035478548839789,
2164
+ "learning_rate": 4.714018589362818e-05,
2165
+ "loss": 0.3102,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.19776,
2170
+ "grad_norm": 0.27507230052380166,
2171
+ "learning_rate": 4.7115539735994666e-05,
2172
+ "loss": 0.2732,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.1984,
2177
+ "grad_norm": 0.3311299038598881,
2178
+ "learning_rate": 4.709079433194712e-05,
2179
+ "loss": 0.2766,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.19904,
2184
+ "grad_norm": 0.37577322279526276,
2185
+ "learning_rate": 4.7065949792533804e-05,
2186
+ "loss": 0.2562,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.19968,
2191
+ "grad_norm": 0.38289115818879554,
2192
+ "learning_rate": 4.70410062292479e-05,
2193
+ "loss": 0.2932,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.20032,
2198
+ "grad_norm": 0.30727362022005966,
2199
+ "learning_rate": 4.701596375402694e-05,
2200
+ "loss": 0.2918,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.20096,
2205
+ "grad_norm": 0.5661606421554864,
2206
+ "learning_rate": 4.699082247925234e-05,
2207
+ "loss": 0.3,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.2016,
2212
+ "grad_norm": 0.3276893965611005,
2213
+ "learning_rate": 4.6965582517748923e-05,
2214
+ "loss": 0.2932,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 0.20224,
2219
+ "grad_norm": 0.3022909698773883,
2220
+ "learning_rate": 4.694024398278434e-05,
2221
+ "loss": 0.2889,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 0.20288,
2226
+ "grad_norm": 0.33933254250674033,
2227
+ "learning_rate": 4.691480698806864e-05,
2228
+ "loss": 0.3001,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 0.20352,
2233
+ "grad_norm": 0.2824673534404734,
2234
+ "learning_rate": 4.6889271647753694e-05,
2235
+ "loss": 0.2638,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 0.20416,
2240
+ "grad_norm": 0.3226521796493832,
2241
+ "learning_rate": 4.686363807643272e-05,
2242
+ "loss": 0.2565,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 0.2048,
2247
+ "grad_norm": 0.32498560490845607,
2248
+ "learning_rate": 4.683790638913979e-05,
2249
+ "loss": 0.2999,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 0.20544,
2254
+ "grad_norm": 0.3014466505484606,
2255
+ "learning_rate": 4.681207670134923e-05,
2256
+ "loss": 0.2852,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 0.20608,
2261
+ "grad_norm": 0.29666058601485484,
2262
+ "learning_rate": 4.6786149128975196e-05,
2263
+ "loss": 0.2779,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 0.20672,
2268
+ "grad_norm": 0.30132965740306905,
2269
+ "learning_rate": 4.6760123788371114e-05,
2270
+ "loss": 0.2824,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 0.20736,
2275
+ "grad_norm": 0.31127978685588065,
2276
+ "learning_rate": 4.6734000796329125e-05,
2277
+ "loss": 0.2847,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 0.208,
2282
+ "grad_norm": 0.29058258855782604,
2283
+ "learning_rate": 4.670778027007964e-05,
2284
+ "loss": 0.2971,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 0.20864,
2289
+ "grad_norm": 0.36291904279248527,
2290
+ "learning_rate": 4.6681462327290725e-05,
2291
+ "loss": 0.2675,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 0.20928,
2296
+ "grad_norm": 0.3079346495438994,
2297
+ "learning_rate": 4.6655047086067636e-05,
2298
+ "loss": 0.2788,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 0.20992,
2303
+ "grad_norm": 0.31244911680380855,
2304
+ "learning_rate": 4.662853466495229e-05,
2305
+ "loss": 0.271,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 0.21056,
2310
+ "grad_norm": 0.2892209625632523,
2311
+ "learning_rate": 4.660192518292266e-05,
2312
+ "loss": 0.27,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 0.2112,
2317
+ "grad_norm": 0.31939496738148104,
2318
+ "learning_rate": 4.6575218759392336e-05,
2319
+ "loss": 0.2698,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 0.21184,
2324
+ "grad_norm": 0.2982207659870602,
2325
+ "learning_rate": 4.654841551420993e-05,
2326
+ "loss": 0.2588,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 0.21248,
2331
+ "grad_norm": 0.3016620161751348,
2332
+ "learning_rate": 4.6521515567658557e-05,
2333
+ "loss": 0.2674,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 0.21312,
2338
+ "grad_norm": 0.33353697727099657,
2339
+ "learning_rate": 4.6494519040455275e-05,
2340
+ "loss": 0.2811,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 0.21376,
2345
+ "grad_norm": 0.2950010715216195,
2346
+ "learning_rate": 4.6467426053750596e-05,
2347
+ "loss": 0.2629,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 0.2144,
2352
+ "grad_norm": 0.3033055413044891,
2353
+ "learning_rate": 4.644023672912788e-05,
2354
+ "loss": 0.2774,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 0.21504,
2359
+ "grad_norm": 0.3008702820111445,
2360
+ "learning_rate": 4.641295118860281e-05,
2361
+ "loss": 0.2864,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 0.21568,
2366
+ "grad_norm": 0.26879685510955026,
2367
+ "learning_rate": 4.638556955462289e-05,
2368
+ "loss": 0.2597,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 0.21632,
2373
+ "grad_norm": 0.3532124447567259,
2374
+ "learning_rate": 4.635809195006681e-05,
2375
+ "loss": 0.2897,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 0.21696,
2380
+ "grad_norm": 0.31251314292012317,
2381
+ "learning_rate": 4.633051849824396e-05,
2382
+ "loss": 0.2571,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 0.2176,
2387
+ "grad_norm": 0.34552541821349914,
2388
+ "learning_rate": 4.630284932289386e-05,
2389
+ "loss": 0.2835,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 0.21824,
2394
+ "grad_norm": 0.32731628909864535,
2395
+ "learning_rate": 4.6275084548185605e-05,
2396
+ "loss": 0.2939,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 0.21888,
2401
+ "grad_norm": 0.32841586223389657,
2402
+ "learning_rate": 4.6247224298717294e-05,
2403
+ "loss": 0.2547,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 0.21952,
2408
+ "grad_norm": 0.30505092898032665,
2409
+ "learning_rate": 4.621926869951549e-05,
2410
+ "loss": 0.2452,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 0.22016,
2415
+ "grad_norm": 0.410868336628806,
2416
+ "learning_rate": 4.619121787603464e-05,
2417
+ "loss": 0.2757,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 0.2208,
2422
+ "grad_norm": 0.30578794712173124,
2423
+ "learning_rate": 4.6163071954156546e-05,
2424
+ "loss": 0.2756,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 0.22144,
2429
+ "grad_norm": 0.3180588945483863,
2430
+ "learning_rate": 4.6134831060189743e-05,
2431
+ "loss": 0.2817,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 0.22208,
2436
+ "grad_norm": 0.306137612796177,
2437
+ "learning_rate": 4.610649532086899e-05,
2438
+ "loss": 0.2727,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 0.22272,
2443
+ "grad_norm": 0.33496927815217786,
2444
+ "learning_rate": 4.607806486335468e-05,
2445
+ "loss": 0.2885,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 0.22336,
2450
+ "grad_norm": 0.3034108440418061,
2451
+ "learning_rate": 4.604953981523225e-05,
2452
+ "loss": 0.2875,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 0.224,
2457
+ "grad_norm": 0.30668021026111714,
2458
+ "learning_rate": 4.602092030451162e-05,
2459
+ "loss": 0.2695,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 0.22464,
2464
+ "grad_norm": 0.33000274101961585,
2465
+ "learning_rate": 4.599220645962665e-05,
2466
+ "loss": 0.285,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 0.22528,
2471
+ "grad_norm": 0.29230078568083745,
2472
+ "learning_rate": 4.596339840943452e-05,
2473
+ "loss": 0.2678,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 0.22592,
2478
+ "grad_norm": 0.29979922728628944,
2479
+ "learning_rate": 4.5934496283215164e-05,
2480
+ "loss": 0.2669,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 0.22656,
2485
+ "grad_norm": 0.2754120967287155,
2486
+ "learning_rate": 4.590550021067072e-05,
2487
+ "loss": 0.2573,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 0.2272,
2492
+ "grad_norm": 0.31544489465932246,
2493
+ "learning_rate": 4.587641032192488e-05,
2494
+ "loss": 0.2661,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 0.22784,
2499
+ "grad_norm": 0.3153056590013689,
2500
+ "learning_rate": 4.58472267475224e-05,
2501
+ "loss": 0.2808,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 0.22848,
2506
+ "grad_norm": 0.3283844022151439,
2507
+ "learning_rate": 4.5817949618428405e-05,
2508
+ "loss": 0.2674,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 0.22912,
2513
+ "grad_norm": 0.2988840679235592,
2514
+ "learning_rate": 4.578857906602791e-05,
2515
+ "loss": 0.267,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 0.22976,
2520
+ "grad_norm": 0.3081169219238215,
2521
+ "learning_rate": 4.575911522212516e-05,
2522
+ "loss": 0.2842,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 0.2304,
2527
+ "grad_norm": 0.26927718261630545,
2528
+ "learning_rate": 4.572955821894305e-05,
2529
+ "loss": 0.2701,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 0.23104,
2534
+ "grad_norm": 0.28195917447085084,
2535
+ "learning_rate": 4.5699908189122556e-05,
2536
+ "loss": 0.2356,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 0.23168,
2541
+ "grad_norm": 0.31290690820988126,
2542
+ "learning_rate": 4.5670165265722096e-05,
2543
+ "loss": 0.2551,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 0.23232,
2548
+ "grad_norm": 0.333293969770491,
2549
+ "learning_rate": 4.5640329582217004e-05,
2550
+ "loss": 0.2838,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 0.23296,
2555
+ "grad_norm": 0.322941638451104,
2556
+ "learning_rate": 4.5610401272498836e-05,
2557
+ "loss": 0.2544,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 0.2336,
2562
+ "grad_norm": 0.28399822125645957,
2563
+ "learning_rate": 4.558038047087486e-05,
2564
+ "loss": 0.2635,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 0.23424,
2569
+ "grad_norm": 0.295506533919543,
2570
+ "learning_rate": 4.555026731206741e-05,
2571
+ "loss": 0.2482,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 0.23488,
2576
+ "grad_norm": 0.28684742571759847,
2577
+ "learning_rate": 4.5520061931213255e-05,
2578
+ "loss": 0.2789,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 0.23552,
2583
+ "grad_norm": 0.2736033024469486,
2584
+ "learning_rate": 4.548976446386305e-05,
2585
+ "loss": 0.2725,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 0.23616,
2590
+ "grad_norm": 0.2893642157562684,
2591
+ "learning_rate": 4.545937504598069e-05,
2592
+ "loss": 0.2716,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 0.2368,
2597
+ "grad_norm": 0.27790560741339493,
2598
+ "learning_rate": 4.5428893813942727e-05,
2599
+ "loss": 0.2683,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 0.23744,
2604
+ "grad_norm": 0.26374492858298765,
2605
+ "learning_rate": 4.539832090453771e-05,
2606
+ "loss": 0.2652,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 0.23808,
2611
+ "grad_norm": 0.317165806439944,
2612
+ "learning_rate": 4.536765645496564e-05,
2613
+ "loss": 0.2614,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 0.23872,
2618
+ "grad_norm": 0.2832889981603846,
2619
+ "learning_rate": 4.533690060283727e-05,
2620
+ "loss": 0.2655,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 0.23936,
2625
+ "grad_norm": 0.2835605762763791,
2626
+ "learning_rate": 4.530605348617357e-05,
2627
+ "loss": 0.2742,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 0.24,
2632
+ "grad_norm": 0.30420408773631924,
2633
+ "learning_rate": 4.527511524340508e-05,
2634
+ "loss": 0.2644,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 0.24064,
2639
+ "grad_norm": 0.2969985444201941,
2640
+ "learning_rate": 4.5244086013371246e-05,
2641
+ "loss": 0.2638,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 0.24128,
2646
+ "grad_norm": 0.29308018866051944,
2647
+ "learning_rate": 4.521296593531985e-05,
2648
+ "loss": 0.2611,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 0.24192,
2653
+ "grad_norm": 0.2643945857889153,
2654
+ "learning_rate": 4.518175514890636e-05,
2655
+ "loss": 0.265,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 0.24256,
2660
+ "grad_norm": 0.32678388186327273,
2661
+ "learning_rate": 4.515045379419332e-05,
2662
+ "loss": 0.279,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 0.2432,
2667
+ "grad_norm": 0.2804538570907157,
2668
+ "learning_rate": 4.5119062011649714e-05,
2669
+ "loss": 0.2734,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 0.24384,
2674
+ "grad_norm": 0.3334812457840943,
2675
+ "learning_rate": 4.508757994215031e-05,
2676
+ "loss": 0.2811,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 0.24448,
2681
+ "grad_norm": 0.34946434978677615,
2682
+ "learning_rate": 4.505600772697507e-05,
2683
+ "loss": 0.2775,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 0.24512,
2688
+ "grad_norm": 0.3199621771747357,
2689
+ "learning_rate": 4.5024345507808495e-05,
2690
+ "loss": 0.2654,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 0.24576,
2695
+ "grad_norm": 0.31901998740646675,
2696
+ "learning_rate": 4.499259342673898e-05,
2697
+ "loss": 0.2764,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 0.2464,
2702
+ "grad_norm": 0.29597971799372186,
2703
+ "learning_rate": 4.4960751626258205e-05,
2704
+ "loss": 0.263,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 0.24704,
2709
+ "grad_norm": 0.3404264921907249,
2710
+ "learning_rate": 4.492882024926046e-05,
2711
+ "loss": 0.2724,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 0.24768,
2716
+ "grad_norm": 0.3139861943992207,
2717
+ "learning_rate": 4.489679943904203e-05,
2718
+ "loss": 0.2926,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 0.24832,
2723
+ "grad_norm": 0.2916841972443679,
2724
+ "learning_rate": 4.486468933930055e-05,
2725
+ "loss": 0.2799,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 0.24896,
2730
+ "grad_norm": 0.31153621464751174,
2731
+ "learning_rate": 4.483249009413433e-05,
2732
+ "loss": 0.2586,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 0.2496,
2737
+ "grad_norm": 0.3093059584707331,
2738
+ "learning_rate": 4.4800201848041765e-05,
2739
+ "loss": 0.2882,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 0.25024,
2744
+ "grad_norm": 0.3136725266830641,
2745
+ "learning_rate": 4.476782474592062e-05,
2746
+ "loss": 0.2624,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 0.25088,
2751
+ "grad_norm": 0.29406434454627556,
2752
+ "learning_rate": 4.473535893306744e-05,
2753
+ "loss": 0.2688,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 0.25152,
2758
+ "grad_norm": 0.2875071393783711,
2759
+ "learning_rate": 4.470280455517687e-05,
2760
+ "loss": 0.2611,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 0.25216,
2765
+ "grad_norm": 0.32671818220693416,
2766
+ "learning_rate": 4.4670161758340966e-05,
2767
+ "loss": 0.2726,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 0.2528,
2772
+ "grad_norm": 0.325381652042734,
2773
+ "learning_rate": 4.4637430689048634e-05,
2774
+ "loss": 0.2594,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 0.25344,
2779
+ "grad_norm": 0.3191566413040394,
2780
+ "learning_rate": 4.460461149418486e-05,
2781
+ "loss": 0.2553,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 0.25408,
2786
+ "grad_norm": 0.33203616250805296,
2787
+ "learning_rate": 4.4571704321030125e-05,
2788
+ "loss": 0.2898,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 0.25472,
2793
+ "grad_norm": 0.32044203951382094,
2794
+ "learning_rate": 4.4538709317259754e-05,
2795
+ "loss": 0.2471,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 0.25536,
2800
+ "grad_norm": 0.5990730119683106,
2801
+ "learning_rate": 4.4505626630943174e-05,
2802
+ "loss": 0.2879,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 0.256,
2807
+ "grad_norm": 0.3623407001600211,
2808
+ "learning_rate": 4.447245641054334e-05,
2809
+ "loss": 0.2729,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 0.25664,
2814
+ "grad_norm": 0.3038880359459755,
2815
+ "learning_rate": 4.443919880491598e-05,
2816
+ "loss": 0.2531,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 0.25728,
2821
+ "grad_norm": 0.2900829076508625,
2822
+ "learning_rate": 4.440585396330904e-05,
2823
+ "loss": 0.268,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 0.25792,
2828
+ "grad_norm": 0.31975046352986625,
2829
+ "learning_rate": 4.437242203536189e-05,
2830
+ "loss": 0.2714,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 0.25856,
2835
+ "grad_norm": 0.31641840526539994,
2836
+ "learning_rate": 4.433890317110475e-05,
2837
+ "loss": 0.2834,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 0.2592,
2842
+ "grad_norm": 0.2921767184505357,
2843
+ "learning_rate": 4.430529752095795e-05,
2844
+ "loss": 0.2701,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 0.25984,
2849
+ "grad_norm": 0.2808718335043851,
2850
+ "learning_rate": 4.427160523573131e-05,
2851
+ "loss": 0.279,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 0.26048,
2856
+ "grad_norm": 0.3016336985564651,
2857
+ "learning_rate": 4.4237826466623406e-05,
2858
+ "loss": 0.2873,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 0.26112,
2863
+ "grad_norm": 0.31431578482180944,
2864
+ "learning_rate": 4.420396136522095e-05,
2865
+ "loss": 0.2727,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 0.26176,
2870
+ "grad_norm": 0.27780637237792005,
2871
+ "learning_rate": 4.417001008349807e-05,
2872
+ "loss": 0.2579,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 0.2624,
2877
+ "grad_norm": 0.32993357310014576,
2878
+ "learning_rate": 4.413597277381564e-05,
2879
+ "loss": 0.2698,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 0.26304,
2884
+ "grad_norm": 0.2801299554162777,
2885
+ "learning_rate": 4.410184958892059e-05,
2886
+ "loss": 0.2651,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 0.26368,
2891
+ "grad_norm": 0.29257626461413505,
2892
+ "learning_rate": 4.4067640681945244e-05,
2893
+ "loss": 0.2626,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 0.26432,
2898
+ "grad_norm": 0.3357411211678043,
2899
+ "learning_rate": 4.403334620640659e-05,
2900
+ "loss": 0.2605,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 0.26496,
2905
+ "grad_norm": 0.30154707776244105,
2906
+ "learning_rate": 4.3998966316205636e-05,
2907
+ "loss": 0.2534,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 0.2656,
2912
+ "grad_norm": 0.25345682609356646,
2913
+ "learning_rate": 4.396450116562669e-05,
2914
+ "loss": 0.2444,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 0.26624,
2919
+ "grad_norm": 0.2721282547677732,
2920
+ "learning_rate": 4.392995090933669e-05,
2921
+ "loss": 0.2517,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 0.26688,
2926
+ "grad_norm": 0.28639350362828037,
2927
+ "learning_rate": 4.389531570238448e-05,
2928
+ "loss": 0.2416,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 0.26752,
2933
+ "grad_norm": 0.3414448358787958,
2934
+ "learning_rate": 4.386059570020015e-05,
2935
+ "loss": 0.277,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 0.26816,
2940
+ "grad_norm": 0.26641259434816816,
2941
+ "learning_rate": 4.382579105859428e-05,
2942
+ "loss": 0.2737,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 0.2688,
2947
+ "grad_norm": 0.3117899630025732,
2948
+ "learning_rate": 4.379090193375735e-05,
2949
+ "loss": 0.2684,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 0.26944,
2954
+ "grad_norm": 0.29638243573776074,
2955
+ "learning_rate": 4.375592848225889e-05,
2956
+ "loss": 0.2499,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 0.27008,
2961
+ "grad_norm": 0.28547284987584026,
2962
+ "learning_rate": 4.372087086104692e-05,
2963
+ "loss": 0.2767,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 0.27072,
2968
+ "grad_norm": 0.2997096365805738,
2969
+ "learning_rate": 4.368572922744715e-05,
2970
+ "loss": 0.2703,
2971
+ "step": 423
2972
+ },
2973
+ {
2974
+ "epoch": 0.27136,
2975
+ "grad_norm": 0.30017436052612945,
2976
+ "learning_rate": 4.365050373916233e-05,
2977
+ "loss": 0.2753,
2978
+ "step": 424
2979
+ },
2980
+ {
2981
+ "epoch": 0.272,
2982
+ "grad_norm": 0.29858890262572624,
2983
+ "learning_rate": 4.3615194554271485e-05,
2984
+ "loss": 0.2337,
2985
+ "step": 425
2986
+ },
2987
+ {
2988
+ "epoch": 0.27264,
2989
+ "grad_norm": 0.29100268820291153,
2990
+ "learning_rate": 4.357980183122927e-05,
2991
+ "loss": 0.2722,
2992
+ "step": 426
2993
+ },
2994
+ {
2995
+ "epoch": 0.27328,
2996
+ "grad_norm": 0.3031136982843706,
2997
+ "learning_rate": 4.354432572886522e-05,
2998
+ "loss": 0.2705,
2999
+ "step": 427
3000
+ },
3001
+ {
3002
+ "epoch": 0.27392,
3003
+ "grad_norm": 0.27735280662106965,
3004
+ "learning_rate": 4.3508766406383036e-05,
3005
+ "loss": 0.2773,
3006
+ "step": 428
3007
+ },
3008
+ {
3009
+ "epoch": 0.27456,
3010
+ "grad_norm": 0.287598645255541,
3011
+ "learning_rate": 4.347312402335989e-05,
3012
+ "loss": 0.2683,
3013
+ "step": 429
3014
+ },
3015
+ {
3016
+ "epoch": 0.2752,
3017
+ "grad_norm": 0.29025080310739393,
3018
+ "learning_rate": 4.34373987397457e-05,
3019
+ "loss": 0.2775,
3020
+ "step": 430
3021
+ },
3022
+ {
3023
+ "epoch": 0.27584,
3024
+ "grad_norm": 0.27374139232520084,
3025
+ "learning_rate": 4.340159071586241e-05,
3026
+ "loss": 0.2447,
3027
+ "step": 431
3028
+ },
3029
+ {
3030
+ "epoch": 0.27648,
3031
+ "grad_norm": 0.30499106877780574,
3032
+ "learning_rate": 4.336570011240326e-05,
3033
+ "loss": 0.245,
3034
+ "step": 432
3035
+ },
3036
+ {
3037
+ "epoch": 0.27712,
3038
+ "grad_norm": 0.2789830538820019,
3039
+ "learning_rate": 4.33297270904321e-05,
3040
+ "loss": 0.2667,
3041
+ "step": 433
3042
+ },
3043
+ {
3044
+ "epoch": 0.27776,
3045
+ "grad_norm": 0.27918341247404516,
3046
+ "learning_rate": 4.329367181138262e-05,
3047
+ "loss": 0.2756,
3048
+ "step": 434
3049
+ },
3050
+ {
3051
+ "epoch": 0.2784,
3052
+ "grad_norm": 0.29003519846284037,
3053
+ "learning_rate": 4.3257534437057674e-05,
3054
+ "loss": 0.2567,
3055
+ "step": 435
3056
+ },
3057
+ {
3058
+ "epoch": 0.27904,
3059
+ "grad_norm": 0.28216675485922665,
3060
+ "learning_rate": 4.3221315129628506e-05,
3061
+ "loss": 0.2481,
3062
+ "step": 436
3063
+ },
3064
+ {
3065
+ "epoch": 0.27968,
3066
+ "grad_norm": 0.30220665750339526,
3067
+ "learning_rate": 4.318501405163406e-05,
3068
+ "loss": 0.2616,
3069
+ "step": 437
3070
+ },
3071
+ {
3072
+ "epoch": 0.28032,
3073
+ "grad_norm": 0.2634822858500782,
3074
+ "learning_rate": 4.314863136598022e-05,
3075
+ "loss": 0.2462,
3076
+ "step": 438
3077
+ },
3078
+ {
3079
+ "epoch": 0.28096,
3080
+ "grad_norm": 0.3161113446906667,
3081
+ "learning_rate": 4.311216723593913e-05,
3082
+ "loss": 0.286,
3083
+ "step": 439
3084
+ },
3085
+ {
3086
+ "epoch": 0.2816,
3087
+ "grad_norm": 0.3222940745311678,
3088
+ "learning_rate": 4.307562182514838e-05,
3089
+ "loss": 0.2609,
3090
+ "step": 440
3091
+ },
3092
+ {
3093
+ "epoch": 0.28224,
3094
+ "grad_norm": 0.3187572190375552,
3095
+ "learning_rate": 4.3038995297610364e-05,
3096
+ "loss": 0.2478,
3097
+ "step": 441
3098
+ },
3099
+ {
3100
+ "epoch": 0.28288,
3101
+ "grad_norm": 0.2928301432408682,
3102
+ "learning_rate": 4.3002287817691466e-05,
3103
+ "loss": 0.2855,
3104
+ "step": 442
3105
+ },
3106
+ {
3107
+ "epoch": 0.28352,
3108
+ "grad_norm": 0.32965679351152233,
3109
+ "learning_rate": 4.2965499550121354e-05,
3110
+ "loss": 0.2682,
3111
+ "step": 443
3112
+ },
3113
+ {
3114
+ "epoch": 0.28416,
3115
+ "grad_norm": 0.3349054379926969,
3116
+ "learning_rate": 4.2928630659992267e-05,
3117
+ "loss": 0.2708,
3118
+ "step": 444
3119
+ },
3120
+ {
3121
+ "epoch": 0.2848,
3122
+ "grad_norm": 0.3409906128958908,
3123
+ "learning_rate": 4.2891681312758225e-05,
3124
+ "loss": 0.2589,
3125
+ "step": 445
3126
+ },
3127
+ {
3128
+ "epoch": 0.28544,
3129
+ "grad_norm": 0.29301815221408106,
3130
+ "learning_rate": 4.285465167423432e-05,
3131
+ "loss": 0.2712,
3132
+ "step": 446
3133
+ },
3134
+ {
3135
+ "epoch": 0.28608,
3136
+ "grad_norm": 0.3151776631679768,
3137
+ "learning_rate": 4.281754191059596e-05,
3138
+ "loss": 0.2609,
3139
+ "step": 447
3140
+ },
3141
+ {
3142
+ "epoch": 0.28672,
3143
+ "grad_norm": 0.3210236670212237,
3144
+ "learning_rate": 4.278035218837813e-05,
3145
+ "loss": 0.2877,
3146
+ "step": 448
3147
+ },
3148
+ {
3149
+ "epoch": 0.28736,
3150
+ "grad_norm": 0.32717066085861096,
3151
+ "learning_rate": 4.274308267447463e-05,
3152
+ "loss": 0.2511,
3153
+ "step": 449
3154
+ },
3155
+ {
3156
+ "epoch": 0.288,
3157
+ "grad_norm": 0.30041723762252004,
3158
+ "learning_rate": 4.270573353613734e-05,
3159
+ "loss": 0.2697,
3160
+ "step": 450
3161
+ },
3162
+ {
3163
+ "epoch": 0.28864,
3164
+ "grad_norm": 0.2806245348619511,
3165
+ "learning_rate": 4.266830494097546e-05,
3166
+ "loss": 0.2535,
3167
+ "step": 451
3168
+ },
3169
+ {
3170
+ "epoch": 0.28928,
3171
+ "grad_norm": 0.30866632722556286,
3172
+ "learning_rate": 4.263079705695478e-05,
3173
+ "loss": 0.2627,
3174
+ "step": 452
3175
+ },
3176
+ {
3177
+ "epoch": 0.28992,
3178
+ "grad_norm": 0.3481734862540506,
3179
+ "learning_rate": 4.2593210052396894e-05,
3180
+ "loss": 0.2529,
3181
+ "step": 453
3182
+ },
3183
+ {
3184
+ "epoch": 0.29056,
3185
+ "grad_norm": 0.3002149800768276,
3186
+ "learning_rate": 4.255554409597846e-05,
3187
+ "loss": 0.2446,
3188
+ "step": 454
3189
+ },
3190
+ {
3191
+ "epoch": 0.2912,
3192
+ "grad_norm": 0.33721972074704143,
3193
+ "learning_rate": 4.2517799356730445e-05,
3194
+ "loss": 0.2682,
3195
+ "step": 455
3196
+ },
3197
+ {
3198
+ "epoch": 0.29184,
3199
+ "grad_norm": 0.29436884923501094,
3200
+ "learning_rate": 4.247997600403737e-05,
3201
+ "loss": 0.2582,
3202
+ "step": 456
3203
+ },
3204
+ {
3205
+ "epoch": 0.29248,
3206
+ "grad_norm": 0.2967220259575209,
3207
+ "learning_rate": 4.244207420763655e-05,
3208
+ "loss": 0.2494,
3209
+ "step": 457
3210
+ },
3211
+ {
3212
+ "epoch": 0.29312,
3213
+ "grad_norm": 0.2705548005196565,
3214
+ "learning_rate": 4.240409413761731e-05,
3215
+ "loss": 0.2545,
3216
+ "step": 458
3217
+ },
3218
+ {
3219
+ "epoch": 0.29376,
3220
+ "grad_norm": 0.3046845043984032,
3221
+ "learning_rate": 4.236603596442023e-05,
3222
+ "loss": 0.2623,
3223
+ "step": 459
3224
+ },
3225
+ {
3226
+ "epoch": 0.2944,
3227
+ "grad_norm": 0.293075805394358,
3228
+ "learning_rate": 4.232789985883642e-05,
3229
+ "loss": 0.2692,
3230
+ "step": 460
3231
+ },
3232
+ {
3233
+ "epoch": 0.29504,
3234
+ "grad_norm": 0.2934980535483767,
3235
+ "learning_rate": 4.2289685992006704e-05,
3236
+ "loss": 0.2768,
3237
+ "step": 461
3238
+ },
3239
+ {
3240
+ "epoch": 0.29568,
3241
+ "grad_norm": 0.3000713141045476,
3242
+ "learning_rate": 4.225139453542087e-05,
3243
+ "loss": 0.2605,
3244
+ "step": 462
3245
+ },
3246
+ {
3247
+ "epoch": 0.29632,
3248
+ "grad_norm": 0.2930768123609869,
3249
+ "learning_rate": 4.2213025660916904e-05,
3250
+ "loss": 0.2661,
3251
+ "step": 463
3252
+ },
3253
+ {
3254
+ "epoch": 0.29696,
3255
+ "grad_norm": 0.3178121108720456,
3256
+ "learning_rate": 4.21745795406802e-05,
3257
+ "loss": 0.2461,
3258
+ "step": 464
3259
+ },
3260
+ {
3261
+ "epoch": 0.2976,
3262
+ "grad_norm": 0.26800811778086625,
3263
+ "learning_rate": 4.2136056347242835e-05,
3264
+ "loss": 0.2494,
3265
+ "step": 465
3266
+ },
3267
+ {
3268
+ "epoch": 0.29824,
3269
+ "grad_norm": 0.3137325849551812,
3270
+ "learning_rate": 4.209745625348273e-05,
3271
+ "loss": 0.2839,
3272
+ "step": 466
3273
+ },
3274
+ {
3275
+ "epoch": 0.29888,
3276
+ "grad_norm": 0.32102282561988843,
3277
+ "learning_rate": 4.205877943262291e-05,
3278
+ "loss": 0.2452,
3279
+ "step": 467
3280
+ },
3281
+ {
3282
+ "epoch": 0.29952,
3283
+ "grad_norm": 0.26576307125167287,
3284
+ "learning_rate": 4.2020026058230756e-05,
3285
+ "loss": 0.2675,
3286
+ "step": 468
3287
+ },
3288
+ {
3289
+ "epoch": 0.30016,
3290
+ "grad_norm": 0.3003922078840633,
3291
+ "learning_rate": 4.1981196304217154e-05,
3292
+ "loss": 0.2625,
3293
+ "step": 469
3294
+ },
3295
+ {
3296
+ "epoch": 0.3008,
3297
+ "grad_norm": 0.2929467586131004,
3298
+ "learning_rate": 4.1942290344835765e-05,
3299
+ "loss": 0.2635,
3300
+ "step": 470
3301
+ },
3302
+ {
3303
+ "epoch": 0.30144,
3304
+ "grad_norm": 0.28946698136298926,
3305
+ "learning_rate": 4.190330835468224e-05,
3306
+ "loss": 0.2666,
3307
+ "step": 471
3308
+ },
3309
+ {
3310
+ "epoch": 0.30208,
3311
+ "grad_norm": 0.3054605229887845,
3312
+ "learning_rate": 4.1864250508693424e-05,
3313
+ "loss": 0.2782,
3314
+ "step": 472
3315
+ },
3316
+ {
3317
+ "epoch": 0.30272,
3318
+ "grad_norm": 0.30853302514826486,
3319
+ "learning_rate": 4.182511698214657e-05,
3320
+ "loss": 0.271,
3321
+ "step": 473
3322
+ },
3323
+ {
3324
+ "epoch": 0.30336,
3325
+ "grad_norm": 0.28096000312894664,
3326
+ "learning_rate": 4.1785907950658573e-05,
3327
+ "loss": 0.2585,
3328
+ "step": 474
3329
+ },
3330
+ {
3331
+ "epoch": 0.304,
3332
+ "grad_norm": 0.3125936908697687,
3333
+ "learning_rate": 4.1746623590185155e-05,
3334
+ "loss": 0.2524,
3335
+ "step": 475
3336
+ },
3337
+ {
3338
+ "epoch": 0.30464,
3339
+ "grad_norm": 0.29712867964294787,
3340
+ "learning_rate": 4.170726407702008e-05,
3341
+ "loss": 0.2461,
3342
+ "step": 476
3343
+ },
3344
+ {
3345
+ "epoch": 0.30528,
3346
+ "grad_norm": 0.32449012009401823,
3347
+ "learning_rate": 4.1667829587794374e-05,
3348
+ "loss": 0.2822,
3349
+ "step": 477
3350
+ },
3351
+ {
3352
+ "epoch": 0.30592,
3353
+ "grad_norm": 0.3218131224973865,
3354
+ "learning_rate": 4.162832029947553e-05,
3355
+ "loss": 0.2725,
3356
+ "step": 478
3357
+ },
3358
+ {
3359
+ "epoch": 0.30656,
3360
+ "grad_norm": 0.2804231247197045,
3361
+ "learning_rate": 4.158873638936672e-05,
3362
+ "loss": 0.2471,
3363
+ "step": 479
3364
+ },
3365
+ {
3366
+ "epoch": 0.3072,
3367
+ "grad_norm": 0.31284785097448237,
3368
+ "learning_rate": 4.154907803510599e-05,
3369
+ "loss": 0.252,
3370
+ "step": 480
3371
+ },
3372
+ {
3373
+ "epoch": 0.30784,
3374
+ "grad_norm": 0.2994921809896846,
3375
+ "learning_rate": 4.150934541466545e-05,
3376
+ "loss": 0.2614,
3377
+ "step": 481
3378
+ },
3379
+ {
3380
+ "epoch": 0.30848,
3381
+ "grad_norm": 0.296657249343442,
3382
+ "learning_rate": 4.146953870635049e-05,
3383
+ "loss": 0.2722,
3384
+ "step": 482
3385
+ },
3386
+ {
3387
+ "epoch": 0.30912,
3388
+ "grad_norm": 0.28293479502038055,
3389
+ "learning_rate": 4.1429658088798996e-05,
3390
+ "loss": 0.2634,
3391
+ "step": 483
3392
+ },
3393
+ {
3394
+ "epoch": 0.30976,
3395
+ "grad_norm": 0.2910484344542188,
3396
+ "learning_rate": 4.138970374098052e-05,
3397
+ "loss": 0.2486,
3398
+ "step": 484
3399
+ },
3400
+ {
3401
+ "epoch": 0.3104,
3402
+ "grad_norm": 0.3146840001735881,
3403
+ "learning_rate": 4.1349675842195494e-05,
3404
+ "loss": 0.2661,
3405
+ "step": 485
3406
+ },
3407
+ {
3408
+ "epoch": 0.31104,
3409
+ "grad_norm": 0.2746027576599675,
3410
+ "learning_rate": 4.130957457207441e-05,
3411
+ "loss": 0.2501,
3412
+ "step": 486
3413
+ },
3414
+ {
3415
+ "epoch": 0.31168,
3416
+ "grad_norm": 0.3051892164851984,
3417
+ "learning_rate": 4.126940011057703e-05,
3418
+ "loss": 0.2404,
3419
+ "step": 487
3420
+ },
3421
+ {
3422
+ "epoch": 0.31232,
3423
+ "grad_norm": 0.30592656911462335,
3424
+ "learning_rate": 4.1229152637991576e-05,
3425
+ "loss": 0.2673,
3426
+ "step": 488
3427
+ },
3428
+ {
3429
+ "epoch": 0.31296,
3430
+ "grad_norm": 0.31633018710097294,
3431
+ "learning_rate": 4.1188832334933906e-05,
3432
+ "loss": 0.2475,
3433
+ "step": 489
3434
+ },
3435
+ {
3436
+ "epoch": 0.3136,
3437
+ "grad_norm": 0.274585788639711,
3438
+ "learning_rate": 4.114843938234673e-05,
3439
+ "loss": 0.2753,
3440
+ "step": 490
3441
+ },
3442
+ {
3443
+ "epoch": 0.31424,
3444
+ "grad_norm": 0.3287109219068746,
3445
+ "learning_rate": 4.1107973961498763e-05,
3446
+ "loss": 0.2582,
3447
+ "step": 491
3448
+ },
3449
+ {
3450
+ "epoch": 0.31488,
3451
+ "grad_norm": 0.3167546562615222,
3452
+ "learning_rate": 4.106743625398395e-05,
3453
+ "loss": 0.2662,
3454
+ "step": 492
3455
+ },
3456
+ {
3457
+ "epoch": 0.31552,
3458
+ "grad_norm": 0.32410088907898493,
3459
+ "learning_rate": 4.102682644172061e-05,
3460
+ "loss": 0.2869,
3461
+ "step": 493
3462
+ },
3463
+ {
3464
+ "epoch": 0.31616,
3465
+ "grad_norm": 0.3355149408031651,
3466
+ "learning_rate": 4.0986144706950677e-05,
3467
+ "loss": 0.2746,
3468
+ "step": 494
3469
+ },
3470
+ {
3471
+ "epoch": 0.3168,
3472
+ "grad_norm": 0.3074689123409369,
3473
+ "learning_rate": 4.094539123223881e-05,
3474
+ "loss": 0.2433,
3475
+ "step": 495
3476
+ },
3477
+ {
3478
+ "epoch": 0.31744,
3479
+ "grad_norm": 0.29842413604098983,
3480
+ "learning_rate": 4.090456620047162e-05,
3481
+ "loss": 0.2435,
3482
+ "step": 496
3483
+ },
3484
+ {
3485
+ "epoch": 0.31808,
3486
+ "grad_norm": 0.3414546216468358,
3487
+ "learning_rate": 4.086366979485685e-05,
3488
+ "loss": 0.2796,
3489
+ "step": 497
3490
+ },
3491
+ {
3492
+ "epoch": 0.31872,
3493
+ "grad_norm": 0.3150858918248773,
3494
+ "learning_rate": 4.082270219892254e-05,
3495
+ "loss": 0.2633,
3496
+ "step": 498
3497
+ },
3498
+ {
3499
+ "epoch": 0.31936,
3500
+ "grad_norm": 0.2786327977030963,
3501
+ "learning_rate": 4.0781663596516206e-05,
3502
+ "loss": 0.2419,
3503
+ "step": 499
3504
+ },
3505
+ {
3506
+ "epoch": 0.32,
3507
+ "grad_norm": 0.29092976216281774,
3508
+ "learning_rate": 4.074055417180401e-05,
3509
+ "loss": 0.2697,
3510
+ "step": 500
3511
+ },
3512
+ {
3513
+ "epoch": 0.32064,
3514
+ "grad_norm": 0.32610697106570463,
3515
+ "learning_rate": 4.069937410926994e-05,
3516
+ "loss": 0.2537,
3517
+ "step": 501
3518
+ },
3519
+ {
3520
+ "epoch": 0.32128,
3521
+ "grad_norm": 0.30608850743455823,
3522
+ "learning_rate": 4.0658123593714984e-05,
3523
+ "loss": 0.264,
3524
+ "step": 502
3525
+ },
3526
+ {
3527
+ "epoch": 0.32192,
3528
+ "grad_norm": 0.2824318843825735,
3529
+ "learning_rate": 4.061680281025628e-05,
3530
+ "loss": 0.2474,
3531
+ "step": 503
3532
+ },
3533
+ {
3534
+ "epoch": 0.32256,
3535
+ "grad_norm": 0.29399230400886783,
3536
+ "learning_rate": 4.057541194432634e-05,
3537
+ "loss": 0.2413,
3538
+ "step": 504
3539
+ },
3540
+ {
3541
+ "epoch": 0.3232,
3542
+ "grad_norm": 0.6605989874825366,
3543
+ "learning_rate": 4.053395118167214e-05,
3544
+ "loss": 0.2581,
3545
+ "step": 505
3546
+ },
3547
+ {
3548
+ "epoch": 0.32384,
3549
+ "grad_norm": 0.30398550676295183,
3550
+ "learning_rate": 4.049242070835435e-05,
3551
+ "loss": 0.2864,
3552
+ "step": 506
3553
+ },
3554
+ {
3555
+ "epoch": 0.32448,
3556
+ "grad_norm": 0.32844118327083244,
3557
+ "learning_rate": 4.0450820710746475e-05,
3558
+ "loss": 0.2595,
3559
+ "step": 507
3560
+ },
3561
+ {
3562
+ "epoch": 0.32512,
3563
+ "grad_norm": 0.29753850766246936,
3564
+ "learning_rate": 4.0409151375534014e-05,
3565
+ "loss": 0.2627,
3566
+ "step": 508
3567
+ },
3568
+ {
3569
+ "epoch": 0.32576,
3570
+ "grad_norm": 0.32997195633690085,
3571
+ "learning_rate": 4.036741288971362e-05,
3572
+ "loss": 0.2552,
3573
+ "step": 509
3574
+ },
3575
+ {
3576
+ "epoch": 0.3264,
3577
+ "grad_norm": 0.31989725360404464,
3578
+ "learning_rate": 4.032560544059228e-05,
3579
+ "loss": 0.2543,
3580
+ "step": 510
3581
+ },
3582
+ {
3583
+ "epoch": 0.32704,
3584
+ "grad_norm": 0.2734053342728525,
3585
+ "learning_rate": 4.028372921578647e-05,
3586
+ "loss": 0.2636,
3587
+ "step": 511
3588
+ },
3589
+ {
3590
+ "epoch": 0.32768,
3591
+ "grad_norm": 0.3076390699096864,
3592
+ "learning_rate": 4.024178440322128e-05,
3593
+ "loss": 0.251,
3594
+ "step": 512
3595
+ },
3596
+ {
3597
+ "epoch": 0.32832,
3598
+ "grad_norm": 0.27589462055645664,
3599
+ "learning_rate": 4.019977119112962e-05,
3600
+ "loss": 0.2599,
3601
+ "step": 513
3602
+ },
3603
+ {
3604
+ "epoch": 0.32896,
3605
+ "grad_norm": 0.3152240440071727,
3606
+ "learning_rate": 4.015768976805135e-05,
3607
+ "loss": 0.303,
3608
+ "step": 514
3609
+ },
3610
+ {
3611
+ "epoch": 0.3296,
3612
+ "grad_norm": 0.30486982512783595,
3613
+ "learning_rate": 4.011554032283242e-05,
3614
+ "loss": 0.2339,
3615
+ "step": 515
3616
+ },
3617
+ {
3618
+ "epoch": 0.33024,
3619
+ "grad_norm": 0.334048138143333,
3620
+ "learning_rate": 4.007332304462406e-05,
3621
+ "loss": 0.2494,
3622
+ "step": 516
3623
+ },
3624
+ {
3625
+ "epoch": 0.33088,
3626
+ "grad_norm": 0.2995442580330488,
3627
+ "learning_rate": 4.003103812288189e-05,
3628
+ "loss": 0.267,
3629
+ "step": 517
3630
+ },
3631
+ {
3632
+ "epoch": 0.33152,
3633
+ "grad_norm": 0.2706177023809212,
3634
+ "learning_rate": 3.99886857473651e-05,
3635
+ "loss": 0.2523,
3636
+ "step": 518
3637
+ },
3638
+ {
3639
+ "epoch": 0.33216,
3640
+ "grad_norm": 0.3532067575064781,
3641
+ "learning_rate": 3.9946266108135575e-05,
3642
+ "loss": 0.2767,
3643
+ "step": 519
3644
+ },
3645
+ {
3646
+ "epoch": 0.3328,
3647
+ "grad_norm": 0.3067722195105639,
3648
+ "learning_rate": 3.9903779395557087e-05,
3649
+ "loss": 0.2606,
3650
+ "step": 520
3651
+ },
3652
+ {
3653
+ "epoch": 0.33344,
3654
+ "grad_norm": 0.26860794555811235,
3655
+ "learning_rate": 3.9861225800294366e-05,
3656
+ "loss": 0.2295,
3657
+ "step": 521
3658
+ },
3659
+ {
3660
+ "epoch": 0.33408,
3661
+ "grad_norm": 0.34447335382371475,
3662
+ "learning_rate": 3.981860551331232e-05,
3663
+ "loss": 0.2665,
3664
+ "step": 522
3665
+ }
3666
+ ],
3667
+ "logging_steps": 1,
3668
+ "max_steps": 1562,
3669
+ "num_input_tokens_seen": 0,
3670
+ "num_train_epochs": 1,
3671
+ "save_steps": 261,
3672
+ "stateful_callbacks": {
3673
+ "TrainerControl": {
3674
+ "args": {
3675
+ "should_epoch_stop": false,
3676
+ "should_evaluate": false,
3677
+ "should_log": false,
3678
+ "should_save": true,
3679
+ "should_training_stop": false
3680
+ },
3681
+ "attributes": {}
3682
+ }
3683
+ },
3684
+ "total_flos": 238263678074880.0,
3685
+ "train_batch_size": 2,
3686
+ "trial_name": null,
3687
+ "trial_params": null
3688
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5946d40dd8d3826d5c86fe25022910cc155f3c909b1feb80eb2aa211e8f5d20b
3
+ size 8017
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)