Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +85 -0
- config.json +38 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00013.safetensors +3 -0
- model-00002-of-00013.safetensors +3 -0
- model-00003-of-00013.safetensors +3 -0
- model-00004-of-00013.safetensors +3 -0
- model-00005-of-00013.safetensors +3 -0
- model-00006-of-00013.safetensors +3 -0
- model-00007-of-00013.safetensors +3 -0
- model-00008-of-00013.safetensors +3 -0
- model-00009-of-00013.safetensors +3 -0
- model-00010-of-00013.safetensors +3 -0
- model-00011-of-00013.safetensors +3 -0
- model-00012-of-00013.safetensors +3 -0
- model-00013-of-00013.safetensors +3 -0
- model.safetensors.index.json +0 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +1133 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
28 |
+
{%- elif message.role == "assistant" %}
|
29 |
+
{%- set content = message.content %}
|
30 |
+
{%- set reasoning_content = '' %}
|
31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
33 |
+
{%- else %}
|
34 |
+
{%- if '</think>' in message.content %}
|
35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
37 |
+
{%- endif %}
|
38 |
+
{%- endif %}
|
39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
42 |
+
{%- else %}
|
43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- else %}
|
46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- if message.tool_calls %}
|
49 |
+
{%- for tool_call in message.tool_calls %}
|
50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
51 |
+
{{- '\n' }}
|
52 |
+
{%- endif %}
|
53 |
+
{%- if tool_call.function %}
|
54 |
+
{%- set tool_call = tool_call.function %}
|
55 |
+
{%- endif %}
|
56 |
+
{{- '<tool_call>\n{"name": "' }}
|
57 |
+
{{- tool_call.name }}
|
58 |
+
{{- '", "arguments": ' }}
|
59 |
+
{%- if tool_call.arguments is string %}
|
60 |
+
{{- tool_call.arguments }}
|
61 |
+
{%- else %}
|
62 |
+
{{- tool_call.arguments | tojson }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '}\n</tool_call>' }}
|
65 |
+
{%- endfor %}
|
66 |
+
{%- endif %}
|
67 |
+
{{- '<|im_end|>\n' }}
|
68 |
+
{%- elif message.role == "tool" %}
|
69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
70 |
+
{{- '<|im_start|>user' }}
|
71 |
+
{%- endif %}
|
72 |
+
{{- '\n<tool_response>\n' }}
|
73 |
+
{{- message.content }}
|
74 |
+
{{- '\n</tool_response>' }}
|
75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
76 |
+
{{- '<|im_end|>\n' }}
|
77 |
+
{%- endif %}
|
78 |
+
{%- endif %}
|
79 |
+
{%- endfor %}
|
80 |
+
{%- if add_generation_prompt %}
|
81 |
+
{{- '<|im_start|>assistant\n' }}
|
82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
84 |
+
{%- endif %}
|
85 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3MoeForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"decoder_sparse_step": 1,
|
9 |
+
"eos_token_id": 151643,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 6144,
|
15 |
+
"max_position_embeddings": 32768,
|
16 |
+
"max_window_layers": 48,
|
17 |
+
"mlp_only_layers": [],
|
18 |
+
"model_type": "qwen3_moe",
|
19 |
+
"moe_intermediate_size": 768,
|
20 |
+
"norm_topk_prob": true,
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_experts": 128,
|
23 |
+
"num_experts_per_tok": 8,
|
24 |
+
"num_hidden_layers": 48,
|
25 |
+
"num_key_value_heads": 4,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 1000000.0,
|
30 |
+
"router_aux_loss_coef": 0.001,
|
31 |
+
"sliding_window": null,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.52.0.dev0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"vocab_size": 151936
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 16384,
|
5 |
+
"transformers_version": "4.52.0.dev0"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step157
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5853cdc156356dd32339a7ec00fc8611a09863cc00fd878fef9aeac8a2b211ea
|
3 |
+
size 4997184968
|
model-00002-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e42a8999e80571ee58ea2418fbffa77fcde3368e4f7da5899113a2470d4b571
|
3 |
+
size 4997741608
|
model-00003-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c743f6d68c1732ce568b702e99e04937b4fea9fac8c62dd34795353acebbe6b7
|
3 |
+
size 4997742208
|
model-00004-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:109536e25a0f910c734b0877e40b1417210212cf06dddcbdb443cd1b0f3c5ecd
|
3 |
+
size 4997743184
|
model-00005-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:816e9d12ab55bf6de0bd103e86777cabb0c3f95595595914addc9c80466816db
|
3 |
+
size 4997743184
|
model-00006-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:127057c4733ccbe67901fc07f983bd2afa78904311a9a7a578a4bf2919119808
|
3 |
+
size 4997743184
|
model-00007-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a47ba934c40b8bf938bbceef71d3373b0f68f3c81191613cac22a5af7335c3f8
|
3 |
+
size 4997743184
|
model-00008-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed41ebf29d81979e10fd2363eca660c97b04ab6e90a5be25530b1307112ff7a1
|
3 |
+
size 4997743184
|
model-00009-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba3ee0a9f2805e84f9298ccb662f9e68aae3b21cbc6c48e664b60db2a2251735
|
3 |
+
size 4997743184
|
model-00010-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33993d17fec74e240cef1246e46a85cc67078d630c7ac2d1d12bb59bc89d518b
|
3 |
+
size 4997743184
|
model-00011-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ce2e07f1831a34f6c579b16b30afb8c9ab99f5643929aa4d2b97600a0c3df9
|
3 |
+
size 4997743184
|
model-00012-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88a9c49e20b0277b5c7a3a9df8a0b847674ece3564c6f8c4e23758499c2adf45
|
3 |
+
size 4997743184
|
model-00013-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d9fafed28e4df542242d6daa582f0f06ecddffc4e4ca10f6ccf3ac6b1118957
|
3 |
+
size 1094220288
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.20096,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 157,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.00128,
|
14 |
+
"grad_norm": 2.8870697066158506,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.8422,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.00256,
|
21 |
+
"grad_norm": 2.88484389829891,
|
22 |
+
"learning_rate": 6.329113924050633e-07,
|
23 |
+
"loss": 0.8541,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.00384,
|
28 |
+
"grad_norm": 2.858151965789657,
|
29 |
+
"learning_rate": 1.2658227848101265e-06,
|
30 |
+
"loss": 0.8376,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.00512,
|
35 |
+
"grad_norm": 2.759628117182127,
|
36 |
+
"learning_rate": 1.8987341772151901e-06,
|
37 |
+
"loss": 0.8334,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.0064,
|
42 |
+
"grad_norm": 2.796990062811218,
|
43 |
+
"learning_rate": 2.531645569620253e-06,
|
44 |
+
"loss": 0.8256,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.00768,
|
49 |
+
"grad_norm": 2.5779298795445023,
|
50 |
+
"learning_rate": 3.1645569620253167e-06,
|
51 |
+
"loss": 0.8301,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.00896,
|
56 |
+
"grad_norm": 2.182261607936066,
|
57 |
+
"learning_rate": 3.7974683544303802e-06,
|
58 |
+
"loss": 0.8156,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.01024,
|
63 |
+
"grad_norm": 1.9615896152651355,
|
64 |
+
"learning_rate": 4.430379746835443e-06,
|
65 |
+
"loss": 0.7982,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01152,
|
70 |
+
"grad_norm": 1.452541644948315,
|
71 |
+
"learning_rate": 5.063291139240506e-06,
|
72 |
+
"loss": 0.7819,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.0128,
|
77 |
+
"grad_norm": 1.4723286808630864,
|
78 |
+
"learning_rate": 5.69620253164557e-06,
|
79 |
+
"loss": 0.7906,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01408,
|
84 |
+
"grad_norm": 1.3529636617858944,
|
85 |
+
"learning_rate": 6.329113924050633e-06,
|
86 |
+
"loss": 0.7724,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.01536,
|
91 |
+
"grad_norm": 1.960737179905222,
|
92 |
+
"learning_rate": 6.9620253164556965e-06,
|
93 |
+
"loss": 0.7495,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.01664,
|
98 |
+
"grad_norm": 2.2349101055406337,
|
99 |
+
"learning_rate": 7.5949367088607605e-06,
|
100 |
+
"loss": 0.7581,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.01792,
|
105 |
+
"grad_norm": 2.0897577150322477,
|
106 |
+
"learning_rate": 8.227848101265822e-06,
|
107 |
+
"loss": 0.7404,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.0192,
|
112 |
+
"grad_norm": 1.8227218322635887,
|
113 |
+
"learning_rate": 8.860759493670886e-06,
|
114 |
+
"loss": 0.7382,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.02048,
|
119 |
+
"grad_norm": 1.2099951464458898,
|
120 |
+
"learning_rate": 9.49367088607595e-06,
|
121 |
+
"loss": 0.7231,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.02176,
|
126 |
+
"grad_norm": 1.2177037129914572,
|
127 |
+
"learning_rate": 1.0126582278481012e-05,
|
128 |
+
"loss": 0.7259,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.02304,
|
133 |
+
"grad_norm": 1.1031346132830708,
|
134 |
+
"learning_rate": 1.0759493670886076e-05,
|
135 |
+
"loss": 0.7059,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.02432,
|
140 |
+
"grad_norm": 0.9194779600801882,
|
141 |
+
"learning_rate": 1.139240506329114e-05,
|
142 |
+
"loss": 0.7137,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.0256,
|
147 |
+
"grad_norm": 0.8679468005972053,
|
148 |
+
"learning_rate": 1.2025316455696203e-05,
|
149 |
+
"loss": 0.7036,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.02688,
|
154 |
+
"grad_norm": 0.7227287276969042,
|
155 |
+
"learning_rate": 1.2658227848101267e-05,
|
156 |
+
"loss": 0.696,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.02816,
|
161 |
+
"grad_norm": 0.7425882516811844,
|
162 |
+
"learning_rate": 1.3291139240506329e-05,
|
163 |
+
"loss": 0.6888,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.02944,
|
168 |
+
"grad_norm": 0.7093793012252196,
|
169 |
+
"learning_rate": 1.3924050632911393e-05,
|
170 |
+
"loss": 0.6791,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.03072,
|
175 |
+
"grad_norm": 0.6018215463147907,
|
176 |
+
"learning_rate": 1.4556962025316457e-05,
|
177 |
+
"loss": 0.6783,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.032,
|
182 |
+
"grad_norm": 0.5846346732378257,
|
183 |
+
"learning_rate": 1.5189873417721521e-05,
|
184 |
+
"loss": 0.6811,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.03328,
|
189 |
+
"grad_norm": 0.5855419788452784,
|
190 |
+
"learning_rate": 1.5822784810126583e-05,
|
191 |
+
"loss": 0.683,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.03456,
|
196 |
+
"grad_norm": 0.5096689891724868,
|
197 |
+
"learning_rate": 1.6455696202531644e-05,
|
198 |
+
"loss": 0.6589,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.03584,
|
203 |
+
"grad_norm": 0.4871170504081146,
|
204 |
+
"learning_rate": 1.7088607594936708e-05,
|
205 |
+
"loss": 0.6582,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.03712,
|
210 |
+
"grad_norm": 0.4949600697144217,
|
211 |
+
"learning_rate": 1.7721518987341772e-05,
|
212 |
+
"loss": 0.669,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.0384,
|
217 |
+
"grad_norm": 0.5082926031630941,
|
218 |
+
"learning_rate": 1.8354430379746836e-05,
|
219 |
+
"loss": 0.666,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.03968,
|
224 |
+
"grad_norm": 0.49381475380567175,
|
225 |
+
"learning_rate": 1.89873417721519e-05,
|
226 |
+
"loss": 0.6556,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.04096,
|
231 |
+
"grad_norm": 0.4265624784331274,
|
232 |
+
"learning_rate": 1.962025316455696e-05,
|
233 |
+
"loss": 0.646,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.04224,
|
238 |
+
"grad_norm": 0.39190416547723717,
|
239 |
+
"learning_rate": 2.0253164556962025e-05,
|
240 |
+
"loss": 0.6473,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.04352,
|
245 |
+
"grad_norm": 0.4631353399929371,
|
246 |
+
"learning_rate": 2.088607594936709e-05,
|
247 |
+
"loss": 0.6441,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.0448,
|
252 |
+
"grad_norm": 0.3928335126997034,
|
253 |
+
"learning_rate": 2.1518987341772153e-05,
|
254 |
+
"loss": 0.6352,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.04608,
|
259 |
+
"grad_norm": 0.36295027582313966,
|
260 |
+
"learning_rate": 2.2151898734177217e-05,
|
261 |
+
"loss": 0.6333,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.04736,
|
266 |
+
"grad_norm": 0.35026852064181846,
|
267 |
+
"learning_rate": 2.278481012658228e-05,
|
268 |
+
"loss": 0.6399,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.04864,
|
273 |
+
"grad_norm": 0.39778614916835536,
|
274 |
+
"learning_rate": 2.341772151898734e-05,
|
275 |
+
"loss": 0.6298,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.04992,
|
280 |
+
"grad_norm": 0.33278348666417684,
|
281 |
+
"learning_rate": 2.4050632911392405e-05,
|
282 |
+
"loss": 0.6301,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.0512,
|
287 |
+
"grad_norm": 0.31444068712551376,
|
288 |
+
"learning_rate": 2.468354430379747e-05,
|
289 |
+
"loss": 0.6263,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.05248,
|
294 |
+
"grad_norm": 0.36059728676958264,
|
295 |
+
"learning_rate": 2.5316455696202533e-05,
|
296 |
+
"loss": 0.6458,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.05376,
|
301 |
+
"grad_norm": 0.3916144552301749,
|
302 |
+
"learning_rate": 2.5949367088607597e-05,
|
303 |
+
"loss": 0.6331,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.05504,
|
308 |
+
"grad_norm": 0.32338566356420756,
|
309 |
+
"learning_rate": 2.6582278481012658e-05,
|
310 |
+
"loss": 0.6332,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.05632,
|
315 |
+
"grad_norm": 0.33704233729853356,
|
316 |
+
"learning_rate": 2.7215189873417722e-05,
|
317 |
+
"loss": 0.6348,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.0576,
|
322 |
+
"grad_norm": 0.36015399213900634,
|
323 |
+
"learning_rate": 2.7848101265822786e-05,
|
324 |
+
"loss": 0.6392,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.05888,
|
329 |
+
"grad_norm": 0.31471331803021757,
|
330 |
+
"learning_rate": 2.848101265822785e-05,
|
331 |
+
"loss": 0.6272,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.06016,
|
336 |
+
"grad_norm": 0.3225170654156012,
|
337 |
+
"learning_rate": 2.9113924050632914e-05,
|
338 |
+
"loss": 0.635,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.06144,
|
343 |
+
"grad_norm": 0.3064473735810606,
|
344 |
+
"learning_rate": 2.9746835443037974e-05,
|
345 |
+
"loss": 0.6284,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.06272,
|
350 |
+
"grad_norm": 0.3038289969291092,
|
351 |
+
"learning_rate": 3.0379746835443042e-05,
|
352 |
+
"loss": 0.6149,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.064,
|
357 |
+
"grad_norm": 0.3226803690164346,
|
358 |
+
"learning_rate": 3.10126582278481e-05,
|
359 |
+
"loss": 0.626,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.06528,
|
364 |
+
"grad_norm": 0.3096398144524693,
|
365 |
+
"learning_rate": 3.1645569620253167e-05,
|
366 |
+
"loss": 0.621,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.06656,
|
371 |
+
"grad_norm": 0.2754757429130796,
|
372 |
+
"learning_rate": 3.227848101265823e-05,
|
373 |
+
"loss": 0.6185,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.06784,
|
378 |
+
"grad_norm": 0.3262507218160328,
|
379 |
+
"learning_rate": 3.291139240506329e-05,
|
380 |
+
"loss": 0.6171,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.06912,
|
385 |
+
"grad_norm": 0.34971068352090656,
|
386 |
+
"learning_rate": 3.354430379746836e-05,
|
387 |
+
"loss": 0.616,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.0704,
|
392 |
+
"grad_norm": 0.2841621281043231,
|
393 |
+
"learning_rate": 3.4177215189873416e-05,
|
394 |
+
"loss": 0.5995,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.07168,
|
399 |
+
"grad_norm": 0.4003223636484448,
|
400 |
+
"learning_rate": 3.4810126582278487e-05,
|
401 |
+
"loss": 0.6169,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.07296,
|
406 |
+
"grad_norm": 0.31868860231705426,
|
407 |
+
"learning_rate": 3.5443037974683544e-05,
|
408 |
+
"loss": 0.6077,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.07424,
|
413 |
+
"grad_norm": 0.3960425782005289,
|
414 |
+
"learning_rate": 3.607594936708861e-05,
|
415 |
+
"loss": 0.6164,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.07552,
|
420 |
+
"grad_norm": 0.363865574596696,
|
421 |
+
"learning_rate": 3.670886075949367e-05,
|
422 |
+
"loss": 0.6118,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.0768,
|
427 |
+
"grad_norm": 0.33961478774466697,
|
428 |
+
"learning_rate": 3.7341772151898736e-05,
|
429 |
+
"loss": 0.6137,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.07808,
|
434 |
+
"grad_norm": 0.4212164741206082,
|
435 |
+
"learning_rate": 3.79746835443038e-05,
|
436 |
+
"loss": 0.6275,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.07936,
|
441 |
+
"grad_norm": 0.29878729710395663,
|
442 |
+
"learning_rate": 3.8607594936708864e-05,
|
443 |
+
"loss": 0.6084,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.08064,
|
448 |
+
"grad_norm": 0.36745026817379894,
|
449 |
+
"learning_rate": 3.924050632911392e-05,
|
450 |
+
"loss": 0.607,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.08192,
|
455 |
+
"grad_norm": 0.38983571508393644,
|
456 |
+
"learning_rate": 3.987341772151899e-05,
|
457 |
+
"loss": 0.6176,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.0832,
|
462 |
+
"grad_norm": 0.37337392917475115,
|
463 |
+
"learning_rate": 4.050632911392405e-05,
|
464 |
+
"loss": 0.6184,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.08448,
|
469 |
+
"grad_norm": 0.3668068115925863,
|
470 |
+
"learning_rate": 4.113924050632912e-05,
|
471 |
+
"loss": 0.6194,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.08576,
|
476 |
+
"grad_norm": 0.36138503055306903,
|
477 |
+
"learning_rate": 4.177215189873418e-05,
|
478 |
+
"loss": 0.6077,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.08704,
|
483 |
+
"grad_norm": 0.43361127462043814,
|
484 |
+
"learning_rate": 4.240506329113924e-05,
|
485 |
+
"loss": 0.6147,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.08832,
|
490 |
+
"grad_norm": 0.33520423726109644,
|
491 |
+
"learning_rate": 4.3037974683544305e-05,
|
492 |
+
"loss": 0.6118,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.0896,
|
497 |
+
"grad_norm": 0.4381154362148859,
|
498 |
+
"learning_rate": 4.367088607594937e-05,
|
499 |
+
"loss": 0.6031,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.09088,
|
504 |
+
"grad_norm": 0.3717345864324632,
|
505 |
+
"learning_rate": 4.430379746835443e-05,
|
506 |
+
"loss": 0.6031,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.09216,
|
511 |
+
"grad_norm": 0.4861728465398392,
|
512 |
+
"learning_rate": 4.49367088607595e-05,
|
513 |
+
"loss": 0.6006,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.09344,
|
518 |
+
"grad_norm": 0.3264992939190504,
|
519 |
+
"learning_rate": 4.556962025316456e-05,
|
520 |
+
"loss": 0.6151,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.09472,
|
525 |
+
"grad_norm": 0.4319794925001871,
|
526 |
+
"learning_rate": 4.6202531645569625e-05,
|
527 |
+
"loss": 0.6058,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.096,
|
532 |
+
"grad_norm": 0.4616345840492333,
|
533 |
+
"learning_rate": 4.683544303797468e-05,
|
534 |
+
"loss": 0.5967,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.09728,
|
539 |
+
"grad_norm": 0.4405721152587957,
|
540 |
+
"learning_rate": 4.7468354430379746e-05,
|
541 |
+
"loss": 0.6002,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.09856,
|
546 |
+
"grad_norm": 0.5122605377853799,
|
547 |
+
"learning_rate": 4.810126582278481e-05,
|
548 |
+
"loss": 0.6076,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.09984,
|
553 |
+
"grad_norm": 0.45313870340097556,
|
554 |
+
"learning_rate": 4.8734177215189874e-05,
|
555 |
+
"loss": 0.6074,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.10112,
|
560 |
+
"grad_norm": 0.4340044755876676,
|
561 |
+
"learning_rate": 4.936708860759494e-05,
|
562 |
+
"loss": 0.606,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.1024,
|
567 |
+
"grad_norm": 0.4987172862476422,
|
568 |
+
"learning_rate": 5e-05,
|
569 |
+
"loss": 0.6158,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.10368,
|
574 |
+
"grad_norm": 0.6226880208665108,
|
575 |
+
"learning_rate": 4.999974965737065e-05,
|
576 |
+
"loss": 0.621,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.10496,
|
581 |
+
"grad_norm": 0.5448293131914782,
|
582 |
+
"learning_rate": 4.999899863449631e-05,
|
583 |
+
"loss": 0.6014,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.10624,
|
588 |
+
"grad_norm": 0.3427022601926917,
|
589 |
+
"learning_rate": 4.999774694641803e-05,
|
590 |
+
"loss": 0.6198,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.10752,
|
595 |
+
"grad_norm": 0.5005152113593655,
|
596 |
+
"learning_rate": 4.999599461820387e-05,
|
597 |
+
"loss": 0.6054,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.1088,
|
602 |
+
"grad_norm": 0.5702968806820528,
|
603 |
+
"learning_rate": 4.999374168494844e-05,
|
604 |
+
"loss": 0.6069,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.11008,
|
609 |
+
"grad_norm": 0.4671310661706222,
|
610 |
+
"learning_rate": 4.999098819177214e-05,
|
611 |
+
"loss": 0.6017,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.11136,
|
616 |
+
"grad_norm": 0.46081768174689064,
|
617 |
+
"learning_rate": 4.9987734193820324e-05,
|
618 |
+
"loss": 0.5988,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.11264,
|
623 |
+
"grad_norm": 0.5448729856183013,
|
624 |
+
"learning_rate": 4.9983979756262136e-05,
|
625 |
+
"loss": 0.6181,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.11392,
|
630 |
+
"grad_norm": 0.5095775592779056,
|
631 |
+
"learning_rate": 4.9979724954289244e-05,
|
632 |
+
"loss": 0.608,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1152,
|
637 |
+
"grad_norm": 0.41119162739543413,
|
638 |
+
"learning_rate": 4.997496987311431e-05,
|
639 |
+
"loss": 0.5979,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.11648,
|
644 |
+
"grad_norm": 0.45501958535738946,
|
645 |
+
"learning_rate": 4.996971460796929e-05,
|
646 |
+
"loss": 0.6019,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.11776,
|
651 |
+
"grad_norm": 0.4287172104360816,
|
652 |
+
"learning_rate": 4.9963959264103544e-05,
|
653 |
+
"loss": 0.5955,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.11904,
|
658 |
+
"grad_norm": 0.409872269342458,
|
659 |
+
"learning_rate": 4.995770395678171e-05,
|
660 |
+
"loss": 0.5927,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.12032,
|
665 |
+
"grad_norm": 0.4304173966206036,
|
666 |
+
"learning_rate": 4.995094881128138e-05,
|
667 |
+
"loss": 0.5967,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.1216,
|
672 |
+
"grad_norm": 0.4229799776298517,
|
673 |
+
"learning_rate": 4.994369396289063e-05,
|
674 |
+
"loss": 0.6084,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.12288,
|
679 |
+
"grad_norm": 0.4509596954971553,
|
680 |
+
"learning_rate": 4.9935939556905295e-05,
|
681 |
+
"loss": 0.6134,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.12416,
|
686 |
+
"grad_norm": 0.467661146414229,
|
687 |
+
"learning_rate": 4.992768574862603e-05,
|
688 |
+
"loss": 0.5986,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.12544,
|
693 |
+
"grad_norm": 0.42432875998240194,
|
694 |
+
"learning_rate": 4.9918932703355256e-05,
|
695 |
+
"loss": 0.6028,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.12672,
|
700 |
+
"grad_norm": 0.43479377184835605,
|
701 |
+
"learning_rate": 4.990968059639379e-05,
|
702 |
+
"loss": 0.5942,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.128,
|
707 |
+
"grad_norm": 0.3680676685801686,
|
708 |
+
"learning_rate": 4.989992961303738e-05,
|
709 |
+
"loss": 0.5994,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.12928,
|
714 |
+
"grad_norm": 0.3956815409903461,
|
715 |
+
"learning_rate": 4.9889679948572974e-05,
|
716 |
+
"loss": 0.5871,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.13056,
|
721 |
+
"grad_norm": 0.34354949934586104,
|
722 |
+
"learning_rate": 4.98789318082748e-05,
|
723 |
+
"loss": 0.5873,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.13184,
|
728 |
+
"grad_norm": 0.3608260963951222,
|
729 |
+
"learning_rate": 4.986768540740028e-05,
|
730 |
+
"loss": 0.5883,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.13312,
|
735 |
+
"grad_norm": 0.3937004101078116,
|
736 |
+
"learning_rate": 4.98559409711857e-05,
|
737 |
+
"loss": 0.6029,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.1344,
|
742 |
+
"grad_norm": 0.3401718481532899,
|
743 |
+
"learning_rate": 4.9843698734841705e-05,
|
744 |
+
"loss": 0.5983,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.13568,
|
749 |
+
"grad_norm": 0.4371868869288284,
|
750 |
+
"learning_rate": 4.983095894354858e-05,
|
751 |
+
"loss": 0.5866,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.13696,
|
756 |
+
"grad_norm": 0.3722813571279646,
|
757 |
+
"learning_rate": 4.981772185245135e-05,
|
758 |
+
"loss": 0.5954,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.13824,
|
763 |
+
"grad_norm": 0.36493596395606354,
|
764 |
+
"learning_rate": 4.980398772665468e-05,
|
765 |
+
"loss": 0.5806,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.13952,
|
770 |
+
"grad_norm": 0.43678937522389644,
|
771 |
+
"learning_rate": 4.9789756841217546e-05,
|
772 |
+
"loss": 0.595,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.1408,
|
777 |
+
"grad_norm": 0.34968596729530604,
|
778 |
+
"learning_rate": 4.977502948114772e-05,
|
779 |
+
"loss": 0.5999,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.14208,
|
784 |
+
"grad_norm": 0.4035249077012057,
|
785 |
+
"learning_rate": 4.9759805941396075e-05,
|
786 |
+
"loss": 0.582,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.14336,
|
791 |
+
"grad_norm": 0.3396387531525401,
|
792 |
+
"learning_rate": 4.974408652685072e-05,
|
793 |
+
"loss": 0.5912,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.14464,
|
798 |
+
"grad_norm": 0.3888124435581031,
|
799 |
+
"learning_rate": 4.9727871552330794e-05,
|
800 |
+
"loss": 0.5994,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.14592,
|
805 |
+
"grad_norm": 0.3487289265208422,
|
806 |
+
"learning_rate": 4.971116134258025e-05,
|
807 |
+
"loss": 0.598,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.1472,
|
812 |
+
"grad_norm": 0.34084258932596606,
|
813 |
+
"learning_rate": 4.969395623226133e-05,
|
814 |
+
"loss": 0.5965,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.14848,
|
819 |
+
"grad_norm": 0.33211872605390524,
|
820 |
+
"learning_rate": 4.967625656594782e-05,
|
821 |
+
"loss": 0.5984,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.14976,
|
826 |
+
"grad_norm": 0.31055192632357626,
|
827 |
+
"learning_rate": 4.9658062698118213e-05,
|
828 |
+
"loss": 0.593,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.15104,
|
833 |
+
"grad_norm": 0.35790400007793166,
|
834 |
+
"learning_rate": 4.963937499314857e-05,
|
835 |
+
"loss": 0.6035,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.15232,
|
840 |
+
"grad_norm": 0.31118450185510343,
|
841 |
+
"learning_rate": 4.962019382530521e-05,
|
842 |
+
"loss": 0.5811,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.1536,
|
847 |
+
"grad_norm": 0.3326176465041298,
|
848 |
+
"learning_rate": 4.960051957873725e-05,
|
849 |
+
"loss": 0.581,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.15488,
|
854 |
+
"grad_norm": 0.30210249377153575,
|
855 |
+
"learning_rate": 4.958035264746893e-05,
|
856 |
+
"loss": 0.5837,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.15616,
|
861 |
+
"grad_norm": 0.3480385124671555,
|
862 |
+
"learning_rate": 4.955969343539162e-05,
|
863 |
+
"loss": 0.5768,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.15744,
|
868 |
+
"grad_norm": 0.3003392569743352,
|
869 |
+
"learning_rate": 4.9538542356255866e-05,
|
870 |
+
"loss": 0.5938,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.15872,
|
875 |
+
"grad_norm": 0.32082565179488104,
|
876 |
+
"learning_rate": 4.9516899833663e-05,
|
877 |
+
"loss": 0.5948,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.16,
|
882 |
+
"grad_norm": 0.3564349708048278,
|
883 |
+
"learning_rate": 4.949476630105669e-05,
|
884 |
+
"loss": 0.595,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.16128,
|
889 |
+
"grad_norm": 0.32049541972124757,
|
890 |
+
"learning_rate": 4.94721422017143e-05,
|
891 |
+
"loss": 0.5838,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.16256,
|
896 |
+
"grad_norm": 0.3317680882353993,
|
897 |
+
"learning_rate": 4.944902798873794e-05,
|
898 |
+
"loss": 0.5952,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.16384,
|
903 |
+
"grad_norm": 0.3381465061198974,
|
904 |
+
"learning_rate": 4.942542412504543e-05,
|
905 |
+
"loss": 0.6004,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.16512,
|
910 |
+
"grad_norm": 0.38351657127693595,
|
911 |
+
"learning_rate": 4.940133108336105e-05,
|
912 |
+
"loss": 0.6014,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.1664,
|
917 |
+
"grad_norm": 0.3276142738951724,
|
918 |
+
"learning_rate": 4.9376749346206006e-05,
|
919 |
+
"loss": 0.5853,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.16768,
|
924 |
+
"grad_norm": 0.37146400882939534,
|
925 |
+
"learning_rate": 4.935167940588887e-05,
|
926 |
+
"loss": 0.5995,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.16896,
|
931 |
+
"grad_norm": 0.32804274509201087,
|
932 |
+
"learning_rate": 4.9326121764495596e-05,
|
933 |
+
"loss": 0.5955,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.17024,
|
938 |
+
"grad_norm": 0.3344845806030499,
|
939 |
+
"learning_rate": 4.9300076933879574e-05,
|
940 |
+
"loss": 0.5818,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.17152,
|
945 |
+
"grad_norm": 0.3479572078392269,
|
946 |
+
"learning_rate": 4.92735454356513e-05,
|
947 |
+
"loss": 0.5941,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.1728,
|
952 |
+
"grad_norm": 0.34868252062960353,
|
953 |
+
"learning_rate": 4.924652780116799e-05,
|
954 |
+
"loss": 0.5898,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.17408,
|
959 |
+
"grad_norm": 0.35674279058993497,
|
960 |
+
"learning_rate": 4.921902457152289e-05,
|
961 |
+
"loss": 0.5899,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.17536,
|
966 |
+
"grad_norm": 0.3672614416380493,
|
967 |
+
"learning_rate": 4.9191036297534454e-05,
|
968 |
+
"loss": 0.585,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.17664,
|
973 |
+
"grad_norm": 0.4039478601084677,
|
974 |
+
"learning_rate": 4.916256353973535e-05,
|
975 |
+
"loss": 0.5994,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.17792,
|
980 |
+
"grad_norm": 0.3428958061155067,
|
981 |
+
"learning_rate": 4.913360686836117e-05,
|
982 |
+
"loss": 0.575,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.1792,
|
987 |
+
"grad_norm": 0.4024960602256603,
|
988 |
+
"learning_rate": 4.910416686333906e-05,
|
989 |
+
"loss": 0.5913,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.18048,
|
994 |
+
"grad_norm": 0.31040065034832104,
|
995 |
+
"learning_rate": 4.907424411427608e-05,
|
996 |
+
"loss": 0.5761,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.18176,
|
1001 |
+
"grad_norm": 0.359237099401051,
|
1002 |
+
"learning_rate": 4.90438392204474e-05,
|
1003 |
+
"loss": 0.5885,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.18304,
|
1008 |
+
"grad_norm": 0.3357545415879296,
|
1009 |
+
"learning_rate": 4.901295279078431e-05,
|
1010 |
+
"loss": 0.5907,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.18432,
|
1015 |
+
"grad_norm": 0.2846403022642179,
|
1016 |
+
"learning_rate": 4.898158544386201e-05,
|
1017 |
+
"loss": 0.5886,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.1856,
|
1022 |
+
"grad_norm": 0.3636245125193307,
|
1023 |
+
"learning_rate": 4.894973780788722e-05,
|
1024 |
+
"loss": 0.5816,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.18688,
|
1029 |
+
"grad_norm": 0.25440894793562924,
|
1030 |
+
"learning_rate": 4.8917410520685635e-05,
|
1031 |
+
"loss": 0.576,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.18816,
|
1036 |
+
"grad_norm": 0.3380189678855273,
|
1037 |
+
"learning_rate": 4.888460422968908e-05,
|
1038 |
+
"loss": 0.5931,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.18944,
|
1043 |
+
"grad_norm": 0.3096794617975588,
|
1044 |
+
"learning_rate": 4.885131959192262e-05,
|
1045 |
+
"loss": 0.5829,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.19072,
|
1050 |
+
"grad_norm": 0.280174710159943,
|
1051 |
+
"learning_rate": 4.881755727399134e-05,
|
1052 |
+
"loss": 0.5794,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.192,
|
1057 |
+
"grad_norm": 0.31769340776297994,
|
1058 |
+
"learning_rate": 4.878331795206705e-05,
|
1059 |
+
"loss": 0.5729,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.19328,
|
1064 |
+
"grad_norm": 0.31671973855902796,
|
1065 |
+
"learning_rate": 4.8748602311874694e-05,
|
1066 |
+
"loss": 0.5905,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.19456,
|
1071 |
+
"grad_norm": 0.32614211009906474,
|
1072 |
+
"learning_rate": 4.8713411048678635e-05,
|
1073 |
+
"loss": 0.5855,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.19584,
|
1078 |
+
"grad_norm": 0.29921149443441614,
|
1079 |
+
"learning_rate": 4.8677744867268764e-05,
|
1080 |
+
"loss": 0.5779,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.19712,
|
1085 |
+
"grad_norm": 0.3558339409344647,
|
1086 |
+
"learning_rate": 4.8641604481946314e-05,
|
1087 |
+
"loss": 0.5892,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.1984,
|
1092 |
+
"grad_norm": 0.285079025062,
|
1093 |
+
"learning_rate": 4.8604990616509616e-05,
|
1094 |
+
"loss": 0.5912,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.19968,
|
1099 |
+
"grad_norm": 0.32189736402098207,
|
1100 |
+
"learning_rate": 4.856790400423958e-05,
|
1101 |
+
"loss": 0.5881,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.20096,
|
1106 |
+
"grad_norm": 0.3293153125716864,
|
1107 |
+
"learning_rate": 4.8530345387885004e-05,
|
1108 |
+
"loss": 0.5679,
|
1109 |
+
"step": 157
|
1110 |
+
}
|
1111 |
+
],
|
1112 |
+
"logging_steps": 1,
|
1113 |
+
"max_steps": 781,
|
1114 |
+
"num_input_tokens_seen": 0,
|
1115 |
+
"num_train_epochs": 1,
|
1116 |
+
"save_steps": 157,
|
1117 |
+
"stateful_callbacks": {
|
1118 |
+
"TrainerControl": {
|
1119 |
+
"args": {
|
1120 |
+
"should_epoch_stop": false,
|
1121 |
+
"should_evaluate": false,
|
1122 |
+
"should_log": false,
|
1123 |
+
"should_save": true,
|
1124 |
+
"should_training_stop": false
|
1125 |
+
},
|
1126 |
+
"attributes": {}
|
1127 |
+
}
|
1128 |
+
},
|
1129 |
+
"total_flos": 194598775488512.0,
|
1130 |
+
"train_batch_size": 2,
|
1131 |
+
"trial_name": null,
|
1132 |
+
"trial_params": null
|
1133 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17d4ae4b6b6214515a5dd9c49ec78773756cbcc25fe748eaf748b8059d9427af
|
3 |
+
size 8081
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|