fengyao1909 commited on
Commit
b3fb332
·
verified ·
1 Parent(s): e1edd70

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
27
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
28
+ {%- elif message.role == "assistant" %}
29
+ {%- set content = message.content %}
30
+ {%- set reasoning_content = '' %}
31
+ {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
32
+ {%- set reasoning_content = message.reasoning_content %}
33
+ {%- else %}
34
+ {%- if '</think>' in message.content %}
35
+ {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
36
+ {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
37
+ {%- endif %}
38
+ {%- endif %}
39
+ {%- if loop.index0 > ns.last_query_index %}
40
+ {%- if loop.last or (not loop.last and reasoning_content) %}
41
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
42
+ {%- else %}
43
+ {{- '<|im_start|>' + message.role + '\n' + content }}
44
+ {%- endif %}
45
+ {%- else %}
46
+ {{- '<|im_start|>' + message.role + '\n' + content }}
47
+ {%- endif %}
48
+ {%- if message.tool_calls %}
49
+ {%- for tool_call in message.tool_calls %}
50
+ {%- if (loop.first and content) or (not loop.first) %}
51
+ {{- '\n' }}
52
+ {%- endif %}
53
+ {%- if tool_call.function %}
54
+ {%- set tool_call = tool_call.function %}
55
+ {%- endif %}
56
+ {{- '<tool_call>\n{"name": "' }}
57
+ {{- tool_call.name }}
58
+ {{- '", "arguments": ' }}
59
+ {%- if tool_call.arguments is string %}
60
+ {{- tool_call.arguments }}
61
+ {%- else %}
62
+ {{- tool_call.arguments | tojson }}
63
+ {%- endif %}
64
+ {{- '}\n</tool_call>' }}
65
+ {%- endfor %}
66
+ {%- endif %}
67
+ {{- '<|im_end|>\n' }}
68
+ {%- elif message.role == "tool" %}
69
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
70
+ {{- '<|im_start|>user' }}
71
+ {%- endif %}
72
+ {{- '\n<tool_response>\n' }}
73
+ {{- message.content }}
74
+ {{- '\n</tool_response>' }}
75
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
76
+ {{- '<|im_end|>\n' }}
77
+ {%- endif %}
78
+ {%- endif %}
79
+ {%- endfor %}
80
+ {%- if add_generation_prompt %}
81
+ {{- '<|im_start|>assistant\n' }}
82
+ {%- if enable_thinking is defined and enable_thinking is false %}
83
+ {{- '<think>\n\n</think>\n\n' }}
84
+ {%- endif %}
85
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3MoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "decoder_sparse_step": 1,
9
+ "eos_token_id": 151643,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 6144,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 48,
17
+ "mlp_only_layers": [],
18
+ "model_type": "qwen3_moe",
19
+ "moe_intermediate_size": 768,
20
+ "norm_topk_prob": true,
21
+ "num_attention_heads": 32,
22
+ "num_experts": 128,
23
+ "num_experts_per_tok": 8,
24
+ "num_hidden_layers": 48,
25
+ "num_key_value_heads": 4,
26
+ "output_router_logits": false,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000.0,
30
+ "router_aux_loss_coef": 0.001,
31
+ "sliding_window": null,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.52.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "vocab_size": 151936
38
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 16384,
5
+ "transformers_version": "4.52.0.dev0"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step157
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5853cdc156356dd32339a7ec00fc8611a09863cc00fd878fef9aeac8a2b211ea
3
+ size 4997184968
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e42a8999e80571ee58ea2418fbffa77fcde3368e4f7da5899113a2470d4b571
3
+ size 4997741608
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c743f6d68c1732ce568b702e99e04937b4fea9fac8c62dd34795353acebbe6b7
3
+ size 4997742208
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:109536e25a0f910c734b0877e40b1417210212cf06dddcbdb443cd1b0f3c5ecd
3
+ size 4997743184
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:816e9d12ab55bf6de0bd103e86777cabb0c3f95595595914addc9c80466816db
3
+ size 4997743184
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:127057c4733ccbe67901fc07f983bd2afa78904311a9a7a578a4bf2919119808
3
+ size 4997743184
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a47ba934c40b8bf938bbceef71d3373b0f68f3c81191613cac22a5af7335c3f8
3
+ size 4997743184
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed41ebf29d81979e10fd2363eca660c97b04ab6e90a5be25530b1307112ff7a1
3
+ size 4997743184
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3ee0a9f2805e84f9298ccb662f9e68aae3b21cbc6c48e664b60db2a2251735
3
+ size 4997743184
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33993d17fec74e240cef1246e46a85cc67078d630c7ac2d1d12bb59bc89d518b
3
+ size 4997743184
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07ce2e07f1831a34f6c579b16b30afb8c9ab99f5643929aa4d2b97600a0c3df9
3
+ size 4997743184
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a9c49e20b0277b5c7a3a9df8a0b847674ece3564c6f8c4e23758499c2adf45
3
+ size 4997743184
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d9fafed28e4df542242d6daa582f0f06ecddffc4e4ca10f6ccf3ac6b1118957
3
+ size 1094220288
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,1133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.20096,
6
+ "eval_steps": 500,
7
+ "global_step": 157,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00128,
14
+ "grad_norm": 2.8870697066158506,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.8422,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.00256,
21
+ "grad_norm": 2.88484389829891,
22
+ "learning_rate": 6.329113924050633e-07,
23
+ "loss": 0.8541,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.00384,
28
+ "grad_norm": 2.858151965789657,
29
+ "learning_rate": 1.2658227848101265e-06,
30
+ "loss": 0.8376,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.00512,
35
+ "grad_norm": 2.759628117182127,
36
+ "learning_rate": 1.8987341772151901e-06,
37
+ "loss": 0.8334,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.0064,
42
+ "grad_norm": 2.796990062811218,
43
+ "learning_rate": 2.531645569620253e-06,
44
+ "loss": 0.8256,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.00768,
49
+ "grad_norm": 2.5779298795445023,
50
+ "learning_rate": 3.1645569620253167e-06,
51
+ "loss": 0.8301,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.00896,
56
+ "grad_norm": 2.182261607936066,
57
+ "learning_rate": 3.7974683544303802e-06,
58
+ "loss": 0.8156,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.01024,
63
+ "grad_norm": 1.9615896152651355,
64
+ "learning_rate": 4.430379746835443e-06,
65
+ "loss": 0.7982,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.01152,
70
+ "grad_norm": 1.452541644948315,
71
+ "learning_rate": 5.063291139240506e-06,
72
+ "loss": 0.7819,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.0128,
77
+ "grad_norm": 1.4723286808630864,
78
+ "learning_rate": 5.69620253164557e-06,
79
+ "loss": 0.7906,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.01408,
84
+ "grad_norm": 1.3529636617858944,
85
+ "learning_rate": 6.329113924050633e-06,
86
+ "loss": 0.7724,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.01536,
91
+ "grad_norm": 1.960737179905222,
92
+ "learning_rate": 6.9620253164556965e-06,
93
+ "loss": 0.7495,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.01664,
98
+ "grad_norm": 2.2349101055406337,
99
+ "learning_rate": 7.5949367088607605e-06,
100
+ "loss": 0.7581,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.01792,
105
+ "grad_norm": 2.0897577150322477,
106
+ "learning_rate": 8.227848101265822e-06,
107
+ "loss": 0.7404,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.0192,
112
+ "grad_norm": 1.8227218322635887,
113
+ "learning_rate": 8.860759493670886e-06,
114
+ "loss": 0.7382,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.02048,
119
+ "grad_norm": 1.2099951464458898,
120
+ "learning_rate": 9.49367088607595e-06,
121
+ "loss": 0.7231,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.02176,
126
+ "grad_norm": 1.2177037129914572,
127
+ "learning_rate": 1.0126582278481012e-05,
128
+ "loss": 0.7259,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.02304,
133
+ "grad_norm": 1.1031346132830708,
134
+ "learning_rate": 1.0759493670886076e-05,
135
+ "loss": 0.7059,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.02432,
140
+ "grad_norm": 0.9194779600801882,
141
+ "learning_rate": 1.139240506329114e-05,
142
+ "loss": 0.7137,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.0256,
147
+ "grad_norm": 0.8679468005972053,
148
+ "learning_rate": 1.2025316455696203e-05,
149
+ "loss": 0.7036,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.02688,
154
+ "grad_norm": 0.7227287276969042,
155
+ "learning_rate": 1.2658227848101267e-05,
156
+ "loss": 0.696,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.02816,
161
+ "grad_norm": 0.7425882516811844,
162
+ "learning_rate": 1.3291139240506329e-05,
163
+ "loss": 0.6888,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.02944,
168
+ "grad_norm": 0.7093793012252196,
169
+ "learning_rate": 1.3924050632911393e-05,
170
+ "loss": 0.6791,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.03072,
175
+ "grad_norm": 0.6018215463147907,
176
+ "learning_rate": 1.4556962025316457e-05,
177
+ "loss": 0.6783,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.032,
182
+ "grad_norm": 0.5846346732378257,
183
+ "learning_rate": 1.5189873417721521e-05,
184
+ "loss": 0.6811,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.03328,
189
+ "grad_norm": 0.5855419788452784,
190
+ "learning_rate": 1.5822784810126583e-05,
191
+ "loss": 0.683,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.03456,
196
+ "grad_norm": 0.5096689891724868,
197
+ "learning_rate": 1.6455696202531644e-05,
198
+ "loss": 0.6589,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.03584,
203
+ "grad_norm": 0.4871170504081146,
204
+ "learning_rate": 1.7088607594936708e-05,
205
+ "loss": 0.6582,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.03712,
210
+ "grad_norm": 0.4949600697144217,
211
+ "learning_rate": 1.7721518987341772e-05,
212
+ "loss": 0.669,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.0384,
217
+ "grad_norm": 0.5082926031630941,
218
+ "learning_rate": 1.8354430379746836e-05,
219
+ "loss": 0.666,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.03968,
224
+ "grad_norm": 0.49381475380567175,
225
+ "learning_rate": 1.89873417721519e-05,
226
+ "loss": 0.6556,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.04096,
231
+ "grad_norm": 0.4265624784331274,
232
+ "learning_rate": 1.962025316455696e-05,
233
+ "loss": 0.646,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.04224,
238
+ "grad_norm": 0.39190416547723717,
239
+ "learning_rate": 2.0253164556962025e-05,
240
+ "loss": 0.6473,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.04352,
245
+ "grad_norm": 0.4631353399929371,
246
+ "learning_rate": 2.088607594936709e-05,
247
+ "loss": 0.6441,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.0448,
252
+ "grad_norm": 0.3928335126997034,
253
+ "learning_rate": 2.1518987341772153e-05,
254
+ "loss": 0.6352,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.04608,
259
+ "grad_norm": 0.36295027582313966,
260
+ "learning_rate": 2.2151898734177217e-05,
261
+ "loss": 0.6333,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.04736,
266
+ "grad_norm": 0.35026852064181846,
267
+ "learning_rate": 2.278481012658228e-05,
268
+ "loss": 0.6399,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.04864,
273
+ "grad_norm": 0.39778614916835536,
274
+ "learning_rate": 2.341772151898734e-05,
275
+ "loss": 0.6298,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.04992,
280
+ "grad_norm": 0.33278348666417684,
281
+ "learning_rate": 2.4050632911392405e-05,
282
+ "loss": 0.6301,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.0512,
287
+ "grad_norm": 0.31444068712551376,
288
+ "learning_rate": 2.468354430379747e-05,
289
+ "loss": 0.6263,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.05248,
294
+ "grad_norm": 0.36059728676958264,
295
+ "learning_rate": 2.5316455696202533e-05,
296
+ "loss": 0.6458,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.05376,
301
+ "grad_norm": 0.3916144552301749,
302
+ "learning_rate": 2.5949367088607597e-05,
303
+ "loss": 0.6331,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.05504,
308
+ "grad_norm": 0.32338566356420756,
309
+ "learning_rate": 2.6582278481012658e-05,
310
+ "loss": 0.6332,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.05632,
315
+ "grad_norm": 0.33704233729853356,
316
+ "learning_rate": 2.7215189873417722e-05,
317
+ "loss": 0.6348,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.0576,
322
+ "grad_norm": 0.36015399213900634,
323
+ "learning_rate": 2.7848101265822786e-05,
324
+ "loss": 0.6392,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.05888,
329
+ "grad_norm": 0.31471331803021757,
330
+ "learning_rate": 2.848101265822785e-05,
331
+ "loss": 0.6272,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.06016,
336
+ "grad_norm": 0.3225170654156012,
337
+ "learning_rate": 2.9113924050632914e-05,
338
+ "loss": 0.635,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.06144,
343
+ "grad_norm": 0.3064473735810606,
344
+ "learning_rate": 2.9746835443037974e-05,
345
+ "loss": 0.6284,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.06272,
350
+ "grad_norm": 0.3038289969291092,
351
+ "learning_rate": 3.0379746835443042e-05,
352
+ "loss": 0.6149,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.064,
357
+ "grad_norm": 0.3226803690164346,
358
+ "learning_rate": 3.10126582278481e-05,
359
+ "loss": 0.626,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.06528,
364
+ "grad_norm": 0.3096398144524693,
365
+ "learning_rate": 3.1645569620253167e-05,
366
+ "loss": 0.621,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.06656,
371
+ "grad_norm": 0.2754757429130796,
372
+ "learning_rate": 3.227848101265823e-05,
373
+ "loss": 0.6185,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.06784,
378
+ "grad_norm": 0.3262507218160328,
379
+ "learning_rate": 3.291139240506329e-05,
380
+ "loss": 0.6171,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.06912,
385
+ "grad_norm": 0.34971068352090656,
386
+ "learning_rate": 3.354430379746836e-05,
387
+ "loss": 0.616,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.0704,
392
+ "grad_norm": 0.2841621281043231,
393
+ "learning_rate": 3.4177215189873416e-05,
394
+ "loss": 0.5995,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.07168,
399
+ "grad_norm": 0.4003223636484448,
400
+ "learning_rate": 3.4810126582278487e-05,
401
+ "loss": 0.6169,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.07296,
406
+ "grad_norm": 0.31868860231705426,
407
+ "learning_rate": 3.5443037974683544e-05,
408
+ "loss": 0.6077,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.07424,
413
+ "grad_norm": 0.3960425782005289,
414
+ "learning_rate": 3.607594936708861e-05,
415
+ "loss": 0.6164,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.07552,
420
+ "grad_norm": 0.363865574596696,
421
+ "learning_rate": 3.670886075949367e-05,
422
+ "loss": 0.6118,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.0768,
427
+ "grad_norm": 0.33961478774466697,
428
+ "learning_rate": 3.7341772151898736e-05,
429
+ "loss": 0.6137,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.07808,
434
+ "grad_norm": 0.4212164741206082,
435
+ "learning_rate": 3.79746835443038e-05,
436
+ "loss": 0.6275,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.07936,
441
+ "grad_norm": 0.29878729710395663,
442
+ "learning_rate": 3.8607594936708864e-05,
443
+ "loss": 0.6084,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.08064,
448
+ "grad_norm": 0.36745026817379894,
449
+ "learning_rate": 3.924050632911392e-05,
450
+ "loss": 0.607,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.08192,
455
+ "grad_norm": 0.38983571508393644,
456
+ "learning_rate": 3.987341772151899e-05,
457
+ "loss": 0.6176,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.0832,
462
+ "grad_norm": 0.37337392917475115,
463
+ "learning_rate": 4.050632911392405e-05,
464
+ "loss": 0.6184,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.08448,
469
+ "grad_norm": 0.3668068115925863,
470
+ "learning_rate": 4.113924050632912e-05,
471
+ "loss": 0.6194,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.08576,
476
+ "grad_norm": 0.36138503055306903,
477
+ "learning_rate": 4.177215189873418e-05,
478
+ "loss": 0.6077,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.08704,
483
+ "grad_norm": 0.43361127462043814,
484
+ "learning_rate": 4.240506329113924e-05,
485
+ "loss": 0.6147,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.08832,
490
+ "grad_norm": 0.33520423726109644,
491
+ "learning_rate": 4.3037974683544305e-05,
492
+ "loss": 0.6118,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.0896,
497
+ "grad_norm": 0.4381154362148859,
498
+ "learning_rate": 4.367088607594937e-05,
499
+ "loss": 0.6031,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.09088,
504
+ "grad_norm": 0.3717345864324632,
505
+ "learning_rate": 4.430379746835443e-05,
506
+ "loss": 0.6031,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.09216,
511
+ "grad_norm": 0.4861728465398392,
512
+ "learning_rate": 4.49367088607595e-05,
513
+ "loss": 0.6006,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.09344,
518
+ "grad_norm": 0.3264992939190504,
519
+ "learning_rate": 4.556962025316456e-05,
520
+ "loss": 0.6151,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.09472,
525
+ "grad_norm": 0.4319794925001871,
526
+ "learning_rate": 4.6202531645569625e-05,
527
+ "loss": 0.6058,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.096,
532
+ "grad_norm": 0.4616345840492333,
533
+ "learning_rate": 4.683544303797468e-05,
534
+ "loss": 0.5967,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.09728,
539
+ "grad_norm": 0.4405721152587957,
540
+ "learning_rate": 4.7468354430379746e-05,
541
+ "loss": 0.6002,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.09856,
546
+ "grad_norm": 0.5122605377853799,
547
+ "learning_rate": 4.810126582278481e-05,
548
+ "loss": 0.6076,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.09984,
553
+ "grad_norm": 0.45313870340097556,
554
+ "learning_rate": 4.8734177215189874e-05,
555
+ "loss": 0.6074,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.10112,
560
+ "grad_norm": 0.4340044755876676,
561
+ "learning_rate": 4.936708860759494e-05,
562
+ "loss": 0.606,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.1024,
567
+ "grad_norm": 0.4987172862476422,
568
+ "learning_rate": 5e-05,
569
+ "loss": 0.6158,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.10368,
574
+ "grad_norm": 0.6226880208665108,
575
+ "learning_rate": 4.999974965737065e-05,
576
+ "loss": 0.621,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.10496,
581
+ "grad_norm": 0.5448293131914782,
582
+ "learning_rate": 4.999899863449631e-05,
583
+ "loss": 0.6014,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.10624,
588
+ "grad_norm": 0.3427022601926917,
589
+ "learning_rate": 4.999774694641803e-05,
590
+ "loss": 0.6198,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.10752,
595
+ "grad_norm": 0.5005152113593655,
596
+ "learning_rate": 4.999599461820387e-05,
597
+ "loss": 0.6054,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.1088,
602
+ "grad_norm": 0.5702968806820528,
603
+ "learning_rate": 4.999374168494844e-05,
604
+ "loss": 0.6069,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.11008,
609
+ "grad_norm": 0.4671310661706222,
610
+ "learning_rate": 4.999098819177214e-05,
611
+ "loss": 0.6017,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.11136,
616
+ "grad_norm": 0.46081768174689064,
617
+ "learning_rate": 4.9987734193820324e-05,
618
+ "loss": 0.5988,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.11264,
623
+ "grad_norm": 0.5448729856183013,
624
+ "learning_rate": 4.9983979756262136e-05,
625
+ "loss": 0.6181,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.11392,
630
+ "grad_norm": 0.5095775592779056,
631
+ "learning_rate": 4.9979724954289244e-05,
632
+ "loss": 0.608,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.1152,
637
+ "grad_norm": 0.41119162739543413,
638
+ "learning_rate": 4.997496987311431e-05,
639
+ "loss": 0.5979,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.11648,
644
+ "grad_norm": 0.45501958535738946,
645
+ "learning_rate": 4.996971460796929e-05,
646
+ "loss": 0.6019,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.11776,
651
+ "grad_norm": 0.4287172104360816,
652
+ "learning_rate": 4.9963959264103544e-05,
653
+ "loss": 0.5955,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.11904,
658
+ "grad_norm": 0.409872269342458,
659
+ "learning_rate": 4.995770395678171e-05,
660
+ "loss": 0.5927,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.12032,
665
+ "grad_norm": 0.4304173966206036,
666
+ "learning_rate": 4.995094881128138e-05,
667
+ "loss": 0.5967,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.1216,
672
+ "grad_norm": 0.4229799776298517,
673
+ "learning_rate": 4.994369396289063e-05,
674
+ "loss": 0.6084,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.12288,
679
+ "grad_norm": 0.4509596954971553,
680
+ "learning_rate": 4.9935939556905295e-05,
681
+ "loss": 0.6134,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.12416,
686
+ "grad_norm": 0.467661146414229,
687
+ "learning_rate": 4.992768574862603e-05,
688
+ "loss": 0.5986,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.12544,
693
+ "grad_norm": 0.42432875998240194,
694
+ "learning_rate": 4.9918932703355256e-05,
695
+ "loss": 0.6028,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.12672,
700
+ "grad_norm": 0.43479377184835605,
701
+ "learning_rate": 4.990968059639379e-05,
702
+ "loss": 0.5942,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.128,
707
+ "grad_norm": 0.3680676685801686,
708
+ "learning_rate": 4.989992961303738e-05,
709
+ "loss": 0.5994,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.12928,
714
+ "grad_norm": 0.3956815409903461,
715
+ "learning_rate": 4.9889679948572974e-05,
716
+ "loss": 0.5871,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.13056,
721
+ "grad_norm": 0.34354949934586104,
722
+ "learning_rate": 4.98789318082748e-05,
723
+ "loss": 0.5873,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.13184,
728
+ "grad_norm": 0.3608260963951222,
729
+ "learning_rate": 4.986768540740028e-05,
730
+ "loss": 0.5883,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.13312,
735
+ "grad_norm": 0.3937004101078116,
736
+ "learning_rate": 4.98559409711857e-05,
737
+ "loss": 0.6029,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.1344,
742
+ "grad_norm": 0.3401718481532899,
743
+ "learning_rate": 4.9843698734841705e-05,
744
+ "loss": 0.5983,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.13568,
749
+ "grad_norm": 0.4371868869288284,
750
+ "learning_rate": 4.983095894354858e-05,
751
+ "loss": 0.5866,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.13696,
756
+ "grad_norm": 0.3722813571279646,
757
+ "learning_rate": 4.981772185245135e-05,
758
+ "loss": 0.5954,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.13824,
763
+ "grad_norm": 0.36493596395606354,
764
+ "learning_rate": 4.980398772665468e-05,
765
+ "loss": 0.5806,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.13952,
770
+ "grad_norm": 0.43678937522389644,
771
+ "learning_rate": 4.9789756841217546e-05,
772
+ "loss": 0.595,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.1408,
777
+ "grad_norm": 0.34968596729530604,
778
+ "learning_rate": 4.977502948114772e-05,
779
+ "loss": 0.5999,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.14208,
784
+ "grad_norm": 0.4035249077012057,
785
+ "learning_rate": 4.9759805941396075e-05,
786
+ "loss": 0.582,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.14336,
791
+ "grad_norm": 0.3396387531525401,
792
+ "learning_rate": 4.974408652685072e-05,
793
+ "loss": 0.5912,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.14464,
798
+ "grad_norm": 0.3888124435581031,
799
+ "learning_rate": 4.9727871552330794e-05,
800
+ "loss": 0.5994,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.14592,
805
+ "grad_norm": 0.3487289265208422,
806
+ "learning_rate": 4.971116134258025e-05,
807
+ "loss": 0.598,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.1472,
812
+ "grad_norm": 0.34084258932596606,
813
+ "learning_rate": 4.969395623226133e-05,
814
+ "loss": 0.5965,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.14848,
819
+ "grad_norm": 0.33211872605390524,
820
+ "learning_rate": 4.967625656594782e-05,
821
+ "loss": 0.5984,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.14976,
826
+ "grad_norm": 0.31055192632357626,
827
+ "learning_rate": 4.9658062698118213e-05,
828
+ "loss": 0.593,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.15104,
833
+ "grad_norm": 0.35790400007793166,
834
+ "learning_rate": 4.963937499314857e-05,
835
+ "loss": 0.6035,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.15232,
840
+ "grad_norm": 0.31118450185510343,
841
+ "learning_rate": 4.962019382530521e-05,
842
+ "loss": 0.5811,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.1536,
847
+ "grad_norm": 0.3326176465041298,
848
+ "learning_rate": 4.960051957873725e-05,
849
+ "loss": 0.581,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.15488,
854
+ "grad_norm": 0.30210249377153575,
855
+ "learning_rate": 4.958035264746893e-05,
856
+ "loss": 0.5837,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.15616,
861
+ "grad_norm": 0.3480385124671555,
862
+ "learning_rate": 4.955969343539162e-05,
863
+ "loss": 0.5768,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.15744,
868
+ "grad_norm": 0.3003392569743352,
869
+ "learning_rate": 4.9538542356255866e-05,
870
+ "loss": 0.5938,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.15872,
875
+ "grad_norm": 0.32082565179488104,
876
+ "learning_rate": 4.9516899833663e-05,
877
+ "loss": 0.5948,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.16,
882
+ "grad_norm": 0.3564349708048278,
883
+ "learning_rate": 4.949476630105669e-05,
884
+ "loss": 0.595,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.16128,
889
+ "grad_norm": 0.32049541972124757,
890
+ "learning_rate": 4.94721422017143e-05,
891
+ "loss": 0.5838,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.16256,
896
+ "grad_norm": 0.3317680882353993,
897
+ "learning_rate": 4.944902798873794e-05,
898
+ "loss": 0.5952,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.16384,
903
+ "grad_norm": 0.3381465061198974,
904
+ "learning_rate": 4.942542412504543e-05,
905
+ "loss": 0.6004,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.16512,
910
+ "grad_norm": 0.38351657127693595,
911
+ "learning_rate": 4.940133108336105e-05,
912
+ "loss": 0.6014,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.1664,
917
+ "grad_norm": 0.3276142738951724,
918
+ "learning_rate": 4.9376749346206006e-05,
919
+ "loss": 0.5853,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.16768,
924
+ "grad_norm": 0.37146400882939534,
925
+ "learning_rate": 4.935167940588887e-05,
926
+ "loss": 0.5995,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.16896,
931
+ "grad_norm": 0.32804274509201087,
932
+ "learning_rate": 4.9326121764495596e-05,
933
+ "loss": 0.5955,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.17024,
938
+ "grad_norm": 0.3344845806030499,
939
+ "learning_rate": 4.9300076933879574e-05,
940
+ "loss": 0.5818,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.17152,
945
+ "grad_norm": 0.3479572078392269,
946
+ "learning_rate": 4.92735454356513e-05,
947
+ "loss": 0.5941,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.1728,
952
+ "grad_norm": 0.34868252062960353,
953
+ "learning_rate": 4.924652780116799e-05,
954
+ "loss": 0.5898,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.17408,
959
+ "grad_norm": 0.35674279058993497,
960
+ "learning_rate": 4.921902457152289e-05,
961
+ "loss": 0.5899,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.17536,
966
+ "grad_norm": 0.3672614416380493,
967
+ "learning_rate": 4.9191036297534454e-05,
968
+ "loss": 0.585,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.17664,
973
+ "grad_norm": 0.4039478601084677,
974
+ "learning_rate": 4.916256353973535e-05,
975
+ "loss": 0.5994,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.17792,
980
+ "grad_norm": 0.3428958061155067,
981
+ "learning_rate": 4.913360686836117e-05,
982
+ "loss": 0.575,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.1792,
987
+ "grad_norm": 0.4024960602256603,
988
+ "learning_rate": 4.910416686333906e-05,
989
+ "loss": 0.5913,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.18048,
994
+ "grad_norm": 0.31040065034832104,
995
+ "learning_rate": 4.907424411427608e-05,
996
+ "loss": 0.5761,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.18176,
1001
+ "grad_norm": 0.359237099401051,
1002
+ "learning_rate": 4.90438392204474e-05,
1003
+ "loss": 0.5885,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.18304,
1008
+ "grad_norm": 0.3357545415879296,
1009
+ "learning_rate": 4.901295279078431e-05,
1010
+ "loss": 0.5907,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.18432,
1015
+ "grad_norm": 0.2846403022642179,
1016
+ "learning_rate": 4.898158544386201e-05,
1017
+ "loss": 0.5886,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.1856,
1022
+ "grad_norm": 0.3636245125193307,
1023
+ "learning_rate": 4.894973780788722e-05,
1024
+ "loss": 0.5816,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.18688,
1029
+ "grad_norm": 0.25440894793562924,
1030
+ "learning_rate": 4.8917410520685635e-05,
1031
+ "loss": 0.576,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.18816,
1036
+ "grad_norm": 0.3380189678855273,
1037
+ "learning_rate": 4.888460422968908e-05,
1038
+ "loss": 0.5931,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.18944,
1043
+ "grad_norm": 0.3096794617975588,
1044
+ "learning_rate": 4.885131959192262e-05,
1045
+ "loss": 0.5829,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.19072,
1050
+ "grad_norm": 0.280174710159943,
1051
+ "learning_rate": 4.881755727399134e-05,
1052
+ "loss": 0.5794,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.192,
1057
+ "grad_norm": 0.31769340776297994,
1058
+ "learning_rate": 4.878331795206705e-05,
1059
+ "loss": 0.5729,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.19328,
1064
+ "grad_norm": 0.31671973855902796,
1065
+ "learning_rate": 4.8748602311874694e-05,
1066
+ "loss": 0.5905,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.19456,
1071
+ "grad_norm": 0.32614211009906474,
1072
+ "learning_rate": 4.8713411048678635e-05,
1073
+ "loss": 0.5855,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.19584,
1078
+ "grad_norm": 0.29921149443441614,
1079
+ "learning_rate": 4.8677744867268764e-05,
1080
+ "loss": 0.5779,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.19712,
1085
+ "grad_norm": 0.3558339409344647,
1086
+ "learning_rate": 4.8641604481946314e-05,
1087
+ "loss": 0.5892,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.1984,
1092
+ "grad_norm": 0.285079025062,
1093
+ "learning_rate": 4.8604990616509616e-05,
1094
+ "loss": 0.5912,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.19968,
1099
+ "grad_norm": 0.32189736402098207,
1100
+ "learning_rate": 4.856790400423958e-05,
1101
+ "loss": 0.5881,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.20096,
1106
+ "grad_norm": 0.3293153125716864,
1107
+ "learning_rate": 4.8530345387885004e-05,
1108
+ "loss": 0.5679,
1109
+ "step": 157
1110
+ }
1111
+ ],
1112
+ "logging_steps": 1,
1113
+ "max_steps": 781,
1114
+ "num_input_tokens_seen": 0,
1115
+ "num_train_epochs": 1,
1116
+ "save_steps": 157,
1117
+ "stateful_callbacks": {
1118
+ "TrainerControl": {
1119
+ "args": {
1120
+ "should_epoch_stop": false,
1121
+ "should_evaluate": false,
1122
+ "should_log": false,
1123
+ "should_save": true,
1124
+ "should_training_stop": false
1125
+ },
1126
+ "attributes": {}
1127
+ }
1128
+ },
1129
+ "total_flos": 194598775488512.0,
1130
+ "train_batch_size": 2,
1131
+ "trial_name": null,
1132
+ "trial_params": null
1133
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d4ae4b6b6214515a5dd9c49ec78773756cbcc25fe748eaf748b8059d9427af
3
+ size 8081
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)