Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +85 -0
- config.json +38 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00013.safetensors +3 -0
- model-00002-of-00013.safetensors +3 -0
- model-00003-of-00013.safetensors +3 -0
- model-00004-of-00013.safetensors +3 -0
- model-00005-of-00013.safetensors +3 -0
- model-00006-of-00013.safetensors +3 -0
- model-00007-of-00013.safetensors +3 -0
- model-00008-of-00013.safetensors +3 -0
- model-00009-of-00013.safetensors +3 -0
- model-00010-of-00013.safetensors +3 -0
- model-00011-of-00013.safetensors +3 -0
- model-00012-of-00013.safetensors +3 -0
- model-00013-of-00013.safetensors +3 -0
- model.safetensors.index.json +0 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +3534 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
28 |
+
{%- elif message.role == "assistant" %}
|
29 |
+
{%- set content = message.content %}
|
30 |
+
{%- set reasoning_content = '' %}
|
31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
33 |
+
{%- else %}
|
34 |
+
{%- if '</think>' in message.content %}
|
35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
37 |
+
{%- endif %}
|
38 |
+
{%- endif %}
|
39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
42 |
+
{%- else %}
|
43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- else %}
|
46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- if message.tool_calls %}
|
49 |
+
{%- for tool_call in message.tool_calls %}
|
50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
51 |
+
{{- '\n' }}
|
52 |
+
{%- endif %}
|
53 |
+
{%- if tool_call.function %}
|
54 |
+
{%- set tool_call = tool_call.function %}
|
55 |
+
{%- endif %}
|
56 |
+
{{- '<tool_call>\n{"name": "' }}
|
57 |
+
{{- tool_call.name }}
|
58 |
+
{{- '", "arguments": ' }}
|
59 |
+
{%- if tool_call.arguments is string %}
|
60 |
+
{{- tool_call.arguments }}
|
61 |
+
{%- else %}
|
62 |
+
{{- tool_call.arguments | tojson }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '}\n</tool_call>' }}
|
65 |
+
{%- endfor %}
|
66 |
+
{%- endif %}
|
67 |
+
{{- '<|im_end|>\n' }}
|
68 |
+
{%- elif message.role == "tool" %}
|
69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
70 |
+
{{- '<|im_start|>user' }}
|
71 |
+
{%- endif %}
|
72 |
+
{{- '\n<tool_response>\n' }}
|
73 |
+
{{- message.content }}
|
74 |
+
{{- '\n</tool_response>' }}
|
75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
76 |
+
{{- '<|im_end|>\n' }}
|
77 |
+
{%- endif %}
|
78 |
+
{%- endif %}
|
79 |
+
{%- endfor %}
|
80 |
+
{%- if add_generation_prompt %}
|
81 |
+
{{- '<|im_start|>assistant\n' }}
|
82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
84 |
+
{%- endif %}
|
85 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3MoeForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"decoder_sparse_step": 1,
|
9 |
+
"eos_token_id": 151643,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 6144,
|
15 |
+
"max_position_embeddings": 32768,
|
16 |
+
"max_window_layers": 48,
|
17 |
+
"mlp_only_layers": [],
|
18 |
+
"model_type": "qwen3_moe",
|
19 |
+
"moe_intermediate_size": 768,
|
20 |
+
"norm_topk_prob": true,
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_experts": 128,
|
23 |
+
"num_experts_per_tok": 8,
|
24 |
+
"num_hidden_layers": 48,
|
25 |
+
"num_key_value_heads": 4,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 1000000.0,
|
30 |
+
"router_aux_loss_coef": 0.001,
|
31 |
+
"sliding_window": null,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.52.0.dev0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"vocab_size": 151936
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.52.0.dev0"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51770fc32300d1cf493d51191dd89b970366f070534de05db3d0bc95a7c4e773
|
3 |
+
size 4997184968
|
model-00002-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11889c5b5e71d0260a932a78c1c01cb9f589fb29f58cfd4053986d645c7f648b
|
3 |
+
size 4997741608
|
model-00003-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2ba6fb7772d2438e4462c41c7f3ddf1d85d9aab8d99e077660a42eab699716
|
3 |
+
size 4997742208
|
model-00004-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e1d27cc0bfc2dcfa134018d09715f6b0903f7c1a45007b9e766c3490f512be0
|
3 |
+
size 4997743184
|
model-00005-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08a544387475dadbad24f444f698e78c754d3edc46f7a53816d486d16c9cbdd7
|
3 |
+
size 4997743184
|
model-00006-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6afea33d5738564560266b9f32c932bd4dae8f4e3f0c80faa903ee2b8ee64680
|
3 |
+
size 4997743184
|
model-00007-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bece2bb3843699eeb2a8c0701c7ba30254614b291754e27a35ddca0f28cccdc
|
3 |
+
size 4997743184
|
model-00008-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3f263a5cf21009e1239b1a7ec8514ed0737d4697ece9eff9c5b20994c166a01
|
3 |
+
size 4997743184
|
model-00009-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20092252f4d3adbb6a018caea9b45a42e6aa46aa7d03710d2162067a73e27a34
|
3 |
+
size 4997743184
|
model-00010-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56456e43ccf1e24c262543e7e331efad7d50bebfb8a86e337df80555f59c761b
|
3 |
+
size 4997743184
|
model-00011-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1156a42782512f464cb0fb00444e7df78902ae05acc33dfa78cfb83f5412c7ac
|
3 |
+
size 4997743184
|
model-00012-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f5b3435d011d25a27ee8c4c1137c217189c80f525190b208892c91649b2a604
|
3 |
+
size 4997743184
|
model-00013-of-00013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b85282753c55184779888ea130d192991b31f0954d95c29f5b68f232fc669c3
|
3 |
+
size 1094220288
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:478b41e9f26d338fd8f896e08cad1adab7c423b61f1b45754113bc78d256a3f9
|
3 |
+
size 16389
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce29a8767a7d907dd24987aa2c3e654d4317f3042fbc13b5b72cadb46d43311a
|
3 |
+
size 16389
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a48db011646b4e9a867bf12f4a233cad5dfbfe309686f8996c250196d3783a
|
3 |
+
size 16389
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9562ee822472a4f01dcd6349ab3d1ef42a48915fe3b92e843a0c37db53c8421
|
3 |
+
size 16389
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d2767d83c3bf27f12db022b0632e2c4f8c164274ba75e380cf18f9d5f21819
|
3 |
+
size 16389
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76816358d4e5db8149d60d55234db658d67a13c0c1ce05d7404cf7125a676a5c
|
3 |
+
size 16389
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1562e7520c977d178183d641f70abcf3f57da2489938756cfbebf9b6e6c1a9fd
|
3 |
+
size 16389
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b6cabaed045c5398cd1b732f7ec48bd363f3b43cd24e0e70e641a42bd00c28
|
3 |
+
size 16389
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f34f8e686fb8dea4a451e138b9fd10e6565e032ed64163a06c930416c9797f1
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.9033423667570009,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 500,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0018066847335140017,
|
14 |
+
"grad_norm": 2.832630319293266,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.8251,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.0036133694670280035,
|
21 |
+
"grad_norm": 2.8814154596739523,
|
22 |
+
"learning_rate": 1.7857142857142857e-06,
|
23 |
+
"loss": 0.8284,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.005420054200542005,
|
28 |
+
"grad_norm": 2.8672479525404393,
|
29 |
+
"learning_rate": 3.5714285714285714e-06,
|
30 |
+
"loss": 0.8426,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.007226738934056007,
|
35 |
+
"grad_norm": 2.643031570449242,
|
36 |
+
"learning_rate": 5.357142857142857e-06,
|
37 |
+
"loss": 0.833,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.009033423667570008,
|
42 |
+
"grad_norm": 2.1478303654814543,
|
43 |
+
"learning_rate": 7.142857142857143e-06,
|
44 |
+
"loss": 0.8088,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01084010840108401,
|
49 |
+
"grad_norm": 1.5753412879973332,
|
50 |
+
"learning_rate": 8.92857142857143e-06,
|
51 |
+
"loss": 0.788,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.012646793134598013,
|
56 |
+
"grad_norm": 1.3634423019903519,
|
57 |
+
"learning_rate": 1.0714285714285714e-05,
|
58 |
+
"loss": 0.7604,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.014453477868112014,
|
63 |
+
"grad_norm": 2.3139079658948196,
|
64 |
+
"learning_rate": 1.25e-05,
|
65 |
+
"loss": 0.7509,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.016260162601626018,
|
70 |
+
"grad_norm": 2.448608967945305,
|
71 |
+
"learning_rate": 1.4285714285714285e-05,
|
72 |
+
"loss": 0.745,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.018066847335140017,
|
77 |
+
"grad_norm": 1.9589673467563187,
|
78 |
+
"learning_rate": 1.6071428571428572e-05,
|
79 |
+
"loss": 0.7276,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01987353206865402,
|
84 |
+
"grad_norm": 2.031846143885504,
|
85 |
+
"learning_rate": 1.785714285714286e-05,
|
86 |
+
"loss": 0.7224,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.02168021680216802,
|
91 |
+
"grad_norm": 1.6786113326236527,
|
92 |
+
"learning_rate": 1.9642857142857145e-05,
|
93 |
+
"loss": 0.7369,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.023486901535682024,
|
98 |
+
"grad_norm": 1.144193737080141,
|
99 |
+
"learning_rate": 2.1428571428571428e-05,
|
100 |
+
"loss": 0.7028,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.025293586269196026,
|
105 |
+
"grad_norm": 0.9625788784035472,
|
106 |
+
"learning_rate": 2.3214285714285715e-05,
|
107 |
+
"loss": 0.6887,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.02710027100271003,
|
112 |
+
"grad_norm": 0.921419847670256,
|
113 |
+
"learning_rate": 2.5e-05,
|
114 |
+
"loss": 0.6862,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.028906955736224028,
|
119 |
+
"grad_norm": 0.7965769511603074,
|
120 |
+
"learning_rate": 2.6785714285714288e-05,
|
121 |
+
"loss": 0.6764,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03071364046973803,
|
126 |
+
"grad_norm": 0.6801380446101467,
|
127 |
+
"learning_rate": 2.857142857142857e-05,
|
128 |
+
"loss": 0.6818,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.032520325203252036,
|
133 |
+
"grad_norm": 0.6998937187660732,
|
134 |
+
"learning_rate": 3.0357142857142857e-05,
|
135 |
+
"loss": 0.6731,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.03432700993676603,
|
140 |
+
"grad_norm": 0.6089235838747957,
|
141 |
+
"learning_rate": 3.2142857142857144e-05,
|
142 |
+
"loss": 0.6677,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.036133694670280034,
|
147 |
+
"grad_norm": 0.617214969717237,
|
148 |
+
"learning_rate": 3.392857142857143e-05,
|
149 |
+
"loss": 0.6451,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.037940379403794036,
|
154 |
+
"grad_norm": 0.5695030728447872,
|
155 |
+
"learning_rate": 3.571428571428572e-05,
|
156 |
+
"loss": 0.6509,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.03974706413730804,
|
161 |
+
"grad_norm": 0.5510991689527137,
|
162 |
+
"learning_rate": 3.7500000000000003e-05,
|
163 |
+
"loss": 0.6414,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.04155374887082204,
|
168 |
+
"grad_norm": 0.4932626907606534,
|
169 |
+
"learning_rate": 3.928571428571429e-05,
|
170 |
+
"loss": 0.6426,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.04336043360433604,
|
175 |
+
"grad_norm": 0.4715287003856143,
|
176 |
+
"learning_rate": 4.107142857142857e-05,
|
177 |
+
"loss": 0.649,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.045167118337850046,
|
182 |
+
"grad_norm": 0.5111132305870126,
|
183 |
+
"learning_rate": 4.2857142857142856e-05,
|
184 |
+
"loss": 0.6307,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.04697380307136405,
|
189 |
+
"grad_norm": 0.4189664518094356,
|
190 |
+
"learning_rate": 4.464285714285715e-05,
|
191 |
+
"loss": 0.646,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.04878048780487805,
|
196 |
+
"grad_norm": 0.41394146366330414,
|
197 |
+
"learning_rate": 4.642857142857143e-05,
|
198 |
+
"loss": 0.6254,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.05058717253839205,
|
203 |
+
"grad_norm": 0.4038490375860642,
|
204 |
+
"learning_rate": 4.8214285714285716e-05,
|
205 |
+
"loss": 0.6274,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.052393857271906055,
|
210 |
+
"grad_norm": 0.4769336805582058,
|
211 |
+
"learning_rate": 5e-05,
|
212 |
+
"loss": 0.639,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.05420054200542006,
|
217 |
+
"grad_norm": 0.4255400104559047,
|
218 |
+
"learning_rate": 4.999955240022902e-05,
|
219 |
+
"loss": 0.6411,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.05600722673893405,
|
224 |
+
"grad_norm": 0.4216831925825391,
|
225 |
+
"learning_rate": 4.999820961694372e-05,
|
226 |
+
"loss": 0.6306,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.057813911472448055,
|
231 |
+
"grad_norm": 0.41732958435117024,
|
232 |
+
"learning_rate": 4.999597169822646e-05,
|
233 |
+
"loss": 0.6192,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.05962059620596206,
|
238 |
+
"grad_norm": 0.4703410995507783,
|
239 |
+
"learning_rate": 4.9992838724212585e-05,
|
240 |
+
"loss": 0.6292,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06142728093947606,
|
245 |
+
"grad_norm": 0.4125292289682916,
|
246 |
+
"learning_rate": 4.9988810807087584e-05,
|
247 |
+
"loss": 0.617,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.06323396567299007,
|
252 |
+
"grad_norm": 0.43614472427817214,
|
253 |
+
"learning_rate": 4.998388809108303e-05,
|
254 |
+
"loss": 0.6225,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.06504065040650407,
|
259 |
+
"grad_norm": 0.4063552045783515,
|
260 |
+
"learning_rate": 4.997807075247146e-05,
|
261 |
+
"loss": 0.619,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.06684733514001806,
|
266 |
+
"grad_norm": 0.39117094206803776,
|
267 |
+
"learning_rate": 4.997135899956001e-05,
|
268 |
+
"loss": 0.623,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.06865401987353206,
|
273 |
+
"grad_norm": 0.39369760473512966,
|
274 |
+
"learning_rate": 4.9963753072683025e-05,
|
275 |
+
"loss": 0.6168,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07046070460704607,
|
280 |
+
"grad_norm": 0.4154306060431687,
|
281 |
+
"learning_rate": 4.9955253244193375e-05,
|
282 |
+
"loss": 0.6189,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07226738934056007,
|
287 |
+
"grad_norm": 0.3541609359278954,
|
288 |
+
"learning_rate": 4.994585981845278e-05,
|
289 |
+
"loss": 0.6071,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07407407407407407,
|
294 |
+
"grad_norm": 0.3992926841537614,
|
295 |
+
"learning_rate": 4.9935573131820854e-05,
|
296 |
+
"loss": 0.6139,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.07588075880758807,
|
301 |
+
"grad_norm": 0.3317819156235585,
|
302 |
+
"learning_rate": 4.9924393552643075e-05,
|
303 |
+
"loss": 0.6069,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.07768744354110207,
|
308 |
+
"grad_norm": 0.336530194583723,
|
309 |
+
"learning_rate": 4.991232148123761e-05,
|
310 |
+
"loss": 0.6065,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.07949412827461608,
|
315 |
+
"grad_norm": 0.35877112586532767,
|
316 |
+
"learning_rate": 4.989935734988098e-05,
|
317 |
+
"loss": 0.6016,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.08130081300813008,
|
322 |
+
"grad_norm": 0.35090523348040276,
|
323 |
+
"learning_rate": 4.988550162279255e-05,
|
324 |
+
"loss": 0.6099,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.08310749774164408,
|
329 |
+
"grad_norm": 0.35287382458055194,
|
330 |
+
"learning_rate": 4.987075479611796e-05,
|
331 |
+
"loss": 0.6099,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.08491418247515808,
|
336 |
+
"grad_norm": 0.32213264022796506,
|
337 |
+
"learning_rate": 4.985511739791129e-05,
|
338 |
+
"loss": 0.6131,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.08672086720867209,
|
343 |
+
"grad_norm": 0.36843991679989446,
|
344 |
+
"learning_rate": 4.983858998811622e-05,
|
345 |
+
"loss": 0.5998,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.08852755194218609,
|
350 |
+
"grad_norm": 0.3119449638536654,
|
351 |
+
"learning_rate": 4.9821173158545936e-05,
|
352 |
+
"loss": 0.6074,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09033423667570009,
|
357 |
+
"grad_norm": 0.3596254580877715,
|
358 |
+
"learning_rate": 4.980286753286195e-05,
|
359 |
+
"loss": 0.607,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.0921409214092141,
|
364 |
+
"grad_norm": 0.3494633147065118,
|
365 |
+
"learning_rate": 4.978367376655177e-05,
|
366 |
+
"loss": 0.597,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.0939476061427281,
|
371 |
+
"grad_norm": 0.3215755214011683,
|
372 |
+
"learning_rate": 4.976359254690543e-05,
|
373 |
+
"loss": 0.6134,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.0957542908762421,
|
378 |
+
"grad_norm": 0.37739474462493855,
|
379 |
+
"learning_rate": 4.974262459299087e-05,
|
380 |
+
"loss": 0.5996,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.0975609756097561,
|
385 |
+
"grad_norm": 0.32124804727597284,
|
386 |
+
"learning_rate": 4.972077065562821e-05,
|
387 |
+
"loss": 0.5898,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.0993676603432701,
|
392 |
+
"grad_norm": 0.324600744509681,
|
393 |
+
"learning_rate": 4.969803151736284e-05,
|
394 |
+
"loss": 0.6052,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.1011743450767841,
|
399 |
+
"grad_norm": 0.3956502392340303,
|
400 |
+
"learning_rate": 4.9674407992437394e-05,
|
401 |
+
"loss": 0.6092,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.10298102981029811,
|
406 |
+
"grad_norm": 0.33116382619550266,
|
407 |
+
"learning_rate": 4.964990092676263e-05,
|
408 |
+
"loss": 0.594,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.10478771454381211,
|
413 |
+
"grad_norm": 0.37345600495980963,
|
414 |
+
"learning_rate": 4.962451119788709e-05,
|
415 |
+
"loss": 0.6036,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.10659439927732611,
|
420 |
+
"grad_norm": 0.4365412925699736,
|
421 |
+
"learning_rate": 4.959823971496574e-05,
|
422 |
+
"loss": 0.5898,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.10840108401084012,
|
427 |
+
"grad_norm": 0.3776292751127924,
|
428 |
+
"learning_rate": 4.957108741872736e-05,
|
429 |
+
"loss": 0.5906,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.1102077687443541,
|
434 |
+
"grad_norm": 0.40075830526111134,
|
435 |
+
"learning_rate": 4.954305528144085e-05,
|
436 |
+
"loss": 0.5944,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.1120144534778681,
|
441 |
+
"grad_norm": 0.4517103844655375,
|
442 |
+
"learning_rate": 4.9514144306880506e-05,
|
443 |
+
"loss": 0.5996,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.11382113821138211,
|
448 |
+
"grad_norm": 0.31378292499092986,
|
449 |
+
"learning_rate": 4.9484355530289944e-05,
|
450 |
+
"loss": 0.5989,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.11562782294489611,
|
455 |
+
"grad_norm": 0.44402114949553473,
|
456 |
+
"learning_rate": 4.9453690018345144e-05,
|
457 |
+
"loss": 0.5987,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.11743450767841011,
|
462 |
+
"grad_norm": 0.34227700766387986,
|
463 |
+
"learning_rate": 4.9422148869116194e-05,
|
464 |
+
"loss": 0.5917,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.11924119241192412,
|
469 |
+
"grad_norm": 0.43008185805872134,
|
470 |
+
"learning_rate": 4.938973321202799e-05,
|
471 |
+
"loss": 0.5953,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.12104787714543812,
|
476 |
+
"grad_norm": 0.38842555725237277,
|
477 |
+
"learning_rate": 4.935644420781978e-05,
|
478 |
+
"loss": 0.5857,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.12285456187895212,
|
483 |
+
"grad_norm": 0.3713436172167038,
|
484 |
+
"learning_rate": 4.932228304850363e-05,
|
485 |
+
"loss": 0.6011,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.12466124661246612,
|
490 |
+
"grad_norm": 0.3894370842528672,
|
491 |
+
"learning_rate": 4.928725095732169e-05,
|
492 |
+
"loss": 0.6021,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.12646793134598014,
|
497 |
+
"grad_norm": 0.339669153515889,
|
498 |
+
"learning_rate": 4.925134918870245e-05,
|
499 |
+
"loss": 0.606,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.12827461607949414,
|
504 |
+
"grad_norm": 0.3025124256569472,
|
505 |
+
"learning_rate": 4.9214579028215776e-05,
|
506 |
+
"loss": 0.5792,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.13008130081300814,
|
511 |
+
"grad_norm": 0.434680785801272,
|
512 |
+
"learning_rate": 4.917694179252692e-05,
|
513 |
+
"loss": 0.5971,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.13188798554652212,
|
518 |
+
"grad_norm": 0.3427248939820401,
|
519 |
+
"learning_rate": 4.91384388293493e-05,
|
520 |
+
"loss": 0.5953,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.13369467028003612,
|
525 |
+
"grad_norm": 0.32131946418871765,
|
526 |
+
"learning_rate": 4.909907151739633e-05,
|
527 |
+
"loss": 0.5867,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.13550135501355012,
|
532 |
+
"grad_norm": 0.38714181023118555,
|
533 |
+
"learning_rate": 4.9058841266332e-05,
|
534 |
+
"loss": 0.5864,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.13730803974706413,
|
539 |
+
"grad_norm": 0.32023671090807154,
|
540 |
+
"learning_rate": 4.90177495167204e-05,
|
541 |
+
"loss": 0.5824,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.13911472448057813,
|
546 |
+
"grad_norm": 0.32389885781607397,
|
547 |
+
"learning_rate": 4.897579773997415e-05,
|
548 |
+
"loss": 0.5775,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.14092140921409213,
|
553 |
+
"grad_norm": 0.3563792214475127,
|
554 |
+
"learning_rate": 4.893298743830168e-05,
|
555 |
+
"loss": 0.5888,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.14272809394760613,
|
560 |
+
"grad_norm": 0.2948719879575932,
|
561 |
+
"learning_rate": 4.888932014465352e-05,
|
562 |
+
"loss": 0.5957,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.14453477868112014,
|
567 |
+
"grad_norm": 0.36025476644526794,
|
568 |
+
"learning_rate": 4.88447974226673e-05,
|
569 |
+
"loss": 0.6051,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.14634146341463414,
|
574 |
+
"grad_norm": 0.3293645043213347,
|
575 |
+
"learning_rate": 4.879942086661184e-05,
|
576 |
+
"loss": 0.5911,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.14814814814814814,
|
581 |
+
"grad_norm": 0.3994476353445095,
|
582 |
+
"learning_rate": 4.875319210133004e-05,
|
583 |
+
"loss": 0.5832,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.14995483288166214,
|
588 |
+
"grad_norm": 0.37762441915237965,
|
589 |
+
"learning_rate": 4.870611278218066e-05,
|
590 |
+
"loss": 0.5926,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.15176151761517614,
|
595 |
+
"grad_norm": 0.355946945045864,
|
596 |
+
"learning_rate": 4.865818459497911e-05,
|
597 |
+
"loss": 0.5867,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.15356820234869015,
|
602 |
+
"grad_norm": 0.3082633015788273,
|
603 |
+
"learning_rate": 4.860940925593703e-05,
|
604 |
+
"loss": 0.5894,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.15537488708220415,
|
609 |
+
"grad_norm": 0.3171442485534432,
|
610 |
+
"learning_rate": 4.8559788511600876e-05,
|
611 |
+
"loss": 0.5883,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.15718157181571815,
|
616 |
+
"grad_norm": 0.33086271227819347,
|
617 |
+
"learning_rate": 4.850932413878934e-05,
|
618 |
+
"loss": 0.5906,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.15898825654923215,
|
623 |
+
"grad_norm": 0.30692914814615213,
|
624 |
+
"learning_rate": 4.8458017944529776e-05,
|
625 |
+
"loss": 0.5956,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.16079494128274616,
|
630 |
+
"grad_norm": 0.36545539099223473,
|
631 |
+
"learning_rate": 4.8405871765993433e-05,
|
632 |
+
"loss": 0.5931,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.16260162601626016,
|
637 |
+
"grad_norm": 0.3072899506510622,
|
638 |
+
"learning_rate": 4.8352887470429726e-05,
|
639 |
+
"loss": 0.5836,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.16440831074977416,
|
644 |
+
"grad_norm": 0.34638810313693624,
|
645 |
+
"learning_rate": 4.8299066955099335e-05,
|
646 |
+
"loss": 0.5817,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.16621499548328816,
|
651 |
+
"grad_norm": 0.3564737814051732,
|
652 |
+
"learning_rate": 4.8244412147206284e-05,
|
653 |
+
"loss": 0.5863,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.16802168021680217,
|
658 |
+
"grad_norm": 0.32868636881313823,
|
659 |
+
"learning_rate": 4.8188925003828945e-05,
|
660 |
+
"loss": 0.5929,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.16982836495031617,
|
665 |
+
"grad_norm": 0.392631102981527,
|
666 |
+
"learning_rate": 4.813260751184992e-05,
|
667 |
+
"loss": 0.5927,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.17163504968383017,
|
672 |
+
"grad_norm": 0.3293397718810922,
|
673 |
+
"learning_rate": 4.807546168788494e-05,
|
674 |
+
"loss": 0.584,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.17344173441734417,
|
679 |
+
"grad_norm": 0.3936662171535882,
|
680 |
+
"learning_rate": 4.8017489578210604e-05,
|
681 |
+
"loss": 0.5842,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.17524841915085818,
|
686 |
+
"grad_norm": 0.3395255567851786,
|
687 |
+
"learning_rate": 4.7958693258691167e-05,
|
688 |
+
"loss": 0.5894,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.17705510388437218,
|
693 |
+
"grad_norm": 0.29751842289432334,
|
694 |
+
"learning_rate": 4.7899074834704165e-05,
|
695 |
+
"loss": 0.5821,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.17886178861788618,
|
700 |
+
"grad_norm": 0.3326294468240826,
|
701 |
+
"learning_rate": 4.783863644106502e-05,
|
702 |
+
"loss": 0.5956,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.18066847335140018,
|
707 |
+
"grad_norm": 0.30812510814822086,
|
708 |
+
"learning_rate": 4.7777380241950645e-05,
|
709 |
+
"loss": 0.5684,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.18247515808491419,
|
714 |
+
"grad_norm": 0.3005315256757652,
|
715 |
+
"learning_rate": 4.7715308430821864e-05,
|
716 |
+
"loss": 0.584,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.1842818428184282,
|
721 |
+
"grad_norm": 0.3305708538502501,
|
722 |
+
"learning_rate": 4.765242323034498e-05,
|
723 |
+
"loss": 0.6024,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.1860885275519422,
|
728 |
+
"grad_norm": 0.3280290272444959,
|
729 |
+
"learning_rate": 4.758872689231208e-05,
|
730 |
+
"loss": 0.582,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.1878952122854562,
|
735 |
+
"grad_norm": 0.34463726788525895,
|
736 |
+
"learning_rate": 4.752422169756048e-05,
|
737 |
+
"loss": 0.5782,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.1897018970189702,
|
742 |
+
"grad_norm": 0.3311757160066535,
|
743 |
+
"learning_rate": 4.745890995589101e-05,
|
744 |
+
"loss": 0.5711,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.1915085817524842,
|
749 |
+
"grad_norm": 0.3300543617059083,
|
750 |
+
"learning_rate": 4.7392794005985326e-05,
|
751 |
+
"loss": 0.5745,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.1933152664859982,
|
756 |
+
"grad_norm": 0.32539138493782704,
|
757 |
+
"learning_rate": 4.732587621532214e-05,
|
758 |
+
"loss": 0.5804,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.1951219512195122,
|
763 |
+
"grad_norm": 0.3157753652033023,
|
764 |
+
"learning_rate": 4.725815898009247e-05,
|
765 |
+
"loss": 0.5787,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.1969286359530262,
|
770 |
+
"grad_norm": 0.3251062346096308,
|
771 |
+
"learning_rate": 4.718964472511386e-05,
|
772 |
+
"loss": 0.5865,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.1987353206865402,
|
777 |
+
"grad_norm": 0.4894553315571731,
|
778 |
+
"learning_rate": 4.712033590374346e-05,
|
779 |
+
"loss": 0.5692,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.2005420054200542,
|
784 |
+
"grad_norm": 0.3004276085851418,
|
785 |
+
"learning_rate": 4.705023499779031e-05,
|
786 |
+
"loss": 0.5884,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.2023486901535682,
|
791 |
+
"grad_norm": 0.33746502514042837,
|
792 |
+
"learning_rate": 4.6979344517426345e-05,
|
793 |
+
"loss": 0.582,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.2041553748870822,
|
798 |
+
"grad_norm": 0.3099845747395724,
|
799 |
+
"learning_rate": 4.690766700109659e-05,
|
800 |
+
"loss": 0.5865,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.20596205962059622,
|
805 |
+
"grad_norm": 0.3733301703553482,
|
806 |
+
"learning_rate": 4.6835205015428246e-05,
|
807 |
+
"loss": 0.5698,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.20776874435411022,
|
812 |
+
"grad_norm": 0.34282747602950314,
|
813 |
+
"learning_rate": 4.676196115513876e-05,
|
814 |
+
"loss": 0.5859,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.20957542908762422,
|
819 |
+
"grad_norm": 0.3153984034152765,
|
820 |
+
"learning_rate": 4.668793804294294e-05,
|
821 |
+
"loss": 0.5786,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.21138211382113822,
|
826 |
+
"grad_norm": 0.31062733303888157,
|
827 |
+
"learning_rate": 4.661313832945904e-05,
|
828 |
+
"loss": 0.5914,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.21318879855465223,
|
833 |
+
"grad_norm": 0.3526434752202058,
|
834 |
+
"learning_rate": 4.653756469311381e-05,
|
835 |
+
"loss": 0.5778,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.21499548328816623,
|
840 |
+
"grad_norm": 0.32092701320505335,
|
841 |
+
"learning_rate": 4.6461219840046654e-05,
|
842 |
+
"loss": 0.5675,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.21680216802168023,
|
847 |
+
"grad_norm": 0.31990784622240265,
|
848 |
+
"learning_rate": 4.638410650401267e-05,
|
849 |
+
"loss": 0.5875,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.2186088527551942,
|
854 |
+
"grad_norm": 0.31916525522892947,
|
855 |
+
"learning_rate": 4.6306227446284775e-05,
|
856 |
+
"loss": 0.5828,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.2204155374887082,
|
861 |
+
"grad_norm": 0.2857034455044278,
|
862 |
+
"learning_rate": 4.622758545555485e-05,
|
863 |
+
"loss": 0.587,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.2222222222222222,
|
868 |
+
"grad_norm": 0.2986742337447326,
|
869 |
+
"learning_rate": 4.614818334783384e-05,
|
870 |
+
"loss": 0.5767,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.2240289069557362,
|
875 |
+
"grad_norm": 0.3259233753556454,
|
876 |
+
"learning_rate": 4.606802396635098e-05,
|
877 |
+
"loss": 0.5637,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.22583559168925021,
|
882 |
+
"grad_norm": 0.29847074968260895,
|
883 |
+
"learning_rate": 4.598711018145193e-05,
|
884 |
+
"loss": 0.5714,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.22764227642276422,
|
889 |
+
"grad_norm": 0.34815308217696894,
|
890 |
+
"learning_rate": 4.590544489049602e-05,
|
891 |
+
"loss": 0.5834,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.22944896115627822,
|
896 |
+
"grad_norm": 0.2924230009541122,
|
897 |
+
"learning_rate": 4.5823031017752485e-05,
|
898 |
+
"loss": 0.5765,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.23125564588979222,
|
903 |
+
"grad_norm": 0.30910980398419646,
|
904 |
+
"learning_rate": 4.5739871514295786e-05,
|
905 |
+
"loss": 0.5752,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.23306233062330622,
|
910 |
+
"grad_norm": 0.2913105438276951,
|
911 |
+
"learning_rate": 4.5655969357899874e-05,
|
912 |
+
"loss": 0.5697,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.23486901535682023,
|
917 |
+
"grad_norm": 0.28428390199287884,
|
918 |
+
"learning_rate": 4.5571327552931645e-05,
|
919 |
+
"loss": 0.5886,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.23667570009033423,
|
924 |
+
"grad_norm": 0.31574652342642173,
|
925 |
+
"learning_rate": 4.54859491302433e-05,
|
926 |
+
"loss": 0.584,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.23848238482384823,
|
931 |
+
"grad_norm": 0.2997857493456399,
|
932 |
+
"learning_rate": 4.5399837147063825e-05,
|
933 |
+
"loss": 0.563,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.24028906955736223,
|
938 |
+
"grad_norm": 0.2785335762747015,
|
939 |
+
"learning_rate": 4.531299468688955e-05,
|
940 |
+
"loss": 0.577,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.24209575429087624,
|
945 |
+
"grad_norm": 0.30483763022523813,
|
946 |
+
"learning_rate": 4.522542485937369e-05,
|
947 |
+
"loss": 0.5782,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.24390243902439024,
|
952 |
+
"grad_norm": 0.30116399478957223,
|
953 |
+
"learning_rate": 4.5137130800215025e-05,
|
954 |
+
"loss": 0.5757,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.24570912375790424,
|
959 |
+
"grad_norm": 0.2741238131545484,
|
960 |
+
"learning_rate": 4.50481156710456e-05,
|
961 |
+
"loss": 0.5788,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.24751580849141824,
|
966 |
+
"grad_norm": 0.34315715659863466,
|
967 |
+
"learning_rate": 4.495838265931754e-05,
|
968 |
+
"loss": 0.5643,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.24932249322493225,
|
973 |
+
"grad_norm": 0.2642722038034539,
|
974 |
+
"learning_rate": 4.486793497818889e-05,
|
975 |
+
"loss": 0.5788,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.25112917795844625,
|
980 |
+
"grad_norm": 0.3472138741777396,
|
981 |
+
"learning_rate": 4.477677586640854e-05,
|
982 |
+
"loss": 0.5825,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.2529358626919603,
|
987 |
+
"grad_norm": 0.28623334079119195,
|
988 |
+
"learning_rate": 4.4684908588200304e-05,
|
989 |
+
"loss": 0.5816,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.25474254742547425,
|
994 |
+
"grad_norm": 0.298786913508539,
|
995 |
+
"learning_rate": 4.4592336433146e-05,
|
996 |
+
"loss": 0.563,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.2565492321589883,
|
1001 |
+
"grad_norm": 0.27304903434123956,
|
1002 |
+
"learning_rate": 4.449906271606766e-05,
|
1003 |
+
"loss": 0.5827,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.25835591689250226,
|
1008 |
+
"grad_norm": 0.28267707045423013,
|
1009 |
+
"learning_rate": 4.440509077690883e-05,
|
1010 |
+
"loss": 0.5762,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.2601626016260163,
|
1015 |
+
"grad_norm": 0.30929527743854546,
|
1016 |
+
"learning_rate": 4.431042398061499e-05,
|
1017 |
+
"loss": 0.5627,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.26196928635953026,
|
1022 |
+
"grad_norm": 0.2577847058774984,
|
1023 |
+
"learning_rate": 4.421506571701305e-05,
|
1024 |
+
"loss": 0.5748,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.26377597109304424,
|
1029 |
+
"grad_norm": 0.33361185660260834,
|
1030 |
+
"learning_rate": 4.4119019400689967e-05,
|
1031 |
+
"loss": 0.5802,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.26558265582655827,
|
1036 |
+
"grad_norm": 0.27977694264950315,
|
1037 |
+
"learning_rate": 4.402228847087047e-05,
|
1038 |
+
"loss": 0.5693,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.26738934056007224,
|
1043 |
+
"grad_norm": 0.31712493735083624,
|
1044 |
+
"learning_rate": 4.3924876391293915e-05,
|
1045 |
+
"loss": 0.5706,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.26919602529358627,
|
1050 |
+
"grad_norm": 0.2902577298198809,
|
1051 |
+
"learning_rate": 4.382678665009028e-05,
|
1052 |
+
"loss": 0.5681,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.27100271002710025,
|
1057 |
+
"grad_norm": 0.28793553908720737,
|
1058 |
+
"learning_rate": 4.372802275965521e-05,
|
1059 |
+
"loss": 0.5784,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.2728093947606143,
|
1064 |
+
"grad_norm": 0.30368743841141094,
|
1065 |
+
"learning_rate": 4.3628588256524285e-05,
|
1066 |
+
"loss": 0.56,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.27461607949412825,
|
1071 |
+
"grad_norm": 0.2774629249029437,
|
1072 |
+
"learning_rate": 4.3528486701246376e-05,
|
1073 |
+
"loss": 0.5677,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.2764227642276423,
|
1078 |
+
"grad_norm": 0.2889370750201226,
|
1079 |
+
"learning_rate": 4.3427721678256125e-05,
|
1080 |
+
"loss": 0.568,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.27822944896115626,
|
1085 |
+
"grad_norm": 0.2561406859638265,
|
1086 |
+
"learning_rate": 4.332629679574566e-05,
|
1087 |
+
"loss": 0.5709,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.2800361336946703,
|
1092 |
+
"grad_norm": 0.3197243819532458,
|
1093 |
+
"learning_rate": 4.3224215685535294e-05,
|
1094 |
+
"loss": 0.5649,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.28184281842818426,
|
1099 |
+
"grad_norm": 0.24442044497374782,
|
1100 |
+
"learning_rate": 4.312148200294355e-05,
|
1101 |
+
"loss": 0.564,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.2836495031616983,
|
1106 |
+
"grad_norm": 0.3083704145995506,
|
1107 |
+
"learning_rate": 4.301809942665625e-05,
|
1108 |
+
"loss": 0.5766,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.28545618789521227,
|
1113 |
+
"grad_norm": 0.3072422357462174,
|
1114 |
+
"learning_rate": 4.2914071658594805e-05,
|
1115 |
+
"loss": 0.5746,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.2872628726287263,
|
1120 |
+
"grad_norm": 0.27818676061425124,
|
1121 |
+
"learning_rate": 4.2809402423783624e-05,
|
1122 |
+
"loss": 0.555,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.28906955736224027,
|
1127 |
+
"grad_norm": 0.29290534079499964,
|
1128 |
+
"learning_rate": 4.2704095470216744e-05,
|
1129 |
+
"loss": 0.564,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.2908762420957543,
|
1134 |
+
"grad_norm": 0.29294909950648323,
|
1135 |
+
"learning_rate": 4.2598154568723626e-05,
|
1136 |
+
"loss": 0.572,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.2926829268292683,
|
1141 |
+
"grad_norm": 0.2594907490436239,
|
1142 |
+
"learning_rate": 4.249158351283414e-05,
|
1143 |
+
"loss": 0.5577,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.2944896115627823,
|
1148 |
+
"grad_norm": 0.29828582674191256,
|
1149 |
+
"learning_rate": 4.2384386118642694e-05,
|
1150 |
+
"loss": 0.5669,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.2962962962962963,
|
1155 |
+
"grad_norm": 0.2486607638937624,
|
1156 |
+
"learning_rate": 4.227656622467162e-05,
|
1157 |
+
"loss": 0.5759,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.2981029810298103,
|
1162 |
+
"grad_norm": 0.2893277880846586,
|
1163 |
+
"learning_rate": 4.2168127691733706e-05,
|
1164 |
+
"loss": 0.567,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.2999096657633243,
|
1169 |
+
"grad_norm": 0.3366382748248825,
|
1170 |
+
"learning_rate": 4.205907440279395e-05,
|
1171 |
+
"loss": 0.5733,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.3017163504968383,
|
1176 |
+
"grad_norm": 0.2854930267646859,
|
1177 |
+
"learning_rate": 4.1949410262830525e-05,
|
1178 |
+
"loss": 0.5725,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.3035230352303523,
|
1183 |
+
"grad_norm": 0.28796327359502005,
|
1184 |
+
"learning_rate": 4.1839139198694946e-05,
|
1185 |
+
"loss": 0.5704,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.3053297199638663,
|
1190 |
+
"grad_norm": 0.27687424146441253,
|
1191 |
+
"learning_rate": 4.172826515897146e-05,
|
1192 |
+
"loss": 0.5628,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3071364046973803,
|
1197 |
+
"grad_norm": 0.290951668040425,
|
1198 |
+
"learning_rate": 4.161679211383565e-05,
|
1199 |
+
"loss": 0.5756,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.3089430894308943,
|
1204 |
+
"grad_norm": 0.24804678417070308,
|
1205 |
+
"learning_rate": 4.150472405491226e-05,
|
1206 |
+
"loss": 0.5595,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3107497741644083,
|
1211 |
+
"grad_norm": 0.2814395377790449,
|
1212 |
+
"learning_rate": 4.139206499513231e-05,
|
1213 |
+
"loss": 0.5667,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.31255645889792233,
|
1218 |
+
"grad_norm": 0.25465167733314975,
|
1219 |
+
"learning_rate": 4.127881896858934e-05,
|
1220 |
+
"loss": 0.5697,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3143631436314363,
|
1225 |
+
"grad_norm": 0.24408432399510052,
|
1226 |
+
"learning_rate": 4.116499003039499e-05,
|
1227 |
+
"loss": 0.5604,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.31616982836495033,
|
1232 |
+
"grad_norm": 0.29082705523685065,
|
1233 |
+
"learning_rate": 4.105058225653381e-05,
|
1234 |
+
"loss": 0.565,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.3179765130984643,
|
1239 |
+
"grad_norm": 0.23193059434831165,
|
1240 |
+
"learning_rate": 4.093559974371725e-05,
|
1241 |
+
"loss": 0.5791,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.31978319783197834,
|
1246 |
+
"grad_norm": 0.24605744247923156,
|
1247 |
+
"learning_rate": 4.082004660923703e-05,
|
1248 |
+
"loss": 0.5546,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.3215898825654923,
|
1253 |
+
"grad_norm": 0.2375776896653075,
|
1254 |
+
"learning_rate": 4.070392699081767e-05,
|
1255 |
+
"loss": 0.5616,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.32339656729900634,
|
1260 |
+
"grad_norm": 0.25743685114030773,
|
1261 |
+
"learning_rate": 4.058724504646834e-05,
|
1262 |
+
"loss": 0.5719,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3252032520325203,
|
1267 |
+
"grad_norm": 0.2619870305273139,
|
1268 |
+
"learning_rate": 4.047000495433397e-05,
|
1269 |
+
"loss": 0.5785,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.32700993676603435,
|
1274 |
+
"grad_norm": 0.224736217384528,
|
1275 |
+
"learning_rate": 4.035221091254563e-05,
|
1276 |
+
"loss": 0.558,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.3288166214995483,
|
1281 |
+
"grad_norm": 0.29303157657827966,
|
1282 |
+
"learning_rate": 4.023386713907021e-05,
|
1283 |
+
"loss": 0.5685,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.33062330623306235,
|
1288 |
+
"grad_norm": 0.25689002158814145,
|
1289 |
+
"learning_rate": 4.011497787155938e-05,
|
1290 |
+
"loss": 0.5776,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.3324299909665763,
|
1295 |
+
"grad_norm": 0.2938327818557195,
|
1296 |
+
"learning_rate": 3.9995547367197845e-05,
|
1297 |
+
"loss": 0.5738,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.33423667570009036,
|
1302 |
+
"grad_norm": 0.2531829899144992,
|
1303 |
+
"learning_rate": 3.987557990255093e-05,
|
1304 |
+
"loss": 0.5704,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.33604336043360433,
|
1309 |
+
"grad_norm": 0.2770582607061888,
|
1310 |
+
"learning_rate": 3.975507977341141e-05,
|
1311 |
+
"loss": 0.5656,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.33785004516711836,
|
1316 |
+
"grad_norm": 0.26705135441853123,
|
1317 |
+
"learning_rate": 3.963405129464569e-05,
|
1318 |
+
"loss": 0.5628,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.33965672990063234,
|
1323 |
+
"grad_norm": 0.26347103141208666,
|
1324 |
+
"learning_rate": 3.9512498800039335e-05,
|
1325 |
+
"loss": 0.5627,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.34146341463414637,
|
1330 |
+
"grad_norm": 0.2617828775220911,
|
1331 |
+
"learning_rate": 3.939042664214184e-05,
|
1332 |
+
"loss": 0.5696,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.34327009936766034,
|
1337 |
+
"grad_norm": 0.2566193311837008,
|
1338 |
+
"learning_rate": 3.92678391921108e-05,
|
1339 |
+
"loss": 0.5591,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.34507678410117437,
|
1344 |
+
"grad_norm": 0.26054548661457316,
|
1345 |
+
"learning_rate": 3.914474083955537e-05,
|
1346 |
+
"loss": 0.5572,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.34688346883468835,
|
1351 |
+
"grad_norm": 0.27111377416969534,
|
1352 |
+
"learning_rate": 3.902113599237911e-05,
|
1353 |
+
"loss": 0.5646,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.3486901535682023,
|
1358 |
+
"grad_norm": 0.2578612896473014,
|
1359 |
+
"learning_rate": 3.8897029076622116e-05,
|
1360 |
+
"loss": 0.5656,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.35049683830171635,
|
1365 |
+
"grad_norm": 0.26422062285598974,
|
1366 |
+
"learning_rate": 3.8772424536302564e-05,
|
1367 |
+
"loss": 0.5676,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.3523035230352303,
|
1372 |
+
"grad_norm": 0.27701499581233463,
|
1373 |
+
"learning_rate": 3.8647326833257545e-05,
|
1374 |
+
"loss": 0.5509,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.35411020776874436,
|
1379 |
+
"grad_norm": 0.2547806901178003,
|
1380 |
+
"learning_rate": 3.852174044698333e-05,
|
1381 |
+
"loss": 0.5645,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.35591689250225833,
|
1386 |
+
"grad_norm": 0.2722542290447437,
|
1387 |
+
"learning_rate": 3.8395669874474915e-05,
|
1388 |
+
"loss": 0.5643,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.35772357723577236,
|
1393 |
+
"grad_norm": 0.26986173699197447,
|
1394 |
+
"learning_rate": 3.826911963006507e-05,
|
1395 |
+
"loss": 0.5403,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.35953026196928634,
|
1400 |
+
"grad_norm": 0.25650129583974185,
|
1401 |
+
"learning_rate": 3.814209424526262e-05,
|
1402 |
+
"loss": 0.5651,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.36133694670280037,
|
1407 |
+
"grad_norm": 0.3054008537345464,
|
1408 |
+
"learning_rate": 3.801459826859022e-05,
|
1409 |
+
"loss": 0.5528,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.36314363143631434,
|
1414 |
+
"grad_norm": 0.2517395713005632,
|
1415 |
+
"learning_rate": 3.788663626542146e-05,
|
1416 |
+
"loss": 0.5478,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.36495031616982837,
|
1421 |
+
"grad_norm": 0.27014364858663636,
|
1422 |
+
"learning_rate": 3.7758212817817405e-05,
|
1423 |
+
"loss": 0.5748,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.36675700090334235,
|
1428 |
+
"grad_norm": 0.25461374857793684,
|
1429 |
+
"learning_rate": 3.762933252436253e-05,
|
1430 |
+
"loss": 0.5612,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.3685636856368564,
|
1435 |
+
"grad_norm": 0.4029060293284097,
|
1436 |
+
"learning_rate": 3.7500000000000003e-05,
|
1437 |
+
"loss": 0.5734,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.37037037037037035,
|
1442 |
+
"grad_norm": 0.279265392896369,
|
1443 |
+
"learning_rate": 3.73702198758665e-05,
|
1444 |
+
"loss": 0.5646,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.3721770551038844,
|
1449 |
+
"grad_norm": 0.2772736746774508,
|
1450 |
+
"learning_rate": 3.7239996799126314e-05,
|
1451 |
+
"loss": 0.5516,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.37398373983739835,
|
1456 |
+
"grad_norm": 0.2798177853445073,
|
1457 |
+
"learning_rate": 3.7109335432805006e-05,
|
1458 |
+
"loss": 0.5601,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.3757904245709124,
|
1463 |
+
"grad_norm": 0.25014393880491587,
|
1464 |
+
"learning_rate": 3.697824045562238e-05,
|
1465 |
+
"loss": 0.5472,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.37759710930442636,
|
1470 |
+
"grad_norm": 0.30970978849469444,
|
1471 |
+
"learning_rate": 3.6846716561824965e-05,
|
1472 |
+
"loss": 0.5691,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.3794037940379404,
|
1477 |
+
"grad_norm": 0.262528480042341,
|
1478 |
+
"learning_rate": 3.6714768461017965e-05,
|
1479 |
+
"loss": 0.5651,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.38121047877145436,
|
1484 |
+
"grad_norm": 0.2995588162609867,
|
1485 |
+
"learning_rate": 3.6582400877996546e-05,
|
1486 |
+
"loss": 0.5642,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.3830171635049684,
|
1491 |
+
"grad_norm": 0.24224013792364127,
|
1492 |
+
"learning_rate": 3.6449618552576695e-05,
|
1493 |
+
"loss": 0.5715,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.38482384823848237,
|
1498 |
+
"grad_norm": 0.2566553948900491,
|
1499 |
+
"learning_rate": 3.6316426239425485e-05,
|
1500 |
+
"loss": 0.5723,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.3866305329719964,
|
1505 |
+
"grad_norm": 0.2593167579873562,
|
1506 |
+
"learning_rate": 3.6182828707890816e-05,
|
1507 |
+
"loss": 0.5581,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.3884372177055104,
|
1512 |
+
"grad_norm": 0.29156799105900094,
|
1513 |
+
"learning_rate": 3.604883074183068e-05,
|
1514 |
+
"loss": 0.5857,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.3902439024390244,
|
1519 |
+
"grad_norm": 0.2918063924486598,
|
1520 |
+
"learning_rate": 3.591443713944175e-05,
|
1521 |
+
"loss": 0.5737,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.3920505871725384,
|
1526 |
+
"grad_norm": 0.24217936287266498,
|
1527 |
+
"learning_rate": 3.577965271308771e-05,
|
1528 |
+
"loss": 0.5742,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.3938572719060524,
|
1533 |
+
"grad_norm": 0.24174179293410752,
|
1534 |
+
"learning_rate": 3.564448228912682e-05,
|
1535 |
+
"loss": 0.5652,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.3956639566395664,
|
1540 |
+
"grad_norm": 0.25368887941292934,
|
1541 |
+
"learning_rate": 3.550893070773914e-05,
|
1542 |
+
"loss": 0.5604,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.3974706413730804,
|
1547 |
+
"grad_norm": 0.23818932652300262,
|
1548 |
+
"learning_rate": 3.5373002822753216e-05,
|
1549 |
+
"loss": 0.5626,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.3992773261065944,
|
1554 |
+
"grad_norm": 0.24915859176290434,
|
1555 |
+
"learning_rate": 3.5236703501472266e-05,
|
1556 |
+
"loss": 0.5518,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.4010840108401084,
|
1561 |
+
"grad_norm": 0.2902980836055029,
|
1562 |
+
"learning_rate": 3.510003762449988e-05,
|
1563 |
+
"loss": 0.5693,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.4028906955736224,
|
1568 |
+
"grad_norm": 0.2704452686405114,
|
1569 |
+
"learning_rate": 3.496301008556529e-05,
|
1570 |
+
"loss": 0.5523,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.4046973803071364,
|
1575 |
+
"grad_norm": 0.2505809238032004,
|
1576 |
+
"learning_rate": 3.4825625791348096e-05,
|
1577 |
+
"loss": 0.5565,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.4065040650406504,
|
1582 |
+
"grad_norm": 0.275803045250062,
|
1583 |
+
"learning_rate": 3.4687889661302576e-05,
|
1584 |
+
"loss": 0.5618,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.4083107497741644,
|
1589 |
+
"grad_norm": 0.2589904155675894,
|
1590 |
+
"learning_rate": 3.454980662748156e-05,
|
1591 |
+
"loss": 0.5669,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.4101174345076784,
|
1596 |
+
"grad_norm": 0.2660482710689871,
|
1597 |
+
"learning_rate": 3.44113816343598e-05,
|
1598 |
+
"loss": 0.571,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.41192411924119243,
|
1603 |
+
"grad_norm": 0.231828328759023,
|
1604 |
+
"learning_rate": 3.427261963865691e-05,
|
1605 |
+
"loss": 0.5574,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.4137308039747064,
|
1610 |
+
"grad_norm": 0.25600277705158325,
|
1611 |
+
"learning_rate": 3.413352560915988e-05,
|
1612 |
+
"loss": 0.5603,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.41553748870822044,
|
1617 |
+
"grad_norm": 0.2517034509173225,
|
1618 |
+
"learning_rate": 3.399410452654518e-05,
|
1619 |
+
"loss": 0.5621,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.4173441734417344,
|
1624 |
+
"grad_norm": 0.2329118889206972,
|
1625 |
+
"learning_rate": 3.3854361383200374e-05,
|
1626 |
+
"loss": 0.5617,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.41915085817524844,
|
1631 |
+
"grad_norm": 0.23904946194080468,
|
1632 |
+
"learning_rate": 3.3714301183045385e-05,
|
1633 |
+
"loss": 0.5642,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.4209575429087624,
|
1638 |
+
"grad_norm": 0.22158406665293778,
|
1639 |
+
"learning_rate": 3.357392894135329e-05,
|
1640 |
+
"loss": 0.547,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.42276422764227645,
|
1645 |
+
"grad_norm": 0.2484135688244743,
|
1646 |
+
"learning_rate": 3.343324968457076e-05,
|
1647 |
+
"loss": 0.5616,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.4245709123757904,
|
1652 |
+
"grad_norm": 0.2175632663909619,
|
1653 |
+
"learning_rate": 3.329226845013802e-05,
|
1654 |
+
"loss": 0.5569,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.42637759710930445,
|
1659 |
+
"grad_norm": 0.22724752526188297,
|
1660 |
+
"learning_rate": 3.315099028630855e-05,
|
1661 |
+
"loss": 0.5676,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.4281842818428184,
|
1666 |
+
"grad_norm": 0.25511996155592703,
|
1667 |
+
"learning_rate": 3.3009420251968244e-05,
|
1668 |
+
"loss": 0.5686,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.42999096657633246,
|
1673 |
+
"grad_norm": 0.23257214832017037,
|
1674 |
+
"learning_rate": 3.28675634164543e-05,
|
1675 |
+
"loss": 0.5767,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.43179765130984643,
|
1680 |
+
"grad_norm": 0.2699606343674111,
|
1681 |
+
"learning_rate": 3.272542485937369e-05,
|
1682 |
+
"loss": 0.5568,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.43360433604336046,
|
1687 |
+
"grad_norm": 0.22253687796094387,
|
1688 |
+
"learning_rate": 3.258300967042125e-05,
|
1689 |
+
"loss": 0.5578,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.43541102077687444,
|
1694 |
+
"grad_norm": 0.24918690561704573,
|
1695 |
+
"learning_rate": 3.244032294919747e-05,
|
1696 |
+
"loss": 0.5567,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.4372177055103884,
|
1701 |
+
"grad_norm": 0.20756444045067837,
|
1702 |
+
"learning_rate": 3.229736980502584e-05,
|
1703 |
+
"loss": 0.5569,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.43902439024390244,
|
1708 |
+
"grad_norm": 0.26502801953094707,
|
1709 |
+
"learning_rate": 3.215415535676992e-05,
|
1710 |
+
"loss": 0.5617,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.4408310749774164,
|
1715 |
+
"grad_norm": 0.2182120505006728,
|
1716 |
+
"learning_rate": 3.201068473265007e-05,
|
1717 |
+
"loss": 0.5688,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.44263775971093045,
|
1722 |
+
"grad_norm": 0.2543192269579094,
|
1723 |
+
"learning_rate": 3.186696307005976e-05,
|
1724 |
+
"loss": 0.5598,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.4444444444444444,
|
1729 |
+
"grad_norm": 0.21510741753885906,
|
1730 |
+
"learning_rate": 3.172299551538164e-05,
|
1731 |
+
"loss": 0.5667,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.44625112917795845,
|
1736 |
+
"grad_norm": 0.24057679375148389,
|
1737 |
+
"learning_rate": 3.15787872238033e-05,
|
1738 |
+
"loss": 0.5482,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.4480578139114724,
|
1743 |
+
"grad_norm": 0.22057297079755392,
|
1744 |
+
"learning_rate": 3.143434335913256e-05,
|
1745 |
+
"loss": 0.5675,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.44986449864498645,
|
1750 |
+
"grad_norm": 0.25638601862905325,
|
1751 |
+
"learning_rate": 3.1289669093612714e-05,
|
1752 |
+
"loss": 0.5507,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.45167118337850043,
|
1757 |
+
"grad_norm": 0.23953628618150505,
|
1758 |
+
"learning_rate": 3.1144769607737204e-05,
|
1759 |
+
"loss": 0.5657,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.45347786811201446,
|
1764 |
+
"grad_norm": 0.24401342813122434,
|
1765 |
+
"learning_rate": 3.099965009006415e-05,
|
1766 |
+
"loss": 0.5523,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.45528455284552843,
|
1771 |
+
"grad_norm": 0.22905486861258395,
|
1772 |
+
"learning_rate": 3.0854315737030596e-05,
|
1773 |
+
"loss": 0.5347,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.45709123757904246,
|
1778 |
+
"grad_norm": 0.2132846731511693,
|
1779 |
+
"learning_rate": 3.0708771752766394e-05,
|
1780 |
+
"loss": 0.5573,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.45889792231255644,
|
1785 |
+
"grad_norm": 0.2818848235318444,
|
1786 |
+
"learning_rate": 3.056302334890786e-05,
|
1787 |
+
"loss": 0.557,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.46070460704607047,
|
1792 |
+
"grad_norm": 0.208196751948228,
|
1793 |
+
"learning_rate": 3.0417075744411178e-05,
|
1794 |
+
"loss": 0.5502,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 0.46251129177958444,
|
1799 |
+
"grad_norm": 0.2717929774057463,
|
1800 |
+
"learning_rate": 3.0270934165365478e-05,
|
1801 |
+
"loss": 0.5497,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.4643179765130985,
|
1806 |
+
"grad_norm": 0.23287718174667185,
|
1807 |
+
"learning_rate": 3.0124603844805767e-05,
|
1808 |
+
"loss": 0.5639,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.46612466124661245,
|
1813 |
+
"grad_norm": 0.24776128197928854,
|
1814 |
+
"learning_rate": 2.997809002252546e-05,
|
1815 |
+
"loss": 0.5548,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 0.4679313459801265,
|
1820 |
+
"grad_norm": 0.24979384233274446,
|
1821 |
+
"learning_rate": 2.9831397944888833e-05,
|
1822 |
+
"loss": 0.5592,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 0.46973803071364045,
|
1827 |
+
"grad_norm": 0.23957823736023315,
|
1828 |
+
"learning_rate": 2.9684532864643122e-05,
|
1829 |
+
"loss": 0.5725,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.4715447154471545,
|
1834 |
+
"grad_norm": 0.25532941773494405,
|
1835 |
+
"learning_rate": 2.953750004073041e-05,
|
1836 |
+
"loss": 0.5631,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.47335140018066846,
|
1841 |
+
"grad_norm": 0.2423054660678652,
|
1842 |
+
"learning_rate": 2.9390304738099384e-05,
|
1843 |
+
"loss": 0.5513,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.4751580849141825,
|
1848 |
+
"grad_norm": 0.21329483524928816,
|
1849 |
+
"learning_rate": 2.9242952227516722e-05,
|
1850 |
+
"loss": 0.5565,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.47696476964769646,
|
1855 |
+
"grad_norm": 0.2808544723746111,
|
1856 |
+
"learning_rate": 2.9095447785378443e-05,
|
1857 |
+
"loss": 0.562,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 0.4787714543812105,
|
1862 |
+
"grad_norm": 0.21503727170281345,
|
1863 |
+
"learning_rate": 2.89477966935209e-05,
|
1864 |
+
"loss": 0.5436,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 0.48057813911472447,
|
1869 |
+
"grad_norm": 0.28198350414533435,
|
1870 |
+
"learning_rate": 2.8800004239031684e-05,
|
1871 |
+
"loss": 0.5679,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 0.4823848238482385,
|
1876 |
+
"grad_norm": 0.2249868570506476,
|
1877 |
+
"learning_rate": 2.8652075714060295e-05,
|
1878 |
+
"loss": 0.5525,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 0.48419150858175247,
|
1883 |
+
"grad_norm": 0.25092006527240746,
|
1884 |
+
"learning_rate": 2.850401641562865e-05,
|
1885 |
+
"loss": 0.5518,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.4859981933152665,
|
1890 |
+
"grad_norm": 0.22645896029854995,
|
1891 |
+
"learning_rate": 2.8355831645441388e-05,
|
1892 |
+
"loss": 0.5596,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.4878048780487805,
|
1897 |
+
"grad_norm": 0.23254061221434444,
|
1898 |
+
"learning_rate": 2.8207526709696057e-05,
|
1899 |
+
"loss": 0.5407,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 0.4896115627822945,
|
1904 |
+
"grad_norm": 0.23745424158964865,
|
1905 |
+
"learning_rate": 2.8059106918893068e-05,
|
1906 |
+
"loss": 0.5623,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 0.4914182475158085,
|
1911 |
+
"grad_norm": 0.23267624148606317,
|
1912 |
+
"learning_rate": 2.791057758764557e-05,
|
1913 |
+
"loss": 0.557,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 0.4932249322493225,
|
1918 |
+
"grad_norm": 0.2103101723783826,
|
1919 |
+
"learning_rate": 2.7761944034489152e-05,
|
1920 |
+
"loss": 0.5646,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 0.4950316169828365,
|
1925 |
+
"grad_norm": 0.22350551376187672,
|
1926 |
+
"learning_rate": 2.761321158169134e-05,
|
1927 |
+
"loss": 0.5525,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.4968383017163505,
|
1932 |
+
"grad_norm": 0.252567461799327,
|
1933 |
+
"learning_rate": 2.746438555506109e-05,
|
1934 |
+
"loss": 0.5464,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.4986449864498645,
|
1939 |
+
"grad_norm": 0.2320905830202537,
|
1940 |
+
"learning_rate": 2.7315471283758037e-05,
|
1941 |
+
"loss": 0.5386,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 0.5004516711833785,
|
1946 |
+
"grad_norm": 0.2290363682285312,
|
1947 |
+
"learning_rate": 2.7166474100101673e-05,
|
1948 |
+
"loss": 0.5501,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 0.5022583559168925,
|
1953 |
+
"grad_norm": 0.23465209512829235,
|
1954 |
+
"learning_rate": 2.7017399339380434e-05,
|
1955 |
+
"loss": 0.5377,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 0.5040650406504065,
|
1960 |
+
"grad_norm": 0.23987959520861762,
|
1961 |
+
"learning_rate": 2.686825233966061e-05,
|
1962 |
+
"loss": 0.5525,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 0.5058717253839206,
|
1967 |
+
"grad_norm": 0.20859161270801135,
|
1968 |
+
"learning_rate": 2.6719038441595233e-05,
|
1969 |
+
"loss": 0.5486,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.5076784101174345,
|
1974 |
+
"grad_norm": 0.22314051888571848,
|
1975 |
+
"learning_rate": 2.656976298823284e-05,
|
1976 |
+
"loss": 0.5496,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.5094850948509485,
|
1981 |
+
"grad_norm": 0.20571157758418082,
|
1982 |
+
"learning_rate": 2.6420431324826117e-05,
|
1983 |
+
"loss": 0.5442,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 0.5112917795844625,
|
1988 |
+
"grad_norm": 0.2328738949148314,
|
1989 |
+
"learning_rate": 2.6271048798640547e-05,
|
1990 |
+
"loss": 0.5591,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.5130984643179766,
|
1995 |
+
"grad_norm": 0.2225324340979153,
|
1996 |
+
"learning_rate": 2.6121620758762877e-05,
|
1997 |
+
"loss": 0.5473,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 0.5149051490514905,
|
2002 |
+
"grad_norm": 0.2318335976674237,
|
2003 |
+
"learning_rate": 2.5972152555909625e-05,
|
2004 |
+
"loss": 0.5427,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 0.5167118337850045,
|
2009 |
+
"grad_norm": 0.21218493671216138,
|
2010 |
+
"learning_rate": 2.5822649542235466e-05,
|
2011 |
+
"loss": 0.5394,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.5185185185185185,
|
2016 |
+
"grad_norm": 0.2391832835489149,
|
2017 |
+
"learning_rate": 2.5673117071141572e-05,
|
2018 |
+
"loss": 0.5602,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.5203252032520326,
|
2023 |
+
"grad_norm": 0.23079479084298835,
|
2024 |
+
"learning_rate": 2.5523560497083926e-05,
|
2025 |
+
"loss": 0.5581,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 0.5221318879855466,
|
2030 |
+
"grad_norm": 0.20212846910840992,
|
2031 |
+
"learning_rate": 2.5373985175381594e-05,
|
2032 |
+
"loss": 0.5428,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.5239385727190605,
|
2037 |
+
"grad_norm": 0.2518071886591786,
|
2038 |
+
"learning_rate": 2.5224396462024947e-05,
|
2039 |
+
"loss": 0.5545,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 0.5257452574525745,
|
2044 |
+
"grad_norm": 0.2105466069608604,
|
2045 |
+
"learning_rate": 2.507479971348391e-05,
|
2046 |
+
"loss": 0.5585,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 0.5275519421860885,
|
2051 |
+
"grad_norm": 0.2514344316411496,
|
2052 |
+
"learning_rate": 2.4925200286516097e-05,
|
2053 |
+
"loss": 0.5629,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.5293586269196026,
|
2058 |
+
"grad_norm": 0.22004304131225338,
|
2059 |
+
"learning_rate": 2.4775603537975052e-05,
|
2060 |
+
"loss": 0.555,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.5311653116531165,
|
2065 |
+
"grad_norm": 0.24165488057675852,
|
2066 |
+
"learning_rate": 2.4626014824618415e-05,
|
2067 |
+
"loss": 0.5476,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 0.5329719963866305,
|
2072 |
+
"grad_norm": 0.2310716791436132,
|
2073 |
+
"learning_rate": 2.447643950291608e-05,
|
2074 |
+
"loss": 0.5446,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.5347786811201445,
|
2079 |
+
"grad_norm": 0.24796935599641548,
|
2080 |
+
"learning_rate": 2.4326882928858434e-05,
|
2081 |
+
"loss": 0.549,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 0.5365853658536586,
|
2086 |
+
"grad_norm": 0.24027653304343993,
|
2087 |
+
"learning_rate": 2.417735045776453e-05,
|
2088 |
+
"loss": 0.5535,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 0.5383920505871725,
|
2093 |
+
"grad_norm": 0.22831248650729494,
|
2094 |
+
"learning_rate": 2.402784744409038e-05,
|
2095 |
+
"loss": 0.5487,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.5401987353206865,
|
2100 |
+
"grad_norm": 0.26088242241196496,
|
2101 |
+
"learning_rate": 2.3878379241237136e-05,
|
2102 |
+
"loss": 0.5638,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.5420054200542005,
|
2107 |
+
"grad_norm": 0.20851312746842549,
|
2108 |
+
"learning_rate": 2.372895120135946e-05,
|
2109 |
+
"loss": 0.552,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 0.5438121047877146,
|
2114 |
+
"grad_norm": 0.22216227561267998,
|
2115 |
+
"learning_rate": 2.3579568675173895e-05,
|
2116 |
+
"loss": 0.5543,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.5456187895212286,
|
2121 |
+
"grad_norm": 0.2116774084025164,
|
2122 |
+
"learning_rate": 2.3430237011767167e-05,
|
2123 |
+
"loss": 0.5659,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 0.5474254742547425,
|
2128 |
+
"grad_norm": 0.22153915146611775,
|
2129 |
+
"learning_rate": 2.3280961558404773e-05,
|
2130 |
+
"loss": 0.5468,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 0.5492321589882565,
|
2135 |
+
"grad_norm": 0.22536312797856103,
|
2136 |
+
"learning_rate": 2.3131747660339394e-05,
|
2137 |
+
"loss": 0.5422,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.5510388437217706,
|
2142 |
+
"grad_norm": 0.22570211252989472,
|
2143 |
+
"learning_rate": 2.2982600660619572e-05,
|
2144 |
+
"loss": 0.5491,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.5528455284552846,
|
2149 |
+
"grad_norm": 0.21241901090544404,
|
2150 |
+
"learning_rate": 2.2833525899898326e-05,
|
2151 |
+
"loss": 0.5467,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 0.5546522131887985,
|
2156 |
+
"grad_norm": 0.20452009569565252,
|
2157 |
+
"learning_rate": 2.268452871624197e-05,
|
2158 |
+
"loss": 0.5632,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.5564588979223125,
|
2163 |
+
"grad_norm": 0.2251786193734582,
|
2164 |
+
"learning_rate": 2.2535614444938912e-05,
|
2165 |
+
"loss": 0.5424,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 0.5582655826558266,
|
2170 |
+
"grad_norm": 0.20492724552141142,
|
2171 |
+
"learning_rate": 2.238678841830867e-05,
|
2172 |
+
"loss": 0.5527,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 0.5600722673893406,
|
2177 |
+
"grad_norm": 0.19416865251677298,
|
2178 |
+
"learning_rate": 2.223805596551085e-05,
|
2179 |
+
"loss": 0.5346,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.5618789521228545,
|
2184 |
+
"grad_norm": 0.2132687384050389,
|
2185 |
+
"learning_rate": 2.2089422412354432e-05,
|
2186 |
+
"loss": 0.5535,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.5636856368563685,
|
2191 |
+
"grad_norm": 0.21016507485763594,
|
2192 |
+
"learning_rate": 2.1940893081106945e-05,
|
2193 |
+
"loss": 0.5531,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 0.5654923215898826,
|
2198 |
+
"grad_norm": 0.20862256981199484,
|
2199 |
+
"learning_rate": 2.1792473290303946e-05,
|
2200 |
+
"loss": 0.5536,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.5672990063233966,
|
2205 |
+
"grad_norm": 0.1980347632328298,
|
2206 |
+
"learning_rate": 2.164416835455862e-05,
|
2207 |
+
"loss": 0.5461,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.5691056910569106,
|
2212 |
+
"grad_norm": 0.21831156577519914,
|
2213 |
+
"learning_rate": 2.1495983584371353e-05,
|
2214 |
+
"loss": 0.5469,
|
2215 |
+
"step": 315
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 0.5709123757904245,
|
2219 |
+
"grad_norm": 0.19913285419773272,
|
2220 |
+
"learning_rate": 2.1347924285939714e-05,
|
2221 |
+
"loss": 0.5425,
|
2222 |
+
"step": 316
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.5727190605239386,
|
2226 |
+
"grad_norm": 0.20001874852663898,
|
2227 |
+
"learning_rate": 2.119999576096832e-05,
|
2228 |
+
"loss": 0.5383,
|
2229 |
+
"step": 317
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.5745257452574526,
|
2233 |
+
"grad_norm": 0.2670932742474313,
|
2234 |
+
"learning_rate": 2.1052203306479105e-05,
|
2235 |
+
"loss": 0.5503,
|
2236 |
+
"step": 318
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 0.5763324299909666,
|
2240 |
+
"grad_norm": 0.23187593519316088,
|
2241 |
+
"learning_rate": 2.090455221462156e-05,
|
2242 |
+
"loss": 0.5601,
|
2243 |
+
"step": 319
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 0.5781391147244805,
|
2247 |
+
"grad_norm": 0.22115205153428702,
|
2248 |
+
"learning_rate": 2.075704777248328e-05,
|
2249 |
+
"loss": 0.5419,
|
2250 |
+
"step": 320
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 0.5799457994579946,
|
2254 |
+
"grad_norm": 0.2270206978680879,
|
2255 |
+
"learning_rate": 2.0609695261900622e-05,
|
2256 |
+
"loss": 0.5395,
|
2257 |
+
"step": 321
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 0.5817524841915086,
|
2261 |
+
"grad_norm": 0.20620502954929631,
|
2262 |
+
"learning_rate": 2.0462499959269593e-05,
|
2263 |
+
"loss": 0.5601,
|
2264 |
+
"step": 322
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.5835591689250226,
|
2268 |
+
"grad_norm": 0.21975163388800517,
|
2269 |
+
"learning_rate": 2.031546713535688e-05,
|
2270 |
+
"loss": 0.5468,
|
2271 |
+
"step": 323
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.5853658536585366,
|
2275 |
+
"grad_norm": 0.22577807727843702,
|
2276 |
+
"learning_rate": 2.0168602055111173e-05,
|
2277 |
+
"loss": 0.5277,
|
2278 |
+
"step": 324
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 0.5871725383920506,
|
2282 |
+
"grad_norm": 0.2164328745622563,
|
2283 |
+
"learning_rate": 2.002190997747455e-05,
|
2284 |
+
"loss": 0.5448,
|
2285 |
+
"step": 325
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 0.5889792231255646,
|
2289 |
+
"grad_norm": 0.22047390557200727,
|
2290 |
+
"learning_rate": 1.9875396155194242e-05,
|
2291 |
+
"loss": 0.5544,
|
2292 |
+
"step": 326
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 0.5907859078590786,
|
2296 |
+
"grad_norm": 0.2078121438567958,
|
2297 |
+
"learning_rate": 1.972906583463453e-05,
|
2298 |
+
"loss": 0.5405,
|
2299 |
+
"step": 327
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 0.5925925925925926,
|
2303 |
+
"grad_norm": 0.2610153071662853,
|
2304 |
+
"learning_rate": 1.9582924255588828e-05,
|
2305 |
+
"loss": 0.5475,
|
2306 |
+
"step": 328
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.5943992773261066,
|
2310 |
+
"grad_norm": 0.2011743763872313,
|
2311 |
+
"learning_rate": 1.9436976651092144e-05,
|
2312 |
+
"loss": 0.5366,
|
2313 |
+
"step": 329
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.5962059620596206,
|
2317 |
+
"grad_norm": 0.21160316310958402,
|
2318 |
+
"learning_rate": 1.9291228247233605e-05,
|
2319 |
+
"loss": 0.5445,
|
2320 |
+
"step": 330
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 0.5980126467931346,
|
2324 |
+
"grad_norm": 0.2450598852610887,
|
2325 |
+
"learning_rate": 1.9145684262969403e-05,
|
2326 |
+
"loss": 0.5482,
|
2327 |
+
"step": 331
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 0.5998193315266486,
|
2331 |
+
"grad_norm": 0.20166849853332405,
|
2332 |
+
"learning_rate": 1.9000349909935853e-05,
|
2333 |
+
"loss": 0.532,
|
2334 |
+
"step": 332
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 0.6016260162601627,
|
2338 |
+
"grad_norm": 0.20932366818920844,
|
2339 |
+
"learning_rate": 1.885523039226281e-05,
|
2340 |
+
"loss": 0.5524,
|
2341 |
+
"step": 333
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 0.6034327009936766,
|
2345 |
+
"grad_norm": 0.20648968979678506,
|
2346 |
+
"learning_rate": 1.871033090638729e-05,
|
2347 |
+
"loss": 0.5648,
|
2348 |
+
"step": 334
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.6052393857271906,
|
2352 |
+
"grad_norm": 0.18721285368563478,
|
2353 |
+
"learning_rate": 1.8565656640867446e-05,
|
2354 |
+
"loss": 0.5479,
|
2355 |
+
"step": 335
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.6070460704607046,
|
2359 |
+
"grad_norm": 0.23175135933887356,
|
2360 |
+
"learning_rate": 1.8421212776196712e-05,
|
2361 |
+
"loss": 0.5447,
|
2362 |
+
"step": 336
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 0.6088527551942186,
|
2366 |
+
"grad_norm": 0.2204363474433054,
|
2367 |
+
"learning_rate": 1.827700448461836e-05,
|
2368 |
+
"loss": 0.546,
|
2369 |
+
"step": 337
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 0.6106594399277326,
|
2373 |
+
"grad_norm": 0.19452419620618744,
|
2374 |
+
"learning_rate": 1.813303692994025e-05,
|
2375 |
+
"loss": 0.5425,
|
2376 |
+
"step": 338
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 0.6124661246612466,
|
2380 |
+
"grad_norm": 0.20651673477929347,
|
2381 |
+
"learning_rate": 1.7989315267349936e-05,
|
2382 |
+
"loss": 0.5506,
|
2383 |
+
"step": 339
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 0.6142728093947606,
|
2387 |
+
"grad_norm": 0.21455957023533373,
|
2388 |
+
"learning_rate": 1.7845844643230086e-05,
|
2389 |
+
"loss": 0.5455,
|
2390 |
+
"step": 340
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.6160794941282746,
|
2394 |
+
"grad_norm": 0.18962328575710263,
|
2395 |
+
"learning_rate": 1.7702630194974168e-05,
|
2396 |
+
"loss": 0.5447,
|
2397 |
+
"step": 341
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.6178861788617886,
|
2401 |
+
"grad_norm": 0.20125814068872616,
|
2402 |
+
"learning_rate": 1.7559677050802544e-05,
|
2403 |
+
"loss": 0.5471,
|
2404 |
+
"step": 342
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 0.6196928635953026,
|
2408 |
+
"grad_norm": 0.2062412285437044,
|
2409 |
+
"learning_rate": 1.7416990329578753e-05,
|
2410 |
+
"loss": 0.5423,
|
2411 |
+
"step": 343
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 0.6214995483288166,
|
2415 |
+
"grad_norm": 0.17555900431962254,
|
2416 |
+
"learning_rate": 1.7274575140626318e-05,
|
2417 |
+
"loss": 0.5315,
|
2418 |
+
"step": 344
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 0.6233062330623306,
|
2422 |
+
"grad_norm": 0.2087948192870395,
|
2423 |
+
"learning_rate": 1.71324365835457e-05,
|
2424 |
+
"loss": 0.5452,
|
2425 |
+
"step": 345
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 0.6251129177958447,
|
2429 |
+
"grad_norm": 0.21784138024799143,
|
2430 |
+
"learning_rate": 1.699057974803176e-05,
|
2431 |
+
"loss": 0.5473,
|
2432 |
+
"step": 346
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.6269196025293586,
|
2436 |
+
"grad_norm": 0.1861000341754353,
|
2437 |
+
"learning_rate": 1.6849009713691454e-05,
|
2438 |
+
"loss": 0.533,
|
2439 |
+
"step": 347
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.6287262872628726,
|
2443 |
+
"grad_norm": 0.18591746906481155,
|
2444 |
+
"learning_rate": 1.670773154986199e-05,
|
2445 |
+
"loss": 0.5339,
|
2446 |
+
"step": 348
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 0.6305329719963866,
|
2450 |
+
"grad_norm": 0.20219108612053646,
|
2451 |
+
"learning_rate": 1.6566750315429254e-05,
|
2452 |
+
"loss": 0.5377,
|
2453 |
+
"step": 349
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 0.6323396567299007,
|
2457 |
+
"grad_norm": 0.20557468913002663,
|
2458 |
+
"learning_rate": 1.6426071058646717e-05,
|
2459 |
+
"loss": 0.55,
|
2460 |
+
"step": 350
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 0.6341463414634146,
|
2464 |
+
"grad_norm": 0.18753770940591308,
|
2465 |
+
"learning_rate": 1.6285698816954624e-05,
|
2466 |
+
"loss": 0.5386,
|
2467 |
+
"step": 351
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 0.6359530261969286,
|
2471 |
+
"grad_norm": 0.19533963206104513,
|
2472 |
+
"learning_rate": 1.6145638616799635e-05,
|
2473 |
+
"loss": 0.5523,
|
2474 |
+
"step": 352
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.6377597109304426,
|
2478 |
+
"grad_norm": 0.19883177155049775,
|
2479 |
+
"learning_rate": 1.6005895473454834e-05,
|
2480 |
+
"loss": 0.5529,
|
2481 |
+
"step": 353
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.6395663956639567,
|
2485 |
+
"grad_norm": 0.19105626261836942,
|
2486 |
+
"learning_rate": 1.5866474390840125e-05,
|
2487 |
+
"loss": 0.5477,
|
2488 |
+
"step": 354
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 0.6413730803974707,
|
2492 |
+
"grad_norm": 0.19085518602124357,
|
2493 |
+
"learning_rate": 1.5727380361343103e-05,
|
2494 |
+
"loss": 0.5367,
|
2495 |
+
"step": 355
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 0.6431797651309846,
|
2499 |
+
"grad_norm": 0.18476206933983438,
|
2500 |
+
"learning_rate": 1.55886183656402e-05,
|
2501 |
+
"loss": 0.5501,
|
2502 |
+
"step": 356
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 0.6449864498644986,
|
2506 |
+
"grad_norm": 0.20345727001070574,
|
2507 |
+
"learning_rate": 1.545019337251844e-05,
|
2508 |
+
"loss": 0.5517,
|
2509 |
+
"step": 357
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 0.6467931345980127,
|
2513 |
+
"grad_norm": 0.19518518340305593,
|
2514 |
+
"learning_rate": 1.5312110338697426e-05,
|
2515 |
+
"loss": 0.5572,
|
2516 |
+
"step": 358
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.6485998193315267,
|
2520 |
+
"grad_norm": 0.18647087973852483,
|
2521 |
+
"learning_rate": 1.5174374208651912e-05,
|
2522 |
+
"loss": 0.5309,
|
2523 |
+
"step": 359
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.6504065040650406,
|
2527 |
+
"grad_norm": 0.1752564638306992,
|
2528 |
+
"learning_rate": 1.503698991443471e-05,
|
2529 |
+
"loss": 0.5395,
|
2530 |
+
"step": 360
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 0.6522131887985546,
|
2534 |
+
"grad_norm": 0.21396862213123635,
|
2535 |
+
"learning_rate": 1.4899962375500121e-05,
|
2536 |
+
"loss": 0.5439,
|
2537 |
+
"step": 361
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 0.6540198735320687,
|
2541 |
+
"grad_norm": 0.1864226155625712,
|
2542 |
+
"learning_rate": 1.4763296498527743e-05,
|
2543 |
+
"loss": 0.5555,
|
2544 |
+
"step": 362
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 0.6558265582655827,
|
2548 |
+
"grad_norm": 0.1985530059254181,
|
2549 |
+
"learning_rate": 1.4626997177246787e-05,
|
2550 |
+
"loss": 0.5463,
|
2551 |
+
"step": 363
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 0.6576332429990966,
|
2555 |
+
"grad_norm": 0.1935568116476649,
|
2556 |
+
"learning_rate": 1.4491069292260868e-05,
|
2557 |
+
"loss": 0.5461,
|
2558 |
+
"step": 364
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.6594399277326106,
|
2562 |
+
"grad_norm": 0.18298602054352447,
|
2563 |
+
"learning_rate": 1.4355517710873184e-05,
|
2564 |
+
"loss": 0.5373,
|
2565 |
+
"step": 365
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.6612466124661247,
|
2569 |
+
"grad_norm": 0.19507739918902836,
|
2570 |
+
"learning_rate": 1.4220347286912294e-05,
|
2571 |
+
"loss": 0.5582,
|
2572 |
+
"step": 366
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 0.6630532971996387,
|
2576 |
+
"grad_norm": 0.17833708140807927,
|
2577 |
+
"learning_rate": 1.4085562860558255e-05,
|
2578 |
+
"loss": 0.5401,
|
2579 |
+
"step": 367
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 0.6648599819331527,
|
2583 |
+
"grad_norm": 0.1844224776342201,
|
2584 |
+
"learning_rate": 1.3951169258169338e-05,
|
2585 |
+
"loss": 0.5516,
|
2586 |
+
"step": 368
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 0.6666666666666666,
|
2590 |
+
"grad_norm": 0.20377343877534726,
|
2591 |
+
"learning_rate": 1.3817171292109183e-05,
|
2592 |
+
"loss": 0.5523,
|
2593 |
+
"step": 369
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 0.6684733514001807,
|
2597 |
+
"grad_norm": 0.19489493192889462,
|
2598 |
+
"learning_rate": 1.3683573760574526e-05,
|
2599 |
+
"loss": 0.5509,
|
2600 |
+
"step": 370
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.6702800361336947,
|
2604 |
+
"grad_norm": 0.18485393649450796,
|
2605 |
+
"learning_rate": 1.3550381447423316e-05,
|
2606 |
+
"loss": 0.5386,
|
2607 |
+
"step": 371
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.6720867208672087,
|
2611 |
+
"grad_norm": 0.1747656846320195,
|
2612 |
+
"learning_rate": 1.3417599122003464e-05,
|
2613 |
+
"loss": 0.556,
|
2614 |
+
"step": 372
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 0.6738934056007226,
|
2618 |
+
"grad_norm": 0.19263222750805417,
|
2619 |
+
"learning_rate": 1.3285231538982034e-05,
|
2620 |
+
"loss": 0.5421,
|
2621 |
+
"step": 373
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 0.6757000903342367,
|
2625 |
+
"grad_norm": 0.17840733283083468,
|
2626 |
+
"learning_rate": 1.3153283438175034e-05,
|
2627 |
+
"loss": 0.5325,
|
2628 |
+
"step": 374
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 0.6775067750677507,
|
2632 |
+
"grad_norm": 0.18984973207538583,
|
2633 |
+
"learning_rate": 1.3021759544377632e-05,
|
2634 |
+
"loss": 0.5458,
|
2635 |
+
"step": 375
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 0.6793134598012647,
|
2639 |
+
"grad_norm": 0.1794724093864629,
|
2640 |
+
"learning_rate": 1.2890664567194998e-05,
|
2641 |
+
"loss": 0.5309,
|
2642 |
+
"step": 376
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.6811201445347786,
|
2646 |
+
"grad_norm": 0.16850810216706724,
|
2647 |
+
"learning_rate": 1.2760003200873699e-05,
|
2648 |
+
"loss": 0.547,
|
2649 |
+
"step": 377
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.6829268292682927,
|
2653 |
+
"grad_norm": 0.18567658321001085,
|
2654 |
+
"learning_rate": 1.2629780124133511e-05,
|
2655 |
+
"loss": 0.5477,
|
2656 |
+
"step": 378
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 0.6847335140018067,
|
2660 |
+
"grad_norm": 0.18625748988712695,
|
2661 |
+
"learning_rate": 1.2500000000000006e-05,
|
2662 |
+
"loss": 0.5508,
|
2663 |
+
"step": 379
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 0.6865401987353207,
|
2667 |
+
"grad_norm": 0.18022330024350242,
|
2668 |
+
"learning_rate": 1.2370667475637473e-05,
|
2669 |
+
"loss": 0.5319,
|
2670 |
+
"step": 380
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 0.6883468834688347,
|
2674 |
+
"grad_norm": 0.19025386051774804,
|
2675 |
+
"learning_rate": 1.2241787182182595e-05,
|
2676 |
+
"loss": 0.548,
|
2677 |
+
"step": 381
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 0.6901535682023487,
|
2681 |
+
"grad_norm": 0.19685689934972375,
|
2682 |
+
"learning_rate": 1.2113363734578548e-05,
|
2683 |
+
"loss": 0.5351,
|
2684 |
+
"step": 382
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.6919602529358627,
|
2688 |
+
"grad_norm": 0.1816024364481472,
|
2689 |
+
"learning_rate": 1.1985401731409792e-05,
|
2690 |
+
"loss": 0.5543,
|
2691 |
+
"step": 383
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.6937669376693767,
|
2695 |
+
"grad_norm": 0.1855847227363131,
|
2696 |
+
"learning_rate": 1.185790575473738e-05,
|
2697 |
+
"loss": 0.5513,
|
2698 |
+
"step": 384
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 0.6955736224028907,
|
2702 |
+
"grad_norm": 0.19157005304377872,
|
2703 |
+
"learning_rate": 1.1730880369934933e-05,
|
2704 |
+
"loss": 0.5346,
|
2705 |
+
"step": 385
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 0.6973803071364046,
|
2709 |
+
"grad_norm": 0.1884899274997232,
|
2710 |
+
"learning_rate": 1.1604330125525079e-05,
|
2711 |
+
"loss": 0.5462,
|
2712 |
+
"step": 386
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 0.6991869918699187,
|
2716 |
+
"grad_norm": 0.19695986732992138,
|
2717 |
+
"learning_rate": 1.1478259553016682e-05,
|
2718 |
+
"loss": 0.546,
|
2719 |
+
"step": 387
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 0.7009936766034327,
|
2723 |
+
"grad_norm": 0.1763987543038491,
|
2724 |
+
"learning_rate": 1.135267316674246e-05,
|
2725 |
+
"loss": 0.5447,
|
2726 |
+
"step": 388
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.7028003613369467,
|
2730 |
+
"grad_norm": 0.1744753197615345,
|
2731 |
+
"learning_rate": 1.122757546369744e-05,
|
2732 |
+
"loss": 0.5472,
|
2733 |
+
"step": 389
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.7046070460704607,
|
2737 |
+
"grad_norm": 0.19784087693548952,
|
2738 |
+
"learning_rate": 1.1102970923377892e-05,
|
2739 |
+
"loss": 0.5422,
|
2740 |
+
"step": 390
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 0.7064137308039747,
|
2744 |
+
"grad_norm": 0.19418924859724615,
|
2745 |
+
"learning_rate": 1.0978864007620895e-05,
|
2746 |
+
"loss": 0.5413,
|
2747 |
+
"step": 391
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 0.7082204155374887,
|
2751 |
+
"grad_norm": 0.18429288339634364,
|
2752 |
+
"learning_rate": 1.0855259160444639e-05,
|
2753 |
+
"loss": 0.5482,
|
2754 |
+
"step": 392
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 0.7100271002710027,
|
2758 |
+
"grad_norm": 0.18456253990035,
|
2759 |
+
"learning_rate": 1.0732160807889211e-05,
|
2760 |
+
"loss": 0.5526,
|
2761 |
+
"step": 393
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 0.7118337850045167,
|
2765 |
+
"grad_norm": 0.16994217179797128,
|
2766 |
+
"learning_rate": 1.0609573357858166e-05,
|
2767 |
+
"loss": 0.5551,
|
2768 |
+
"step": 394
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.7136404697380307,
|
2772 |
+
"grad_norm": 0.18301793086712512,
|
2773 |
+
"learning_rate": 1.0487501199960662e-05,
|
2774 |
+
"loss": 0.549,
|
2775 |
+
"step": 395
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.7154471544715447,
|
2779 |
+
"grad_norm": 0.18028241948420914,
|
2780 |
+
"learning_rate": 1.0365948705354308e-05,
|
2781 |
+
"loss": 0.5439,
|
2782 |
+
"step": 396
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 0.7172538392050587,
|
2786 |
+
"grad_norm": 0.19782559552077592,
|
2787 |
+
"learning_rate": 1.0244920226588597e-05,
|
2788 |
+
"loss": 0.5438,
|
2789 |
+
"step": 397
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 0.7190605239385727,
|
2793 |
+
"grad_norm": 0.2026231285830895,
|
2794 |
+
"learning_rate": 1.0124420097449078e-05,
|
2795 |
+
"loss": 0.5451,
|
2796 |
+
"step": 398
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 0.7208672086720868,
|
2800 |
+
"grad_norm": 0.1804735574881514,
|
2801 |
+
"learning_rate": 1.0004452632802158e-05,
|
2802 |
+
"loss": 0.5469,
|
2803 |
+
"step": 399
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 0.7226738934056007,
|
2807 |
+
"grad_norm": 0.18650093962530534,
|
2808 |
+
"learning_rate": 9.88502212844063e-06,
|
2809 |
+
"loss": 0.5448,
|
2810 |
+
"step": 400
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.7244805781391147,
|
2814 |
+
"grad_norm": 0.1627784287383929,
|
2815 |
+
"learning_rate": 9.7661328609298e-06,
|
2816 |
+
"loss": 0.5464,
|
2817 |
+
"step": 401
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.7262872628726287,
|
2821 |
+
"grad_norm": 0.18118166494278065,
|
2822 |
+
"learning_rate": 9.64778908745437e-06,
|
2823 |
+
"loss": 0.5525,
|
2824 |
+
"step": 402
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 0.7280939476061428,
|
2828 |
+
"grad_norm": 0.17471791122244826,
|
2829 |
+
"learning_rate": 9.52999504566604e-06,
|
2830 |
+
"loss": 0.5347,
|
2831 |
+
"step": 403
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 0.7299006323396567,
|
2835 |
+
"grad_norm": 0.1811583101521944,
|
2836 |
+
"learning_rate": 9.412754953531663e-06,
|
2837 |
+
"loss": 0.5407,
|
2838 |
+
"step": 404
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 0.7317073170731707,
|
2842 |
+
"grad_norm": 0.17531463808816378,
|
2843 |
+
"learning_rate": 9.29607300918234e-06,
|
2844 |
+
"loss": 0.5385,
|
2845 |
+
"step": 405
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 0.7335140018066847,
|
2849 |
+
"grad_norm": 0.19171275621819656,
|
2850 |
+
"learning_rate": 9.179953390762977e-06,
|
2851 |
+
"loss": 0.5441,
|
2852 |
+
"step": 406
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.7353206865401988,
|
2856 |
+
"grad_norm": 0.1756488022836705,
|
2857 |
+
"learning_rate": 9.064400256282757e-06,
|
2858 |
+
"loss": 0.5365,
|
2859 |
+
"step": 407
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.7371273712737128,
|
2863 |
+
"grad_norm": 0.1771348265302101,
|
2864 |
+
"learning_rate": 8.9494177434662e-06,
|
2865 |
+
"loss": 0.5305,
|
2866 |
+
"step": 408
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 0.7389340560072267,
|
2870 |
+
"grad_norm": 0.1974332956001815,
|
2871 |
+
"learning_rate": 8.835009969605012e-06,
|
2872 |
+
"loss": 0.5506,
|
2873 |
+
"step": 409
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.7407407407407407,
|
2877 |
+
"grad_norm": 0.1747457776779323,
|
2878 |
+
"learning_rate": 8.72118103141066e-06,
|
2879 |
+
"loss": 0.5503,
|
2880 |
+
"step": 410
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.7425474254742548,
|
2884 |
+
"grad_norm": 0.17286937964641932,
|
2885 |
+
"learning_rate": 8.607935004867693e-06,
|
2886 |
+
"loss": 0.5526,
|
2887 |
+
"step": 411
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.7443541102077688,
|
2891 |
+
"grad_norm": 0.17970137608870798,
|
2892 |
+
"learning_rate": 8.495275945087744e-06,
|
2893 |
+
"loss": 0.5263,
|
2894 |
+
"step": 412
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.7461607949412827,
|
2898 |
+
"grad_norm": 0.18527192882908536,
|
2899 |
+
"learning_rate": 8.383207886164366e-06,
|
2900 |
+
"loss": 0.5419,
|
2901 |
+
"step": 413
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.7479674796747967,
|
2905 |
+
"grad_norm": 0.18130713652676914,
|
2906 |
+
"learning_rate": 8.271734841028553e-06,
|
2907 |
+
"loss": 0.5305,
|
2908 |
+
"step": 414
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.7497741644083108,
|
2912 |
+
"grad_norm": 0.18117159146062056,
|
2913 |
+
"learning_rate": 8.16086080130506e-06,
|
2914 |
+
"loss": 0.5509,
|
2915 |
+
"step": 415
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.7515808491418248,
|
2919 |
+
"grad_norm": 0.17168900288850059,
|
2920 |
+
"learning_rate": 8.050589737169485e-06,
|
2921 |
+
"loss": 0.5379,
|
2922 |
+
"step": 416
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.7533875338753387,
|
2926 |
+
"grad_norm": 0.17487610514162405,
|
2927 |
+
"learning_rate": 7.940925597206054e-06,
|
2928 |
+
"loss": 0.5581,
|
2929 |
+
"step": 417
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.7551942186088527,
|
2933 |
+
"grad_norm": 0.18251506263396053,
|
2934 |
+
"learning_rate": 7.831872308266305e-06,
|
2935 |
+
"loss": 0.5401,
|
2936 |
+
"step": 418
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.7570009033423668,
|
2940 |
+
"grad_norm": 0.16481609223169644,
|
2941 |
+
"learning_rate": 7.723433775328384e-06,
|
2942 |
+
"loss": 0.5424,
|
2943 |
+
"step": 419
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.7588075880758808,
|
2947 |
+
"grad_norm": 0.1737697908115226,
|
2948 |
+
"learning_rate": 7.615613881357314e-06,
|
2949 |
+
"loss": 0.5558,
|
2950 |
+
"step": 420
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 0.7606142728093948,
|
2954 |
+
"grad_norm": 0.16555274138734896,
|
2955 |
+
"learning_rate": 7.508416487165862e-06,
|
2956 |
+
"loss": 0.5381,
|
2957 |
+
"step": 421
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 0.7624209575429087,
|
2961 |
+
"grad_norm": 0.16447264734883038,
|
2962 |
+
"learning_rate": 7.401845431276378e-06,
|
2963 |
+
"loss": 0.5415,
|
2964 |
+
"step": 422
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 0.7642276422764228,
|
2968 |
+
"grad_norm": 0.17415451886329267,
|
2969 |
+
"learning_rate": 7.2959045297832655e-06,
|
2970 |
+
"loss": 0.5495,
|
2971 |
+
"step": 423
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 0.7660343270099368,
|
2975 |
+
"grad_norm": 0.17065746479252739,
|
2976 |
+
"learning_rate": 7.190597576216385e-06,
|
2977 |
+
"loss": 0.5532,
|
2978 |
+
"step": 424
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.7678410117434508,
|
2982 |
+
"grad_norm": 0.17238317467229838,
|
2983 |
+
"learning_rate": 7.085928341405193e-06,
|
2984 |
+
"loss": 0.5322,
|
2985 |
+
"step": 425
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.7696476964769647,
|
2989 |
+
"grad_norm": 0.16863027961565769,
|
2990 |
+
"learning_rate": 6.98190057334375e-06,
|
2991 |
+
"loss": 0.5519,
|
2992 |
+
"step": 426
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 0.7714543812104788,
|
2996 |
+
"grad_norm": 0.1593297580226093,
|
2997 |
+
"learning_rate": 6.8785179970564575e-06,
|
2998 |
+
"loss": 0.5241,
|
2999 |
+
"step": 427
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 0.7732610659439928,
|
3003 |
+
"grad_norm": 0.16542818768126102,
|
3004 |
+
"learning_rate": 6.775784314464717e-06,
|
3005 |
+
"loss": 0.5445,
|
3006 |
+
"step": 428
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 0.7750677506775068,
|
3010 |
+
"grad_norm": 0.1780340227421419,
|
3011 |
+
"learning_rate": 6.673703204254347e-06,
|
3012 |
+
"loss": 0.5395,
|
3013 |
+
"step": 429
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 0.7768744354110207,
|
3017 |
+
"grad_norm": 0.16726573991122753,
|
3018 |
+
"learning_rate": 6.572278321743871e-06,
|
3019 |
+
"loss": 0.5405,
|
3020 |
+
"step": 430
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.7786811201445348,
|
3024 |
+
"grad_norm": 0.1785877906073299,
|
3025 |
+
"learning_rate": 6.471513298753634e-06,
|
3026 |
+
"loss": 0.5492,
|
3027 |
+
"step": 431
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.7804878048780488,
|
3031 |
+
"grad_norm": 0.16603872299842923,
|
3032 |
+
"learning_rate": 6.371411743475716e-06,
|
3033 |
+
"loss": 0.5447,
|
3034 |
+
"step": 432
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 0.7822944896115628,
|
3038 |
+
"grad_norm": 0.16095749162259912,
|
3039 |
+
"learning_rate": 6.271977240344795e-06,
|
3040 |
+
"loss": 0.552,
|
3041 |
+
"step": 433
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 0.7841011743450768,
|
3045 |
+
"grad_norm": 0.15580546721947586,
|
3046 |
+
"learning_rate": 6.173213349909729e-06,
|
3047 |
+
"loss": 0.5502,
|
3048 |
+
"step": 434
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 0.7859078590785907,
|
3052 |
+
"grad_norm": 0.17035970479251278,
|
3053 |
+
"learning_rate": 6.075123608706093e-06,
|
3054 |
+
"loss": 0.5289,
|
3055 |
+
"step": 435
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 0.7877145438121048,
|
3059 |
+
"grad_norm": 0.20132638080379242,
|
3060 |
+
"learning_rate": 5.97771152912954e-06,
|
3061 |
+
"loss": 0.5423,
|
3062 |
+
"step": 436
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.7895212285456188,
|
3066 |
+
"grad_norm": 0.16365519004869614,
|
3067 |
+
"learning_rate": 5.88098059931004e-06,
|
3068 |
+
"loss": 0.5417,
|
3069 |
+
"step": 437
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.7913279132791328,
|
3073 |
+
"grad_norm": 0.18445590550481347,
|
3074 |
+
"learning_rate": 5.784934282986956e-06,
|
3075 |
+
"loss": 0.5332,
|
3076 |
+
"step": 438
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 0.7931345980126467,
|
3080 |
+
"grad_norm": 0.16958481029315015,
|
3081 |
+
"learning_rate": 5.689576019385015e-06,
|
3082 |
+
"loss": 0.5502,
|
3083 |
+
"step": 439
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 0.7949412827461608,
|
3087 |
+
"grad_norm": 0.1649104390525428,
|
3088 |
+
"learning_rate": 5.59490922309118e-06,
|
3089 |
+
"loss": 0.5412,
|
3090 |
+
"step": 440
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 0.7967479674796748,
|
3094 |
+
"grad_norm": 0.15668864152561834,
|
3095 |
+
"learning_rate": 5.500937283932348e-06,
|
3096 |
+
"loss": 0.527,
|
3097 |
+
"step": 441
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 0.7985546522131888,
|
3101 |
+
"grad_norm": 0.1655878950739341,
|
3102 |
+
"learning_rate": 5.4076635668540075e-06,
|
3103 |
+
"loss": 0.5359,
|
3104 |
+
"step": 442
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.8003613369467028,
|
3108 |
+
"grad_norm": 0.16679457525646782,
|
3109 |
+
"learning_rate": 5.3150914117996995e-06,
|
3110 |
+
"loss": 0.5434,
|
3111 |
+
"step": 443
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.8021680216802168,
|
3115 |
+
"grad_norm": 0.16606744822033415,
|
3116 |
+
"learning_rate": 5.223224133591476e-06,
|
3117 |
+
"loss": 0.5486,
|
3118 |
+
"step": 444
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 0.8039747064137308,
|
3122 |
+
"grad_norm": 0.16825280039384785,
|
3123 |
+
"learning_rate": 5.132065021811122e-06,
|
3124 |
+
"loss": 0.5371,
|
3125 |
+
"step": 445
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 0.8057813911472448,
|
3129 |
+
"grad_norm": 0.169238100720076,
|
3130 |
+
"learning_rate": 5.041617340682467e-06,
|
3131 |
+
"loss": 0.5351,
|
3132 |
+
"step": 446
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 0.8075880758807588,
|
3136 |
+
"grad_norm": 0.16364919261081698,
|
3137 |
+
"learning_rate": 4.951884328954401e-06,
|
3138 |
+
"loss": 0.5399,
|
3139 |
+
"step": 447
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 0.8093947606142728,
|
3143 |
+
"grad_norm": 0.15570452029836196,
|
3144 |
+
"learning_rate": 4.862869199784984e-06,
|
3145 |
+
"loss": 0.5428,
|
3146 |
+
"step": 448
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.8112014453477868,
|
3150 |
+
"grad_norm": 0.16536185323015634,
|
3151 |
+
"learning_rate": 4.7745751406263165e-06,
|
3152 |
+
"loss": 0.5368,
|
3153 |
+
"step": 449
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.8130081300813008,
|
3157 |
+
"grad_norm": 0.1642447634284196,
|
3158 |
+
"learning_rate": 4.687005313110454e-06,
|
3159 |
+
"loss": 0.5478,
|
3160 |
+
"step": 450
|
3161 |
+
},
|
3162 |
+
{
|
3163 |
+
"epoch": 0.8148148148148148,
|
3164 |
+
"grad_norm": 0.17189472337553038,
|
3165 |
+
"learning_rate": 4.600162852936171e-06,
|
3166 |
+
"loss": 0.5479,
|
3167 |
+
"step": 451
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 0.8166214995483289,
|
3171 |
+
"grad_norm": 0.1622663866581593,
|
3172 |
+
"learning_rate": 4.514050869756703e-06,
|
3173 |
+
"loss": 0.5456,
|
3174 |
+
"step": 452
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 0.8184281842818428,
|
3178 |
+
"grad_norm": 0.16845956722439456,
|
3179 |
+
"learning_rate": 4.428672447068357e-06,
|
3180 |
+
"loss": 0.5371,
|
3181 |
+
"step": 453
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 0.8202348690153568,
|
3185 |
+
"grad_norm": 0.1697045320041469,
|
3186 |
+
"learning_rate": 4.344030642100133e-06,
|
3187 |
+
"loss": 0.5221,
|
3188 |
+
"step": 454
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.8220415537488708,
|
3192 |
+
"grad_norm": 0.1569303947357604,
|
3193 |
+
"learning_rate": 4.2601284857042266e-06,
|
3194 |
+
"loss": 0.5448,
|
3195 |
+
"step": 455
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.8238482384823849,
|
3199 |
+
"grad_norm": 0.15476379926290768,
|
3200 |
+
"learning_rate": 4.176968982247514e-06,
|
3201 |
+
"loss": 0.5381,
|
3202 |
+
"step": 456
|
3203 |
+
},
|
3204 |
+
{
|
3205 |
+
"epoch": 0.8256549232158988,
|
3206 |
+
"grad_norm": 0.15482287513190826,
|
3207 |
+
"learning_rate": 4.094555109503983e-06,
|
3208 |
+
"loss": 0.5512,
|
3209 |
+
"step": 457
|
3210 |
+
},
|
3211 |
+
{
|
3212 |
+
"epoch": 0.8274616079494128,
|
3213 |
+
"grad_norm": 0.15771332330379692,
|
3214 |
+
"learning_rate": 4.012889818548069e-06,
|
3215 |
+
"loss": 0.5434,
|
3216 |
+
"step": 458
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 0.8292682926829268,
|
3220 |
+
"grad_norm": 0.16317553842745647,
|
3221 |
+
"learning_rate": 3.931976033649021e-06,
|
3222 |
+
"loss": 0.5334,
|
3223 |
+
"step": 459
|
3224 |
+
},
|
3225 |
+
{
|
3226 |
+
"epoch": 0.8310749774164409,
|
3227 |
+
"grad_norm": 0.17174382523088916,
|
3228 |
+
"learning_rate": 3.851816652166165e-06,
|
3229 |
+
"loss": 0.5424,
|
3230 |
+
"step": 460
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.8328816621499548,
|
3234 |
+
"grad_norm": 0.16573443480804972,
|
3235 |
+
"learning_rate": 3.772414544445163e-06,
|
3236 |
+
"loss": 0.5311,
|
3237 |
+
"step": 461
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 0.8346883468834688,
|
3241 |
+
"grad_norm": 0.15446794969610067,
|
3242 |
+
"learning_rate": 3.6937725537152274e-06,
|
3243 |
+
"loss": 0.5393,
|
3244 |
+
"step": 462
|
3245 |
+
},
|
3246 |
+
{
|
3247 |
+
"epoch": 0.8364950316169828,
|
3248 |
+
"grad_norm": 0.1527128682986973,
|
3249 |
+
"learning_rate": 3.6158934959873353e-06,
|
3250 |
+
"loss": 0.5424,
|
3251 |
+
"step": 463
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 0.8383017163504969,
|
3255 |
+
"grad_norm": 0.17175555317296717,
|
3256 |
+
"learning_rate": 3.5387801599533475e-06,
|
3257 |
+
"loss": 0.5452,
|
3258 |
+
"step": 464
|
3259 |
+
},
|
3260 |
+
{
|
3261 |
+
"epoch": 0.8401084010840109,
|
3262 |
+
"grad_norm": 0.1827500644217941,
|
3263 |
+
"learning_rate": 3.4624353068861943e-06,
|
3264 |
+
"loss": 0.555,
|
3265 |
+
"step": 465
|
3266 |
+
},
|
3267 |
+
{
|
3268 |
+
"epoch": 0.8419150858175248,
|
3269 |
+
"grad_norm": 0.18470025992550826,
|
3270 |
+
"learning_rate": 3.386861670540972e-06,
|
3271 |
+
"loss": 0.5378,
|
3272 |
+
"step": 466
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.8437217705510388,
|
3276 |
+
"grad_norm": 0.15457718641161783,
|
3277 |
+
"learning_rate": 3.312061957057061e-06,
|
3278 |
+
"loss": 0.5353,
|
3279 |
+
"step": 467
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 0.8455284552845529,
|
3283 |
+
"grad_norm": 0.15298478782918437,
|
3284 |
+
"learning_rate": 3.2380388448612437e-06,
|
3285 |
+
"loss": 0.5454,
|
3286 |
+
"step": 468
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 0.8473351400180669,
|
3290 |
+
"grad_norm": 0.16344512534726865,
|
3291 |
+
"learning_rate": 3.164794984571759e-06,
|
3292 |
+
"loss": 0.5346,
|
3293 |
+
"step": 469
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 0.8491418247515808,
|
3297 |
+
"grad_norm": 0.1674984642283038,
|
3298 |
+
"learning_rate": 3.092332998903416e-06,
|
3299 |
+
"loss": 0.5313,
|
3300 |
+
"step": 470
|
3301 |
+
},
|
3302 |
+
{
|
3303 |
+
"epoch": 0.8509485094850948,
|
3304 |
+
"grad_norm": 0.1868695578615933,
|
3305 |
+
"learning_rate": 3.020655482573659e-06,
|
3306 |
+
"loss": 0.5597,
|
3307 |
+
"step": 471
|
3308 |
+
},
|
3309 |
+
{
|
3310 |
+
"epoch": 0.8527551942186089,
|
3311 |
+
"grad_norm": 0.17175141607765962,
|
3312 |
+
"learning_rate": 2.949765002209698e-06,
|
3313 |
+
"loss": 0.5317,
|
3314 |
+
"step": 472
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 0.8545618789521229,
|
3318 |
+
"grad_norm": 0.15725532049696417,
|
3319 |
+
"learning_rate": 2.8796640962565374e-06,
|
3320 |
+
"loss": 0.5492,
|
3321 |
+
"step": 473
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 0.8563685636856369,
|
3325 |
+
"grad_norm": 0.15482867886193424,
|
3326 |
+
"learning_rate": 2.8103552748861476e-06,
|
3327 |
+
"loss": 0.5456,
|
3328 |
+
"step": 474
|
3329 |
+
},
|
3330 |
+
{
|
3331 |
+
"epoch": 0.8581752484191508,
|
3332 |
+
"grad_norm": 0.18329691106478674,
|
3333 |
+
"learning_rate": 2.741841019907529e-06,
|
3334 |
+
"loss": 0.5349,
|
3335 |
+
"step": 475
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 0.8599819331526649,
|
3339 |
+
"grad_norm": 0.1607829213655879,
|
3340 |
+
"learning_rate": 2.6741237846778676e-06,
|
3341 |
+
"loss": 0.5416,
|
3342 |
+
"step": 476
|
3343 |
+
},
|
3344 |
+
{
|
3345 |
+
"epoch": 0.8617886178861789,
|
3346 |
+
"grad_norm": 0.1868958806945001,
|
3347 |
+
"learning_rate": 2.6072059940146775e-06,
|
3348 |
+
"loss": 0.5389,
|
3349 |
+
"step": 477
|
3350 |
+
},
|
3351 |
+
{
|
3352 |
+
"epoch": 0.8635953026196929,
|
3353 |
+
"grad_norm": 0.18611089945662287,
|
3354 |
+
"learning_rate": 2.5410900441089903e-06,
|
3355 |
+
"loss": 0.549,
|
3356 |
+
"step": 478
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 0.8654019873532068,
|
3360 |
+
"grad_norm": 0.16594404771364443,
|
3361 |
+
"learning_rate": 2.475778302439524e-06,
|
3362 |
+
"loss": 0.535,
|
3363 |
+
"step": 479
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 0.8672086720867209,
|
3367 |
+
"grad_norm": 0.15467931802911486,
|
3368 |
+
"learning_rate": 2.411273107687925e-06,
|
3369 |
+
"loss": 0.5339,
|
3370 |
+
"step": 480
|
3371 |
+
},
|
3372 |
+
{
|
3373 |
+
"epoch": 0.8690153568202349,
|
3374 |
+
"grad_norm": 0.1586927483894241,
|
3375 |
+
"learning_rate": 2.3475767696550327e-06,
|
3376 |
+
"loss": 0.5444,
|
3377 |
+
"step": 481
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 0.8708220415537489,
|
3381 |
+
"grad_norm": 0.16360327826556148,
|
3382 |
+
"learning_rate": 2.284691569178138e-06,
|
3383 |
+
"loss": 0.5487,
|
3384 |
+
"step": 482
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 0.8726287262872628,
|
3388 |
+
"grad_norm": 0.16279172714207318,
|
3389 |
+
"learning_rate": 2.222619758049366e-06,
|
3390 |
+
"loss": 0.5334,
|
3391 |
+
"step": 483
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 0.8744354110207768,
|
3395 |
+
"grad_norm": 0.15591392366340215,
|
3396 |
+
"learning_rate": 2.1613635589349756e-06,
|
3397 |
+
"loss": 0.5297,
|
3398 |
+
"step": 484
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 0.8762420957542909,
|
3402 |
+
"grad_norm": 0.16449010032961467,
|
3403 |
+
"learning_rate": 2.1009251652958387e-06,
|
3404 |
+
"loss": 0.54,
|
3405 |
+
"step": 485
|
3406 |
+
},
|
3407 |
+
{
|
3408 |
+
"epoch": 0.8780487804878049,
|
3409 |
+
"grad_norm": 0.15859432873096316,
|
3410 |
+
"learning_rate": 2.041306741308832e-06,
|
3411 |
+
"loss": 0.5459,
|
3412 |
+
"step": 486
|
3413 |
+
},
|
3414 |
+
{
|
3415 |
+
"epoch": 0.8798554652213189,
|
3416 |
+
"grad_norm": 0.14857893885598777,
|
3417 |
+
"learning_rate": 1.9825104217894018e-06,
|
3418 |
+
"loss": 0.5337,
|
3419 |
+
"step": 487
|
3420 |
+
},
|
3421 |
+
{
|
3422 |
+
"epoch": 0.8816621499548328,
|
3423 |
+
"grad_norm": 0.1494091308652868,
|
3424 |
+
"learning_rate": 1.9245383121150677e-06,
|
3425 |
+
"loss": 0.5333,
|
3426 |
+
"step": 488
|
3427 |
+
},
|
3428 |
+
{
|
3429 |
+
"epoch": 0.8834688346883469,
|
3430 |
+
"grad_norm": 0.14311421243868963,
|
3431 |
+
"learning_rate": 1.8673924881500826e-06,
|
3432 |
+
"loss": 0.5421,
|
3433 |
+
"step": 489
|
3434 |
+
},
|
3435 |
+
{
|
3436 |
+
"epoch": 0.8852755194218609,
|
3437 |
+
"grad_norm": 0.1554778940613786,
|
3438 |
+
"learning_rate": 1.8110749961710584e-06,
|
3439 |
+
"loss": 0.5395,
|
3440 |
+
"step": 490
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 0.8870822041553749,
|
3444 |
+
"grad_norm": 0.15145958712268814,
|
3445 |
+
"learning_rate": 1.7555878527937164e-06,
|
3446 |
+
"loss": 0.5304,
|
3447 |
+
"step": 491
|
3448 |
+
},
|
3449 |
+
{
|
3450 |
+
"epoch": 0.8888888888888888,
|
3451 |
+
"grad_norm": 0.15589273391637942,
|
3452 |
+
"learning_rate": 1.700933044900671e-06,
|
3453 |
+
"loss": 0.5322,
|
3454 |
+
"step": 492
|
3455 |
+
},
|
3456 |
+
{
|
3457 |
+
"epoch": 0.8906955736224029,
|
3458 |
+
"grad_norm": 0.15420913878921952,
|
3459 |
+
"learning_rate": 1.6471125295702771e-06,
|
3460 |
+
"loss": 0.5266,
|
3461 |
+
"step": 493
|
3462 |
+
},
|
3463 |
+
{
|
3464 |
+
"epoch": 0.8925022583559169,
|
3465 |
+
"grad_norm": 0.14746011883827903,
|
3466 |
+
"learning_rate": 1.59412823400657e-06,
|
3467 |
+
"loss": 0.544,
|
3468 |
+
"step": 494
|
3469 |
+
},
|
3470 |
+
{
|
3471 |
+
"epoch": 0.8943089430894309,
|
3472 |
+
"grad_norm": 0.14982446165391347,
|
3473 |
+
"learning_rate": 1.5419820554702314e-06,
|
3474 |
+
"loss": 0.5405,
|
3475 |
+
"step": 495
|
3476 |
+
},
|
3477 |
+
{
|
3478 |
+
"epoch": 0.8961156278229448,
|
3479 |
+
"grad_norm": 0.16338100167587327,
|
3480 |
+
"learning_rate": 1.4906758612106636e-06,
|
3481 |
+
"loss": 0.5526,
|
3482 |
+
"step": 496
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 0.8979223125564589,
|
3486 |
+
"grad_norm": 0.16932190355080526,
|
3487 |
+
"learning_rate": 1.4402114883991318e-06,
|
3488 |
+
"loss": 0.5402,
|
3489 |
+
"step": 497
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 0.8997289972899729,
|
3493 |
+
"grad_norm": 0.15480586903831217,
|
3494 |
+
"learning_rate": 1.3905907440629752e-06,
|
3495 |
+
"loss": 0.5395,
|
3496 |
+
"step": 498
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 0.9015356820234869,
|
3500 |
+
"grad_norm": 0.16325965636596898,
|
3501 |
+
"learning_rate": 1.3418154050208936e-06,
|
3502 |
+
"loss": 0.5482,
|
3503 |
+
"step": 499
|
3504 |
+
},
|
3505 |
+
{
|
3506 |
+
"epoch": 0.9033423667570009,
|
3507 |
+
"grad_norm": 0.15017574462111036,
|
3508 |
+
"learning_rate": 1.2938872178193395e-06,
|
3509 |
+
"loss": 0.547,
|
3510 |
+
"step": 500
|
3511 |
+
}
|
3512 |
+
],
|
3513 |
+
"logging_steps": 1,
|
3514 |
+
"max_steps": 553,
|
3515 |
+
"num_input_tokens_seen": 0,
|
3516 |
+
"num_train_epochs": 1,
|
3517 |
+
"save_steps": 100,
|
3518 |
+
"stateful_callbacks": {
|
3519 |
+
"TrainerControl": {
|
3520 |
+
"args": {
|
3521 |
+
"should_epoch_stop": false,
|
3522 |
+
"should_evaluate": false,
|
3523 |
+
"should_log": false,
|
3524 |
+
"should_save": true,
|
3525 |
+
"should_training_stop": false
|
3526 |
+
},
|
3527 |
+
"attributes": {}
|
3528 |
+
}
|
3529 |
+
},
|
3530 |
+
"total_flos": 579500543967232.0,
|
3531 |
+
"train_batch_size": 2,
|
3532 |
+
"trial_name": null,
|
3533 |
+
"trial_params": null
|
3534 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22aefb93ca416840fa0e7fa01f060270362486d66fa7cfd0e7b31d1f73a38d24
|
3 |
+
size 8017
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|