{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f82e63fe1c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680214289703825265, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHaVTT9Hep0/XuJPvk0bBD+GJOE/K3iePptsYr8cAA+/YhVqPmlU67/T54a/AJEFP1RYmT+cE+k+9x82P6fkor4X37E/Bf2ivbxe8L9OaLu98lhqvhMm7L+NOB1AJFiDvo9jc7/0xhU/n3wCwFclgT8dP+m+jXYFQBhu47/1RQq/l5H+P267sb8zGCC/FtNaP0221T1INQi/PPqNv/fS/DwtTg4/kPGjP0QLzD5S5E9Ajh99P1F3yT9IvVO/6XANvxZAuL2C8+6+Suz3PcZwNT+PY3O/9MYVPwQf+z5XJYE/bCQpPzcdHb/v3Mo+eCCOP3HISr6r++Q+9DFIv0WZmL8kiDU/tguovq1XMD/TbY8+0Byuv1GWXD6UKys/5U/8Pf+Tjb+jkw6/wTzfPguLDUBubP++1rDCP9sutz0uPkk93KGGP0HH2r8EH/s+hrp9v02cGz8KkpU/59gJvoVwej7vT4Q/tyGpv1FxhL9qLAW+0NFEPqqKpb6SK76+d9izPuSFrj68XCk+xAwMP61WHkBA2pw/Vf0ZvtOS6r+5qyo/QH0SvzNFtb5d7rA/jjYtv49jc7/0xhU/n3wCwFclgT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBQqE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzpbpuwAAAACWQgHAAAAAAAxP/rsAAAAAdvz6PwAAAAC75rU9AAAAAAc33j8AAAAAzQsCvgAAAAB0KADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAieLOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ8m970AAAAAyi/6vwAAAADJtVK9AAAAAA+G6j8AAAAAyG+ovQAAAADJdd0/AAAAAC0JYj0AAAAA4ozyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhR6LQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB37bu9AAAAAFeO6b8AAAAAZ2H7vQAAAACqEeQ/AAAAANyyez0AAAAAHpXsPwAAAAD+OGM9AAAAAOox7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAhUe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANHWGvAAAAAB1K+a/AAAAABqYpjwAAAAAAWX8PwAAAABXT5G9AAAAANr69j8AAAAA9se2PQAAAACfnPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ75FM+NcW2MAWyUTegDjAF0lEdAq3hfqC6H03V9lChoBkdAm3g9mYjSomgHTegDaAhHQKt5UsMAmzB1fZQoaAZHQJ0yMNCqp99oB03oA2gIR0CregJ+DvmYdX2UKGgGR0CgIQDp9qk/aAdN6ANoCEdAq3pilWOp9HV9lChoBkdAoDRxEUj9oGgHTegDaAhHQKuEtaePJaJ1fZQoaAZHQJ+Rcc0cfeVoB03oA2gIR0CrhabtzCDVdX2UKGgGR0CgGN0pNKywaAdN6ANoCEdAq4ZUlb/wRXV9lChoBkdAnTQL0nPVu2gHTegDaAhHQKuGqn3ta6l1fZQoaAZHQJSGEyDZlFtoB03oA2gIR0CrmB207bL2dX2UKGgGR0CeDADQZ4wAaAdN6ANoCEdAq5m0OwxFiXV9lChoBkdAoAKwF9roGWgHTegDaAhHQKuaw9+w1SB1fZQoaAZHQJ418Mz/IbRoB03oA2gIR0Crm02sRxtIdX2UKGgGR0CflJEi+tbLaAdN6ANoCEdAq6WsipvP1XV9lChoBkdAntz5pFkQPWgHTegDaAhHQKumop84Pwx1fZQoaAZHQJzPihPCVKRoB03oA2gIR0Crp0oNEw36dX2UKGgGR0Cd5423azu4aAdN6ANoCEdAq6ei3d9DyHV9lChoBkdAlEZBzJZGKGgHTegDaAhHQKu2kJUHY6J1fZQoaAZHQJwgfB7/n4hoB03oA2gIR0Crt5nRb8m8dX2UKGgGR0CKmt3FkxyoaAdN6ANoCEdAq7hJy0a6z3V9lChoBkdAnqLvbfxc3WgHTegDaAhHQKu4n8D0UXZ1fZQoaAZHQJkwMbcXWOJoB03oA2gIR0Crw2u2iL2pdX2UKGgGR0CbwrLjghr4aAdN6ANoCEdAq8Rj83uNP3V9lChoBkdAnEE5xJd0JWgHTegDaAhHQKvFCf2bobJ1fZQoaAZHQJ3IZmkFfRhoB03oA2gIR0CrxWBpxm03dX2UKGgGR0Ce7PUsnRb9aAdN6ANoCEdAq9QhEH+qBHV9lChoBkdAi29+pXIU8GgHTegDaAhHQKvVHRXwLE11fZQoaAZHQJzZANZvDP5oB03oA2gIR0Cr1cO27Wd3dX2UKGgGR0CfB7jxCpm3aAdN6ANoCEdAq9YbDIikf3V9lChoBkdAnWMnktEofGgHTegDaAhHQKvgsDhcZ+B1fZQoaAZHQJz12x8lXzVoB03oA2gIR0Cr4ajbrTpgdX2UKGgGR0CeCDAz544ZaAdN6ANoCEdAq+JPGp++d3V9lChoBkdAnO89rwe/6GgHTegDaAhHQKviqfI0ZWJ1fZQoaAZHQKAMO+oLofVoB03oA2gIR0Cr8KJR4yGjdX2UKGgGR0CdlGkyk9EDaAdN6ANoCEdAq/I67sfJWHV9lChoBkdAnyA45YHPeGgHTegDaAhHQKvy416Vt411fZQoaAZHQJ0xTXRPXTVoB03oA2gIR0Cr8zrPldTpdX2UKGgGR0CeT/qKP4mDaAdN6ANoCEdAq/4wGhVU/HV9lChoBkdAm2LlRxcVxmgHTegDaAhHQKv/IZb6guh1fZQoaAZHQJxLYf3evZBoB03oA2gIR0Cr/8sWoFV1dX2UKGgGR0CZmVWxQizLaAdN6ANoCEdArAAfi5uqFXV9lChoBkdAndb9gWrOq2gHTegDaAhHQKwM+lKK5091fZQoaAZHQJ8qqoCMglpoB03oA2gIR0CsDp23z+WGdX2UKGgGR0CdmWuCwr1/aAdN6ANoCEdArA+wctGutHV9lChoBkdAnruThP0qY2gHTegDaAhHQKwQQoRZlnR1fZQoaAZHQJu0qW4Vh1FoB03oA2gIR0CsGxvq1PWQdX2UKGgGR0Cc1KpIMBp6aAdN6ANoCEdArBwRHI6sAHV9lChoBkdAm4wR4t6HCWgHTegDaAhHQKwcuIsRQJp1fZQoaAZHQJwn2FCb+cZoB03oA2gIR0CsHQ1UdaMadX2UKGgGR0ChRGyBClabaAdN6ANoCEdArChXxlQMyHV9lChoBkdAnrNkhvBJqmgHTegDaAhHQKwpzM8HObB1fZQoaAZHQKED1juKGcpoB03oA2gIR0CsKts1KoQ4dX2UKGgGR0CgkA3b/Ot5aAdN6ANoCEdArCttE1EVnHV9lChoBkdAnPqYCIUJwGgHTegDaAhHQKw4IHCXQdF1fZQoaAZHQJUdu4MF2V5oB03oA2gIR0CsORqfOD8MdX2UKGgGR0CadnlT3qRmaAdN6ANoCEdArDnFImPYF3V9lChoBkdAmkPqfra/RGgHTegDaAhHQKw6G1m8M/h1fZQoaAZHQJdCD9deIEdoB03oA2gIR0CsRMMi8nNQdX2UKGgGR0CX4bgYxcmjaAdN6ANoCEdArEY0yWRigHV9lChoBkdAmMpRlQMx5GgHTegDaAhHQKxHMSaEzwd1fZQoaAZHQJY3P5HmRvFoB03oA2gIR0CsR7vYnOSodX2UKGgGR0CWMQCpFTegaAdN6ANoCEdArFUvzBhx53V9lChoBkdAmBM3OGCZnmgHTegDaAhHQKxWMXsw+MZ1fZQoaAZHQI6Y8jeKsMloB03oA2gIR0CsVtssH0K7dX2UKGgGR0CUQlgw482aaAdN6ANoCEdArFcxNfw7T3V9lChoBkdAiw9JzcRDkWgHTegDaAhHQKxh4xnnMdN1fZQoaAZHQJMBUwQDmr9oB03oA2gIR0CsYufukUKzdX2UKGgGR0CXYOabnX/YaAdN6ANoCEdArGOkVnEl3XV9lChoBkdAi6s5LytmtmgHTegDaAhHQKxkMWYWtU51fZQoaAZHQJwzCJyhi9ZoB03oA2gIR0CscuPiLl3hdX2UKGgGR0CPOoMjNY8uaAdN6ANoCEdArHPm1F6RhnV9lChoBkdAnSCBs/IKdGgHTegDaAhHQKx0lY2bXpZ1fZQoaAZHQJ4cjv+fh/BoB03oA2gIR0CsdPMz2vjfdX2UKGgGR0CUfI10DEFXaAdN6ANoCEdArH+Lm2b5M3V9lChoBkdAmST1uejEemgHTegDaAhHQKyAgJHAh0R1fZQoaAZHQJ2r3voePq9oB03oA2gIR0CsgS44ZMtcdX2UKGgGR0CYCI4sVclgaAdN6ANoCEdArIGImPYFq3V9lChoBkdAkvZN0vGp/GgHTegDaAhHQKyQT/Q0GeN1fZQoaAZHQKA9w5avA45oB03oA2gIR0CskUeMQ2/BdX2UKGgGR0CdACeLehwmaAdN6ANoCEdArJHxJmNBGHV9lChoBkdAm2pgcLjPwGgHTegDaAhHQKySRfyf+S91fZQoaAZHQJ4rw+B6KLtoB03oA2gIR0CsnI90zTF3dX2UKGgGR0CgBsoUrTYvaAdN6ANoCEdArJ2Cwr1/UnV9lChoBkdAnu2K+rU9ZGgHTegDaAhHQKyeL1KXfIl1fZQoaAZHQJptt2IO6NFoB03oA2gIR0CsnoP5xiobdX2UKGgGR0Cf/cuQZGayaAdN6ANoCEdArK1N8G9pRHV9lChoBkdAny/MwDeTFGgHTegDaAhHQKyuT5qM3qB1fZQoaAZHQJ/yv+JgsshoB03oA2gIR0Csrv7ItDlYdX2UKGgGR0CgMx5zPrv9aAdN6ANoCEdArK9YAEMb33V9lChoBkdAnZrul9BrvmgHTegDaAhHQKy51S5RTCN1fZQoaAZHQJ64wYsNDtxoB03oA2gIR0CsutBMBZIQdX2UKGgGR0Cc/1v0AcT8aAdN6ANoCEdArLt4h6jWTXV9lChoBkdAhh5cE/0NBmgHTegDaAhHQKy70D5CWu51fZQoaAZHQJ2ASjrRjSZoB03oA2gIR0CsyWj5bhWHdX2UKGgGR0CfBBq814xDaAdN6ANoCEdArMsSkAPuonV9lChoBkdAnvRoaHbh32gHTegDaAhHQKzMI0svqTt1fZQoaAZHQJcdL8Nx2jhoB03oA2gIR0CszHilSCOFdX2UKGgGR0CemiB2wFC+aAdN6ANoCEdArNramsNlRXV9lChoBkdAgz/B/y5I6WgHTegDaAhHQKzb0d4mkWR1fZQoaAZHQJkwN9ZzPrxoB03oA2gIR0Cs3H++Eh7mdX2UKGgGR0Cfp/yon8baaAdN6ANoCEdArNzTmCAc1nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}