--- library_name: transformers license: gemma base_model: vidore/colpaligemma-3b-pt-448-base tags: - colpali - generated_from_trainer model-index: - name: checkpoints results: [] --- # checkpoints This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the ferferefer/colpali_prueba dataset. It achieves the following results on the evaluation set: - Loss: 0.0147 - Model Preparation Time: 0.0064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | No log | 0.0034 | 1 | 0.0574 | 0.0064 | | 0.0116 | 0.3404 | 100 | 0.0284 | 0.0064 | | 0.0061 | 0.6809 | 200 | 0.0278 | 0.0064 | | 0.0043 | 1.0204 | 300 | 0.0170 | 0.0064 | | 0.0135 | 1.3609 | 400 | 0.0167 | 0.0064 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0