Text Generation
Transformers
PyTorch
Safetensors
Czech
English
mt5
text2text-generation
File size: 2,858 Bytes
289fb31
 
 
 
b1cbcd9
289fb31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9422ad
289fb31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1cbcd9
289fb31
 
 
 
 
 
 
 
b9422ad
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
datasets:
- squad
- fewshot-goes-multilingual/cs_squad-3.0
language:
- cs
- en
metrics:
- rouge
pipeline_tag: text2text-generation
---

# Model Card for mTk-SQuAD_en-SQAD_cs-1B

This model is a generative in-context few-shot learner specialized in Czech. It was trained on a combination of English SQuAD and Czech SQAD dataset.

You can find detailed information on [Project Github](https://github.com/fewshot-goes-multilingual/slavic-incontext-learning) & the referenced paper.


## Model Details

### Model Description


- **Developed by:** Michal Stefanik & Marek Kadlcik, Masaryk University
- **Model type:** mt5
- **Language(s) (NLP):** cs,en
- **License:** MIT
- **Finetuned from model:** google/mt5-large

### Model Sources

- **Repository:** https://github.com/fewshot-goes-multilingual/slavic-incontext-learning
- **Paper:** https://arxiv.org/abs/2304.01922

## Uses

This model is intended to be used in a few-shot in-context learning format in the target language (Czech), or in the source language (English, see below).
It was evaluated for unseen task learning (with k=3 demonstrations) in Czech: see the referenced paper for details.

### How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model = AutoModelForSeq2SeqLM.from_pretrained("{this model path}")
tokenizer = AutoTokenizer.from_pretrained("{this model path}")

# Instead, use keywords "Otázka", "Kontext" and "Odpověď" for Czech few-shot prompts
input_text = """
    Question: What is the customer's name? 
    Context: Origin: Barrack Obama, Customer id: Bill Moe. 
    Answer: Bill Moe, 
    Question: What is the customer's name? 
    Context: Customer id: Barrack Obama, if not deliverable, return to Bill Clinton. 
    Answer:
"""

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs)

print("Answer:")
print(tokenizer.decode(outputs))
```

## Training Details

Training this model can be reproduced by running `pip install -r requirements.txt && python train_mt5_qa_en_SQuAD+cs_random.py`. 
See the referenced script for hyperparameters and other training configurations.

## Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bib
@inproceedings{stefanik2023resources,
               author = {\v{S}tef\'{a}nik, Michal and Kadlčík, Marek and Gramacki, Piotr and Sojka, Petr},
               title = {Resources and Few-shot Learners for In-context Learning in Slavic Languages},
               booktitle = {Proceedings of the 9th Workshop on Slavic Natural Language Processing},
               publisher = {ACL},
               numpages = {9},
               url = {https://arxiv.org/abs/2304.01922},
}
```