xmelus commited on
Commit
b4ef3e0
·
1 Parent(s): 89e6265

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_keras_callback
5
+ model-index:
6
+ - name: xmelus/mbert
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
+ probably proofread and complete it, then remove this comment. -->
12
+
13
+ # xmelus/mbert
14
+
15
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Train Loss: 1.5424
18
+ - Train Accuracy: 0.1446
19
+ - Validation Loss: 1.5269
20
+ - Validation Accuracy: 0.1461
21
+ - Finished epochs: 24
22
+
23
+
24
+ ### Training hyperparameters
25
+
26
+ The following hyperparameters were used during training:
27
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -596, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
28
+ - training_precision: mixed_float16
29
+
30
+ ### Training results
31
+
32
+ Epoch 1/50
33
+
34
+ loss: 2.9925 - accuracy: 0.1059 - val_loss: 1.9812 - val_accuracy: 0.1331
35
+
36
+ Epoch 2/50
37
+
38
+ loss: 1.9979 - accuracy: 0.1307 - val_loss: 1.6063 - val_accuracy: 0.1429
39
+
40
+ Epoch 3/50
41
+
42
+ loss: 1.5798 - accuracy: 0.1434 - val_loss: 1.5332 - val_accuracy: 0.1461
43
+
44
+ Epoch 4/50
45
+
46
+ loss: 1.5325 - accuracy: 0.1451 - val_loss: 1.5285 - val_accuracy: 0.1458
47
+
48
+ Epoch 5/50
49
+
50
+ loss: 1.5415 - accuracy: 0.1448 - val_loss: 1.5449 - val_accuracy: 0.1457
51
+
52
+ Epoch 6/50
53
+
54
+ loss: 1.5395 - accuracy: 0.1448 - val_loss: 1.5448 - val_accuracy: 0.1456
55
+
56
+ Epoch 7/50
57
+
58
+ loss: 1.5463 - accuracy: 0.1446 - val_loss: 1.5421 - val_accuracy: 0.1454
59
+
60
+ Epoch 8/50
61
+
62
+ loss: 1.5352 - accuracy: 0.1451 - val_loss: 1.5536 - val_accuracy: 0.1453
63
+
64
+ Epoch 9/50
65
+
66
+ oss: 1.5230 - accuracy: 0.1451 - val_loss: 1.5097 - val_accuracy: 0.1466
67
+
68
+ Epoch 10/50
69
+
70
+ loss: 1.5318 - accuracy: 0.1449 - val_loss: 1.5303 - val_accuracy: 0.1460
71
+
72
+ Epoch 11/50
73
+
74
+ loss: 1.5364 - accuracy: 0.1448 - val_loss: 1.5280 - val_accuracy: 0.1462
75
+
76
+ Epoch 12/50
77
+
78
+ loss: 1.5411 - accuracy: 0.1444 - val_loss: 1.5493 - val_accuracy: 0.1455
79
+
80
+ Epoch 13/50
81
+
82
+ loss: 1.5378 - accuracy: 0.1446 - val_loss: 1.5473 - val_accuracy: 0.1456
83
+
84
+ Epoch 14/50
85
+
86
+ loss: 1.5357 - accuracy: 0.1449 - val_loss: 1.5310 - val_accuracy: 0.1457
87
+
88
+ Epoch 15/50
89
+
90
+ loss: 1.5424 - accuracy: 0.1446 - val_loss: 1.5269 - val_accuracy: 0.1461
91
+
92
+ Epoch 16/50
93
+
94
+ loss: 1.5314 - accuracy: 0.1450 - val_loss: 1.5392 - val_accuracy: 0.1456
95
+
96
+ Epoch 17/50
97
+
98
+ loss: 1.5309 - accuracy: 0.1451 - val_loss: 1.5567 - val_accuracy: 0.1454
99
+
100
+ Epoch 18/50
101
+
102
+ loss: 1.5279 - accuracy: 0.1450 - val_loss: 1.5561 - val_accuracy: 0.1452
103
+
104
+ Epoch 19/50
105
+
106
+ loss: 1.5311 - accuracy: 0.1450 - val_loss: 1.5400 - val_accuracy: 0.1460
107
+
108
+ Epoch 20/50
109
+
110
+ loss: 1.5332 - accuracy: 0.1449 - val_loss: 1.5347 - val_accuracy: 0.1460
111
+
112
+ Epoch 21/50
113
+
114
+ loss: 1.5319 - accuracy: 0.1452 - val_loss: 1.5410 - val_accuracy: 0.1458
115
+
116
+ Epoch 22/50
117
+
118
+ loss: 1.5327 - accuracy: 0.1449 - val_loss: 1.5352 - val_accuracy: 0.1460
119
+
120
+ Epoch 23/50
121
+
122
+ loss: 1.5278 - accuracy: 0.1451 - val_loss: 1.5289 - val_accuracy: 0.1458
123
+
124
+ Epoch 24/50
125
+
126
+ loss: 1.5234 - accuracy: 0.1451 - val_loss: 1.5568 - val_accuracy: 0.1449
127
+
128
+
129
+
130
+ ### Framework versions
131
+
132
+ - Transformers 4.22.1
133
+ - TensorFlow 2.8.2
134
+ - Datasets 2.5.1
135
+ - Tokenizers 0.12.1
136
+