Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
+
>>> import easyocr
|
| 3 |
+
>>> import torch
|
| 4 |
+
>>> from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
>>> # Initialize default easyocr model
|
| 7 |
+
>>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl'])
|
| 8 |
+
>>> # Download weights of recognition module.
|
| 9 |
+
>>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.2.2_EasyOcrEngine", filename="weights.pth")
|
| 10 |
+
>>> # Load the weights
|
| 11 |
+
>>> state_dict = torch.load(model_dir, map_location="cuda")
|
| 12 |
+
>>> # Load the state dictionary into the model
|
| 13 |
+
>>> reader.recognizer.load_state_dict(state_dict)
|
| 14 |
+
|
| 15 |
+
>>> # Typical usage of easyocr model to get predictions
|
| 16 |
+
>>> res = reader.readtext(input_img)
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### Example usage (without GPU):
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
>>> from collections import OrderedDict
|
| 23 |
+
|
| 24 |
+
>>> import easyocr
|
| 25 |
+
>>> import torch
|
| 26 |
+
>>> from huggingface_hub import hf_hub_download
|
| 27 |
+
|
| 28 |
+
>>> # Initialize default easyocr model
|
| 29 |
+
>>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl'], quantize=False, gpu=False)
|
| 30 |
+
>>> # Download weights of recognition module.
|
| 31 |
+
>>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.2.2_EasyOcrEngine", filename="weights.pth")
|
| 32 |
+
>>> # Load the weights
|
| 33 |
+
>>> state_dict = torch.load(model_dir, map_location="cpu")
|
| 34 |
+
>>> # There is need to remove first 7 characters due to easyocr library
|
| 35 |
+
>>> new_state_dict = OrderedDict()
|
| 36 |
+
>>> for key, value in state_dict.items():
|
| 37 |
+
>>> new_key = key[7:]
|
| 38 |
+
>>> new_state_dict[new_key] = value
|
| 39 |
+
|
| 40 |
+
>>> # Load the state dictionary into the model
|
| 41 |
+
>>> reader.recognizer.load_state_dict(new_state_dict)
|
| 42 |
+
|
| 43 |
+
>>> # Typical usage of easyocr model to get predictions
|
| 44 |
+
>>> res = reader.readtext(input_img)
|
| 45 |
+
```
|