patricklifixie commited on
Commit
3cc71d4
·
verified ·
1 Parent(s): 2f9a0e5

Copy from fixie-ai/turntaking-multilingual-llama8b-2a (rev: main)

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UltravoxModel"
4
+ ],
5
+ "audio_config": {
6
+ "_name_or_path": "openai/whisper-large-v3-turbo",
7
+ "activation_dropout": 0.0,
8
+ "activation_function": "gelu",
9
+ "apply_spec_augment": false,
10
+ "architectures": [
11
+ "WhisperForConditionalGeneration"
12
+ ],
13
+ "attention_dropout": 0.0,
14
+ "bos_token_id": 50257,
15
+ "classifier_proj_size": 256,
16
+ "d_model": 1280,
17
+ "decoder_attention_heads": 20,
18
+ "decoder_ffn_dim": 5120,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 4,
21
+ "decoder_start_token_id": 50258,
22
+ "dropout": 0.0,
23
+ "encoder_attention_heads": 20,
24
+ "encoder_ffn_dim": 5120,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 32,
27
+ "eos_token_id": 50257,
28
+ "init_std": 0.02,
29
+ "mask_feature_length": 10,
30
+ "mask_feature_min_masks": 0,
31
+ "mask_feature_prob": 0.0,
32
+ "mask_time_length": 10,
33
+ "mask_time_min_masks": 2,
34
+ "mask_time_prob": 0.05,
35
+ "max_source_positions": 1500,
36
+ "max_target_positions": 448,
37
+ "median_filter_width": 7,
38
+ "model_type": "whisper",
39
+ "num_hidden_layers": 32,
40
+ "num_mel_bins": 128,
41
+ "pad_token_id": 50257,
42
+ "scale_embedding": false,
43
+ "torch_dtype": "float16",
44
+ "use_cache": true,
45
+ "use_weighted_layer_sum": false,
46
+ "vocab_size": 51866
47
+ },
48
+ "audio_latency_block_size": null,
49
+ "audio_model_id": null,
50
+ "audio_token_index": 128256,
51
+ "auto_map": {
52
+ "AutoConfig": "ultravox_config.UltravoxConfig",
53
+ "AutoModel": "ultravox_model.UltravoxModel",
54
+ "AutoProcessor": "fixie-ai/ultravox-v0_5-llama-3_1-8b--ultravox_processing.UltravoxProcessor"
55
+ },
56
+ "custom_pipelines": {
57
+ "ultravox-pipeline": {
58
+ "impl": "ultravox_pipeline.UltravoxPipeline",
59
+ "pt": [
60
+ "AutoModel"
61
+ ],
62
+ "tf": [],
63
+ "type": "multimodal"
64
+ }
65
+ },
66
+ "hidden_size": 4096,
67
+ "ignore_index": -100,
68
+ "initializer_range": 0.02,
69
+ "llm_only_training": false,
70
+ "model_type": "ultravox",
71
+ "norm_init": 0.4,
72
+ "pad_token_id": 128009,
73
+ "projector_act": "swiglu",
74
+ "projector_ln_mid": true,
75
+ "stack_factor": 8,
76
+ "text_model_id": "fixie-ai/turntaking-pretraining-it-multilingual-3c",
77
+ "torch_dtype": "bfloat16",
78
+ "transformers_version": "4.51.3",
79
+ "vocab_size": 128256
80
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "pad_token_id": 128009,
10
+ "transformers_version": "4.51.3"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:037715186b4ce0db0340aa8cf71e96eaf012dab6aea0e6e9f5a017ace6058918
3
+ size 1374682344
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|audio|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|eot_id|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87771bfea74770d36a1432b5f9ba6d7f611d33fb63681d10c2479540c1591f8
3
+ size 17210106
tokenizer_config.json ADDED
@@ -0,0 +1,2079 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|audio|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ }
2059
+ },
2060
+ "additional_special_tokens": [
2061
+ "<|audio|>"
2062
+ ],
2063
+ "auto_map": {
2064
+ "AutoProcessor": "ultravox_processing.UltravoxProcessor"
2065
+ },
2066
+ "bos_token": "<|begin_of_text|>",
2067
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{#- Extract system message if present #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] | trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n{#- System message + tools header #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- ' Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \" Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n{#- Handle user message with embedded tools #}\n{%- if tools_in_user_message and not tools is none %}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content'] | trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n {%- endif %}\n {{- \"<|start_header_id|>user<|end_header_id|>\\n\\n\" }}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \" Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\" }}\n{%- endif %}\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {%- set is_last_message = loop.last %}\n {%- if message.role == 'user' and is_last_message %}\n {{- \"<|start_header_id|>\" + message['role'] + \"<|end_header_id|>\\n\\n\" + message['content'] | trim }}\n {%- else %}\n {{- \"<|start_header_id|>\" + message['role'] + \"<|end_header_id|>\\n\\n\" + message['content'] | trim + \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls | length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\" }}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}, {% endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\" }}\n {{- '{\"name\": \"' + tool_call.name + '\", \"parameters\": ' + (tool_call.arguments | tojson) + \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\" }}\n{%- endif %}",
2068
+ "clean_up_tokenization_spaces": true,
2069
+ "eos_token": "<|eot_id|>",
2070
+ "extra_special_tokens": {},
2071
+ "model_input_names": [
2072
+ "input_ids",
2073
+ "attention_mask"
2074
+ ],
2075
+ "model_max_length": 131072,
2076
+ "pad_token": "<|eot_id|>",
2077
+ "processor_class": "UltravoxProcessor",
2078
+ "tokenizer_class": "PreTrainedTokenizer"
2079
+ }
ultravox_config.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import transformers
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class LoraConfigSimplified:
10
+ """
11
+ Low Rank Approximation (LoRA) configuration.
12
+
13
+ Used for language and audio models separately.
14
+ """
15
+
16
+ # The rank of the approximation
17
+ r: int = 0
18
+ lora_alpha: float = 8
19
+ target_modules: Optional[List[str]] = dataclasses.field(
20
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
21
+ )
22
+ # A list of module names regex patterns to unfreeze. Only used if r == 0.
23
+ unfreeze_layers: Optional[List[str]] = None
24
+
25
+
26
+ class LossMaskType(str, Enum):
27
+ """Type of loss mask to use."""
28
+
29
+ LAST_ASSISTANT = "last_assistant"
30
+ """This applies the loss mask up until the last assistant token"""
31
+ ALL = "all" # This does not work with KL loss
32
+ """No loss mask, all inputs are used for loss"""
33
+ AFTER_AUDIO = "after_audio"
34
+ """Applies the loss mask up until the audio token"""
35
+
36
+
37
+ class LossFunction(str, Enum):
38
+ CrossEntropy = "ce"
39
+ KL_Divergence = "kl"
40
+
41
+
42
+ @dataclasses.dataclass
43
+ class LossConfig:
44
+ loss_function: LossFunction = LossFunction.CrossEntropy
45
+ kl_temperature: float = 2.0
46
+ # Number of tokens to ignore from the beginning of the sequence. Only used in LSM
47
+ initial_tokens_to_ignore: int = 0
48
+ # Weight for the EOT token KL loss
49
+ eot_loss_weight: float = 1.0
50
+
51
+ @property
52
+ def requires_alt_fields(self):
53
+ return self.loss_function == LossFunction.KL_Divergence
54
+
55
+
56
+ class UltravoxConfig(transformers.PretrainedConfig):
57
+ r"""
58
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
59
+ Ultravox model according to the specified arguments, defining the model architecture.
60
+
61
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
62
+ documentation from [`PretrainedConfig`] for more information.
63
+
64
+ Args:
65
+ audio_config (`WhisperConfig`, *optional*):
66
+ Custom audio config or dict
67
+ text_config (`Union[AutoConfig, dict]`, *optional*):
68
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
69
+ ignore_index (`int`, *optional*, defaults to -100):
70
+ The ignore index for the loss function.
71
+ audio_token_index (`int`, *optional*, defaults to 32000):
72
+ The audio token index to encode the audio prompt.
73
+ stack_factor (`int`, *optional*, defaults to 8):
74
+ Audio downsampling factor for the multimodal projector.
75
+ norm_init (`float`, *optional*, defaults to 0.4):
76
+ The initialization value for the layer normalization.
77
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
78
+ The activation function used by the multimodal projector.
79
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
80
+ The LoRA configuration for finetuning the text model.
81
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
82
+ The LoRA configuration for finetuning the audio model.
83
+ audio_latency_block_size (`int`, *optional*, defaults to `None`):
84
+ The latency block size for simulating audio streaming.
85
+
86
+
87
+ Example:
88
+
89
+ ```python
90
+ >>> from transformers import UltravoxModel, WhisperConfig, UltravoxConfig, LlamaConfig
91
+
92
+ >>> # Initializing an audio encoder config
93
+ >>> audio_config = WhisperConfig()
94
+
95
+ >>> # Initializing a Llama config
96
+ >>> text_config = LlamaConfig()
97
+
98
+ >>> # Initializing a default configuration
99
+ >>> configuration = UltravoxConfig(audio_config, text_config)
100
+
101
+ >>> # Initializing a completely untrained model from the configuration
102
+ >>> model = UltravoxModel(configuration)
103
+
104
+ >>> # Accessing the model configuration
105
+ >>> configuration = model.config
106
+
107
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
108
+ >>> config = UltravoxConfig(audio_model_id="openai/whisper-tiny", text_model_id="meta-llama/Llama-2-7b-chat-hf")
109
+ ```"""
110
+
111
+ model_type = "ultravox"
112
+ is_composition = False
113
+
114
+ def __init__(
115
+ self,
116
+ audio_config: dict[str, Any] | transformers.PretrainedConfig | None = None,
117
+ text_config: dict[str, Any] | transformers.PretrainedConfig | None = None,
118
+ audio_model_id: str | None = None,
119
+ text_model_id: str | None = None,
120
+ llm_only_training: bool = False,
121
+ ignore_index: int = -100,
122
+ audio_token_index: int | None = None,
123
+ hidden_size: int = 4096,
124
+ stack_factor: int = 8,
125
+ norm_init: float = 0.4,
126
+ projector_act: str = "swiglu",
127
+ projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
128
+ text_model_lora_config: LoraConfigSimplified | None = None,
129
+ audio_model_lora_config: LoraConfigSimplified | None = None,
130
+ audio_latency_block_size: int | None = None,
131
+ **kwargs,
132
+ ):
133
+ self.ignore_index = ignore_index
134
+
135
+ self.audio_model_id = audio_model_id
136
+ self.text_model_id = text_model_id
137
+
138
+ self.audio_token_index = audio_token_index
139
+
140
+ self.hidden_size = hidden_size
141
+ self.stack_factor = stack_factor
142
+ self.norm_init = norm_init
143
+ self.projector_act = projector_act
144
+ self.projector_ln_mid = projector_ln_mid
145
+ if text_model_id is not None:
146
+ text_config = transformers.AutoConfig.from_pretrained(text_model_id)
147
+ else:
148
+ text_config = text_config or {}
149
+ if isinstance(text_config, dict):
150
+ text_config = transformers.CONFIG_MAPPING[
151
+ text_config.get("model_type", "llama")
152
+ ](**text_config)
153
+
154
+ if audio_model_id is not None:
155
+ audio_config = transformers.AutoConfig.from_pretrained(audio_model_id)
156
+ else:
157
+ audio_config = audio_config or {}
158
+ if isinstance(audio_config, dict):
159
+ audio_config = transformers.CONFIG_MAPPING[
160
+ audio_config.get("model_type", "whisper")
161
+ ](**audio_config)
162
+
163
+ self.text_config = text_config
164
+ self.audio_config = audio_config
165
+
166
+ self.llm_only_training = llm_only_training
167
+ self.text_model_lora_config = (
168
+ text_model_lora_config
169
+ if isinstance(text_model_lora_config, dict)
170
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
171
+ )
172
+ self.audio_model_lora_config = (
173
+ audio_model_lora_config
174
+ if isinstance(audio_model_lora_config, dict)
175
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
176
+ )
177
+ self.audio_latency_block_size = audio_latency_block_size
178
+
179
+ self.vocab_size = text_config.vocab_size
180
+
181
+ self.initializer_range = text_config.initializer_range
182
+
183
+ super().__init__(**kwargs)
184
+
185
+ def to_diff_dict(self) -> Dict[str, Any]:
186
+ diff_dict = super().to_diff_dict()
187
+
188
+ # remove text_config and audio_config if text_model_id and audio_model_id are present
189
+ if self.text_model_id is not None:
190
+ diff_dict.pop("text_config", None)
191
+ elif "text_config" in diff_dict:
192
+ diff_dict["text_config"].pop("_attn_implementation_autoset", None)
193
+
194
+ if self.audio_model_id is not None:
195
+ diff_dict.pop("audio_config", None)
196
+ elif "audio_config" in diff_dict:
197
+ diff_dict["audio_config"].pop("_attn_implementation_autoset", None)
198
+
199
+ return diff_dict
ultravox_model.py ADDED
@@ -0,0 +1,992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import re
3
+ from typing import Any, Dict, Generator, Optional, Set, Tuple, TypeVar, Union
4
+
5
+ import accelerate
6
+ import peft
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import transformers
11
+ import transformers.activations
12
+ import transformers.modeling_outputs
13
+ import transformers.models
14
+ from transformers.generation.utils import GenerationMixin
15
+ from transformers.models.whisper import modeling_whisper as whisper
16
+
17
+ # We must use relative import in this directory to allow uploading to HF Hub
18
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
19
+ from .ultravox_config import LossConfig
20
+ from .ultravox_config import LossFunction
21
+ from .ultravox_config import UltravoxConfig
22
+
23
+ FROM_PRETRAINED_KWARGS = {}
24
+ SHARED_PRETRAINED_KWARGS = [
25
+ "tp_plan",
26
+ "device_map",
27
+ "torch_dtype",
28
+ "attn_implementation",
29
+ "use_flash_attention_2",
30
+ ]
31
+
32
+
33
+ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
34
+ """
35
+ The Ultravox model which consists of an audio encoder and a language model.
36
+
37
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
38
+ projected to the language model's embedding space using a few linear layers.
39
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
40
+
41
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
42
+
43
+ Parameters:
44
+ config: Model configuration class with all the parameters of the model.
45
+ """
46
+
47
+ config_class = UltravoxConfig
48
+ config: UltravoxConfig # for type hinting
49
+ # Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
50
+ _keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
51
+ # Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
52
+ # see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
53
+ accepts_loss_kwargs = False
54
+
55
+ def __init__(self, config: UltravoxConfig):
56
+ super().__init__(config)
57
+ self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
58
+
59
+ self.keep_params: Set[str] = set()
60
+ self.vocab_size = config.vocab_size
61
+
62
+ if not config.llm_only_training:
63
+ self.audio_tower = self._create_audio_tower(config)
64
+ self.multi_modal_projector = self._create_multi_modal_projector(config)
65
+ self.audio_tower_context_length = self.audio_tower.max_context_length
66
+
67
+ self.language_model = self._create_language_model(config)
68
+
69
+ if self.language_model._tied_weights_keys is not None:
70
+ self._tied_weights_keys = [
71
+ f"language_model.{k}" for k in self.language_model._tied_weights_keys
72
+ ]
73
+
74
+ # Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
75
+ # FSDP throws an error if some of the layer types are not found in the model.
76
+ # This would be something like ["LlamaDecoderLayer"] as we don't split audio encoder layers.
77
+ self._no_split_modules = self.language_model._no_split_modules
78
+
79
+ self.loss_config = LossConfig()
80
+ self.post_init()
81
+
82
+ def _init_weights(self, module):
83
+ if module is self:
84
+ if self.config.text_model_id is not None:
85
+ self.language_model = self._create_language_model(self.config)
86
+ if self.config.audio_model_id is not None:
87
+ self.audio_tower = self._create_audio_tower(self.config)
88
+ elif module in self.language_model.modules():
89
+ pass
90
+ elif module in self.audio_tower.modules():
91
+ pass
92
+ else:
93
+ super()._init_weights(module)
94
+
95
+ @classmethod
96
+ def from_pretrained(cls, *args, **kwargs):
97
+ global FROM_PRETRAINED_KWARGS
98
+ FROM_PRETRAINED_KWARGS = {
99
+ k: v for k, v in kwargs.items() if k in SHARED_PRETRAINED_KWARGS
100
+ }
101
+ model = super().from_pretrained(*args, **kwargs)
102
+ FROM_PRETRAINED_KWARGS = {}
103
+ return model
104
+
105
+ def get_input_embeddings(self):
106
+ return self.language_model.get_input_embeddings()
107
+
108
+ def set_input_embeddings(self, value):
109
+ self.language_model.set_input_embeddings(value)
110
+
111
+ def get_output_embeddings(self):
112
+ return self.language_model.get_output_embeddings()
113
+
114
+ def set_output_embeddings(self, new_embeddings):
115
+ self.language_model.set_output_embeddings(new_embeddings)
116
+
117
+ def set_decoder(self, decoder):
118
+ self.language_model.set_decoder(decoder)
119
+
120
+ def get_decoder(self):
121
+ return self.language_model.get_decoder()
122
+
123
+ def tie_weights(self):
124
+ return self.language_model.tie_weights()
125
+
126
+ def set_loss_config(self, loss_config: LossConfig):
127
+ self.loss_config = loss_config
128
+
129
+ def _setup_cache(
130
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
131
+ ):
132
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
133
+
134
+ def _reorder_cache(self, past_key_values, beam_idx):
135
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
136
+
137
+ def resize_token_embeddings(
138
+ self,
139
+ new_num_tokens: Optional[int] = None,
140
+ pad_to_multiple_of: Optional[int] = None,
141
+ ) -> nn.Embedding:
142
+ model_embeds = self.language_model.resize_token_embeddings(
143
+ new_num_tokens, pad_to_multiple_of
144
+ )
145
+ # update vocab size
146
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
147
+ self.config.vocab_size = model_embeds.num_embeddings
148
+ self.vocab_size = model_embeds.num_embeddings
149
+ return model_embeds
150
+
151
+ def _get_prediction_mask(
152
+ self, labels: Optional[torch.Tensor]
153
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
154
+ """Get boolean masks for positions where we want to compute KL divergence.
155
+
156
+ For each label position, we want the position before it since that's where
157
+ the model makes the prediction for that label.
158
+
159
+ Additionally, we want to identify the position right before the EOT token
160
+ (the last token with label != -100).
161
+
162
+ Args:
163
+ labels: Tensor of shape (B, T) where B is batch size and T is sequence length,
164
+ with -100 for masked positions and token ids for label positions
165
+
166
+ Returns:
167
+ Tuple containing:
168
+ - pred_mask: Boolean tensor of shape (B, T) that's True for positions where we want to compute KL divergence
169
+ - eot_mask: Boolean tensor of shape (B, T) that's True only for the last prediction position in each sequence
170
+ """
171
+ if labels is None:
172
+ raise ValueError("labels must be provided")
173
+
174
+ # Shift the label mask right by 1 along the sequence dimension
175
+ # This gives us positions where we make predictions for the next token
176
+ label_mask = labels != -100
177
+ pred_mask = torch.zeros_like(label_mask)
178
+ pred_mask[:, :-1] = label_mask[
179
+ :, 1:
180
+ ] # shift right by 1 along sequence dimension
181
+
182
+ # Create EOT mask - identify only the last prediction position in each sequence
183
+ eot_mask = torch.zeros_like(pred_mask)
184
+ batch_size = labels.shape[0]
185
+
186
+ for i in range(batch_size):
187
+ # Find positions where we make predictions
188
+ pred_positions = torch.where(pred_mask[i])[0]
189
+ if len(pred_positions) > 0:
190
+ # Only mark the last prediction position
191
+ eot_mask[i, pred_positions[-1]] = True
192
+
193
+ return pred_mask, eot_mask
194
+
195
+ def _compute_kl_loss(
196
+ self,
197
+ lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
198
+ labels: Optional[torch.Tensor] = None,
199
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
200
+ alt_input_ids: Optional[torch.Tensor] = None,
201
+ alt_attention_mask: Optional[torch.Tensor] = None,
202
+ alt_labels: Optional[torch.Tensor] = None,
203
+ **kwargs,
204
+ ):
205
+ # disable gradient computation for the teacher model
206
+ with torch.no_grad():
207
+ # compute the teacher (text-only) model's distribution
208
+ alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
209
+ alt_lm_output = self.language_model.forward(
210
+ inputs_embeds=alt_inputs_embeds,
211
+ labels=alt_labels,
212
+ attention_mask=alt_attention_mask,
213
+ past_key_values=past_key_values,
214
+ **kwargs,
215
+ )
216
+
217
+ # Get prediction masks for regular tokens and EOT tokens
218
+ pred_mask, eot_mask = self._get_prediction_mask(labels)
219
+ alt_pred_mask, alt_eot_mask = self._get_prediction_mask(alt_labels)
220
+
221
+ # compute the KL divergence loss between the two models for regular tokens
222
+ kl_loss = F.kl_div(
223
+ F.log_softmax(
224
+ lm_output.logits[pred_mask] / self.loss_config.kl_temperature,
225
+ dim=-1,
226
+ ),
227
+ F.softmax(
228
+ alt_lm_output.logits[alt_pred_mask] / self.loss_config.kl_temperature,
229
+ dim=-1,
230
+ ),
231
+ reduction="batchmean",
232
+ )
233
+
234
+ # Compute the KL divergence loss for EOT token positions if any exist
235
+ if self.loss_config.eot_loss_weight > 0:
236
+ eot_loss = F.kl_div(
237
+ F.log_softmax(
238
+ lm_output.logits[eot_mask] / self.loss_config.kl_temperature,
239
+ dim=-1,
240
+ ),
241
+ F.softmax(
242
+ alt_lm_output.logits[alt_eot_mask]
243
+ / self.loss_config.kl_temperature,
244
+ dim=-1,
245
+ ),
246
+ reduction="batchmean",
247
+ )
248
+ kl_loss += self.loss_config.eot_loss_weight * eot_loss
249
+
250
+ return kl_loss
251
+
252
+ def _audio_iter(
253
+ self, audio_batch_size: torch.Tensor
254
+ ) -> Generator[Tuple[int, int], None, None]:
255
+ """
256
+ Iterate over the audio batch size and yield the batch index and audio index of each audio item.
257
+
258
+ Args:
259
+ audio_batch_size: A tensor of shape (B,) where B is the batch size.
260
+
261
+ Returns:
262
+ A generator that yields a tuple of (start index, length) for each audio item.
263
+ """
264
+ audio_index = 0
265
+ for i_b, batch_count in enumerate(audio_batch_size):
266
+ for _ in range(batch_count):
267
+ yield i_b, audio_index
268
+ audio_index += 1
269
+
270
+ def forward(
271
+ self,
272
+ input_ids: torch.Tensor,
273
+ audio_values: Optional[torch.FloatTensor] = None,
274
+ inputs_embeds: Optional[torch.FloatTensor] = None,
275
+ labels: Optional[torch.Tensor] = None,
276
+ attention_mask: Optional[torch.Tensor] = None,
277
+ audio_token_start_idx: Optional[torch.Tensor] = None,
278
+ audio_lens: Optional[torch.Tensor] = None,
279
+ audio_token_len: Optional[torch.Tensor] = None,
280
+ audio_batch_size: Optional[torch.Tensor] = None,
281
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
282
+ # the alt_* fields are needed for KL divergence loss
283
+ alt_input_ids: Optional[torch.Tensor] = None,
284
+ alt_attention_mask: Optional[torch.Tensor] = None,
285
+ alt_labels: Optional[torch.Tensor] = None,
286
+ **kwargs,
287
+ ) -> transformers.modeling_outputs.CausalLMOutputWithPast:
288
+ """
289
+ Forward pass for the Ultravox model.
290
+
291
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
292
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
293
+ projected to the language model's embedding space using a few linear layers.
294
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
295
+ of the audio embeddings in the merged embeddings.
296
+
297
+ Args:
298
+ input_ids: The tokenized text input.
299
+ audio_values: The processed audio values.
300
+ inputs_embeds: The embeddings for the input tokens.
301
+ labels: The tokenized text labels.
302
+ attention_mask: The attention mask for the input.
303
+ position_ids: The position ids for the input.
304
+ past_key_values: The past key value cache for the language model attention layers.
305
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
306
+ """
307
+ if inputs_embeds is None:
308
+ # B x T -> B x T x D
309
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
310
+
311
+ if audio_values is not None and len(audio_values) > 0:
312
+ assert (
313
+ audio_token_start_idx is not None
314
+ and audio_token_len is not None
315
+ and audio_lens is not None
316
+ and audio_batch_size is not None
317
+ ), "audio_token_start_idx/audio_token_len/audio_lens must be provided if audio_values are provided."
318
+ assert (
319
+ len(audio_token_start_idx)
320
+ == len(audio_token_len)
321
+ == len(audio_lens)
322
+ == len(audio_values)
323
+ ), "audio_token_start_idx/audio_token_len/audio_lens/audio_values must have the same batch size."
324
+ assert len(audio_batch_size) == len(
325
+ inputs_embeds
326
+ ), "audio_batch_size and inputs_embeds must have the same batch size."
327
+
328
+ # B x A/3200 x (D=max-audio-length-in-batch)
329
+ audio_tower_output = self.audio_tower.forward(
330
+ audio_values.to(self.audio_tower.dtype),
331
+ audio_len=audio_lens,
332
+ ).last_hidden_state
333
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
334
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
335
+
336
+ # combine audio and text embeddings
337
+ for i_b, i_a in self._audio_iter(audio_batch_size):
338
+ start_idx = audio_token_start_idx[i_a]
339
+ token_len = audio_token_len[i_a]
340
+ item_embedding = audio_embeds[i_a][:token_len]
341
+ inputs_embeds[i_b][start_idx : start_idx + token_len] = item_embedding
342
+
343
+ lm_output = self.language_model.forward(
344
+ inputs_embeds=inputs_embeds,
345
+ labels=labels,
346
+ attention_mask=attention_mask,
347
+ past_key_values=past_key_values,
348
+ **kwargs,
349
+ )
350
+ if self.loss_config.loss_function == LossFunction.CrossEntropy:
351
+ pass
352
+ elif self.loss_config.loss_function == LossFunction.KL_Divergence:
353
+ lm_output.loss = self._compute_kl_loss(
354
+ lm_output=lm_output,
355
+ labels=labels,
356
+ past_key_values=past_key_values,
357
+ alt_input_ids=alt_input_ids,
358
+ alt_attention_mask=alt_attention_mask,
359
+ alt_labels=alt_labels,
360
+ **kwargs,
361
+ )
362
+ else:
363
+ raise ValueError(
364
+ f"Unsupported loss function: {self.loss_config.loss_function}"
365
+ )
366
+ return lm_output
367
+
368
+ def prepare_inputs_for_generation(
369
+ self,
370
+ input_ids: torch.Tensor,
371
+ audio_values: Optional[torch.FloatTensor] = None,
372
+ audio_token_start_idx: Optional[torch.Tensor] = None,
373
+ audio_token_len: Optional[torch.Tensor] = None,
374
+ audio_lens: Optional[torch.Tensor] = None,
375
+ audio_batch_size: Optional[torch.Tensor] = None,
376
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
377
+ attention_mask: Optional[torch.Tensor] = None,
378
+ inputs_embeds: Optional[torch.Tensor] = None,
379
+ cache_position: Optional[torch.Tensor] = None,
380
+ **kwargs,
381
+ ) -> Dict[str, Any]:
382
+ model_input = self.language_model.prepare_inputs_for_generation(
383
+ input_ids=input_ids,
384
+ past_key_values=past_key_values,
385
+ attention_mask=attention_mask,
386
+ inputs_embeds=inputs_embeds,
387
+ cache_position=cache_position,
388
+ **kwargs,
389
+ )
390
+
391
+ # include audio information in model_input only when it is needed during prefilling
392
+ # audio_token_start_idx should always be relative to the current cache position
393
+ prefill_start_idx: int | torch.Tensor = (
394
+ 0 if cache_position is None else cache_position[0]
395
+ )
396
+ if (
397
+ audio_values is not None
398
+ and audio_token_start_idx is not None
399
+ and prefill_start_idx <= torch.max(audio_token_start_idx)
400
+ ):
401
+ model_input["audio_values"] = audio_values
402
+ model_input["audio_token_start_idx"] = (
403
+ audio_token_start_idx - prefill_start_idx
404
+ )
405
+ model_input["audio_token_len"] = audio_token_len
406
+ model_input["audio_batch_size"] = audio_batch_size
407
+ model_input["audio_lens"] = audio_lens
408
+
409
+ return model_input
410
+
411
+ @classmethod
412
+ def _create_multi_modal_projector(
413
+ cls, config: UltravoxConfig
414
+ ) -> "UltravoxProjector":
415
+ projector = UltravoxProjector(config)
416
+ dtype = config.torch_dtype
417
+ if isinstance(dtype, str):
418
+ dtype = getattr(torch, dtype)
419
+ projector.to(dtype)
420
+ return projector
421
+
422
+ @classmethod
423
+ def _create_audio_tower(
424
+ cls, config: UltravoxConfig
425
+ ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
426
+ # We probably don't want to pass tp_plan or device_map to the audio tower
427
+ # But potentially other kwargs can be passed in. TODO
428
+ kwargs = {"torch_dtype": config.torch_dtype}
429
+ if (
430
+ transformers.modeling_utils._init_weights
431
+ and config.audio_model_id is not None
432
+ ):
433
+ if "whisper" in config.audio_model_id.lower():
434
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
435
+ config.audio_model_id, **kwargs
436
+ )
437
+ audio_tower.init_latency_mask(
438
+ config.audio_latency_block_size, dtype=config.torch_dtype
439
+ )
440
+ else:
441
+ assert config.audio_latency_block_size in (
442
+ None,
443
+ 0,
444
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
445
+ audio_tower = transformers.AutoModel.from_pretrained(
446
+ config.audio_model_id, **kwargs
447
+ )
448
+ else:
449
+ with accelerate.init_empty_weights():
450
+ if "whisper" in config.audio_config._name_or_path.lower():
451
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
452
+ audio_tower.init_latency_mask(
453
+ config.audio_latency_block_size,
454
+ dtype=config.torch_dtype,
455
+ )
456
+ else:
457
+ assert config.audio_latency_block_size in (
458
+ None,
459
+ 0,
460
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
461
+ # we only ever use from_config if the weights are retrained, hence initializing is not
462
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
463
+ audio_tower = transformers.AutoModel.from_config(
464
+ config.audio_config, **kwargs
465
+ )
466
+
467
+ if isinstance(
468
+ audio_tower,
469
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
470
+ ):
471
+ # For these models we only need the encoder part
472
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
473
+ # WhisperModel -> WhisperEncoder
474
+ audio_tower = audio_tower.encoder
475
+
476
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
477
+ return audio_tower
478
+
479
+ @classmethod
480
+ def _create_language_model(
481
+ cls, config: UltravoxConfig
482
+ ) -> transformers.LlamaForCausalLM:
483
+ print(f"Creating language model with text_model_id: {config.text_model_id}")
484
+ if (
485
+ transformers.modeling_utils._init_weights
486
+ and config.text_model_id is not None
487
+ ):
488
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
489
+ config.text_model_id,
490
+ **{
491
+ "attn_implementation": config.text_config._attn_implementation,
492
+ "torch_dtype": config.torch_dtype,
493
+ **FROM_PRETRAINED_KWARGS,
494
+ },
495
+ )
496
+ else:
497
+ with accelerate.init_empty_weights():
498
+ # we only ever use from_config if the weights are retrained, hence initializing is not
499
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
500
+ language_model = transformers.AutoModelForCausalLM.from_config(
501
+ config.text_config,
502
+ attn_implementation=config.text_config._attn_implementation,
503
+ torch_dtype=config.torch_dtype,
504
+ )
505
+
506
+ language_model = apply_lora(language_model, config.text_model_lora_config)
507
+ return language_model
508
+
509
+ def merge_and_unload(self):
510
+ if isinstance(self.language_model, peft.PeftModel):
511
+ self.language_model = self.language_model.merge_and_unload()
512
+ # no need to download base language model weights anymore, so we can remove the id
513
+ self.config.text_model_id = None
514
+ self.keep_params.update(
515
+ set(
516
+ [
517
+ f"language_model.{name}"
518
+ for name, _ in self.language_model.named_parameters()
519
+ ]
520
+ )
521
+ )
522
+
523
+ if hasattr(self, "audio_tower"):
524
+ if isinstance(self.audio_tower, peft.PeftModel):
525
+ self.audio_tower = self.audio_tower.merge_and_unload()
526
+
527
+ # Since we're saving the full audio tower weights, we no longer need the model_id
528
+ # and should preserve the audio_config instead
529
+ self.config.audio_model_id = None
530
+
531
+ # Add all audio tower parameters to keep_params
532
+ self.keep_params.update(
533
+ set(
534
+ [
535
+ f"audio_tower.{name}"
536
+ for name, _ in self.audio_tower.named_parameters()
537
+ ]
538
+ )
539
+ )
540
+
541
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
542
+ if hasattr(self.config, param):
543
+ delattr(self.config, param)
544
+
545
+ def push_to_hub(self, *args, **kwargs):
546
+ self.merge_and_unload()
547
+ return super().push_to_hub(*args, **kwargs)
548
+
549
+ def diff_state_dict(
550
+ self, state_dict: Optional[Dict[str, Any]] = None
551
+ ) -> Dict[str, Any]:
552
+ if state_dict is None:
553
+ state_dict = super().state_dict()
554
+
555
+ trainable_params = {k for k, v in self.named_parameters() if v.requires_grad}
556
+ # normalize the keys to match the original model
557
+ # Example: audio_tower.base_model.model.layers.0._fsdp_wrapped_module.self_attn.k_proj.lora_B.default.weight
558
+ trainable_params = {
559
+ k.replace("_fsdp_wrapped_module.", "") for k in trainable_params
560
+ }
561
+
562
+ state_dict = {
563
+ k: v
564
+ for k, v in state_dict.items()
565
+ if k in self.keep_params or k in trainable_params
566
+ }
567
+
568
+ return state_dict
569
+
570
+ def save_pretrained(
571
+ self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
572
+ ):
573
+ state_dict = self.diff_state_dict(state_dict)
574
+
575
+ super().save_pretrained(*args, state_dict=state_dict, **kwargs)
576
+
577
+ def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
578
+ self.keep_params.update(set(state_dict.keys()))
579
+
580
+ # def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False):
581
+ # # Ensure keep_params is populated with the loaded weights
582
+ # self.keep_params.update(set(state_dict.keys()))
583
+ # return super().load_state_dict(state_dict, strict=strict, assign=assign)
584
+
585
+ def print_trainable_parameters(self):
586
+ """
587
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
588
+ """
589
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
590
+
591
+ trainable_params, all_param = count_params(self)
592
+
593
+ logging.info(
594
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
595
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
596
+ )
597
+
598
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
599
+ if hasattr(self, "audio_tower") and self.audio_tower is not None:
600
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
601
+ else:
602
+ audio_trainable_params, audio_all_params = 0, 0
603
+
604
+ projector_trainable_params = (
605
+ trainable_params - lm_trainable_params - audio_trainable_params
606
+ )
607
+ projector_all_params = all_param - lm_all_params - audio_all_params
608
+
609
+ # Calculate percentages only if the total parameters are non-zero
610
+ audio_percent = (
611
+ 0.0
612
+ if audio_all_params == 0
613
+ else 100 * audio_trainable_params / audio_all_params
614
+ )
615
+ projector_percent = (
616
+ 0.0
617
+ if projector_all_params == 0
618
+ else 100 * projector_trainable_params / projector_all_params
619
+ )
620
+
621
+ logging.info(
622
+ f"Trainable%: "
623
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
624
+ f" || Audio Encoder: {audio_percent:.1f}%"
625
+ f" || Projector: {projector_percent:.1f}%"
626
+ )
627
+
628
+
629
+ def get_checkpoint_files(
630
+ model_id: str,
631
+ ) -> tuple[list[str], dict | None, list[str]]:
632
+ resolved_archive_file = transformers.utils.cached_file(
633
+ model_id,
634
+ transformers.utils.SAFE_WEIGHTS_NAME,
635
+ _raise_exceptions_for_missing_entries=False,
636
+ )
637
+
638
+ if resolved_archive_file is not None:
639
+ # not sharded
640
+ sharded_metadata = None
641
+ state_dict = transformers.modeling_utils.load_state_dict(resolved_archive_file)
642
+ loaded_state_dict_keys = list(state_dict.keys())
643
+ else:
644
+ # sharded
645
+ resolved_archive_file = transformers.utils.cached_file(
646
+ model_id, transformers.utils.SAFE_WEIGHTS_INDEX_NAME
647
+ )
648
+ resolved_archive_file, sharded_metadata = (
649
+ transformers.modeling_utils.get_checkpoint_shard_files(
650
+ model_id,
651
+ resolved_archive_file,
652
+ )
653
+ )
654
+ loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
655
+
656
+ if isinstance(resolved_archive_file, str):
657
+ resolved_archive_file = [resolved_archive_file]
658
+
659
+ return resolved_archive_file, sharded_metadata, loaded_state_dict_keys
660
+
661
+
662
+ # TODO: refactor common parts to a shared module
663
+ def is_cache_empty(
664
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
665
+ ) -> bool:
666
+ """
667
+ Check if the cache is empty.
668
+ """
669
+ if past_key_values is None:
670
+ return True
671
+ if isinstance(past_key_values, tuple):
672
+ return all(len(c) == 0 for c in past_key_values)
673
+ return past_key_values.get_seq_length() == 0
674
+
675
+
676
+ T = TypeVar("T", bound=torch.nn.Module)
677
+
678
+
679
+ def apply_lora(model: T, lora_config: dict) -> T:
680
+ """
681
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
682
+ """
683
+ unfreeze_layers = lora_config.pop("unfreeze_layers", None)
684
+ lora_config = peft.LoraConfig(**lora_config or {})
685
+
686
+ if lora_config.r == 0:
687
+ # freeze the model entirely, except for the specified layers
688
+ for name, param in model.named_parameters():
689
+ if not unfreeze_layers or not any(
690
+ re.match(layer, name) for layer in unfreeze_layers
691
+ ):
692
+ param.requires_grad = False
693
+ else:
694
+ logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
695
+ else:
696
+ model = peft.get_peft_model(model, lora_config)
697
+
698
+ return model
699
+
700
+
701
+ class StackAudioFrames(nn.Module):
702
+ """
703
+ Stack the audio embedding frames to reduce the sequence length by a factor
704
+ of `stack_factor`.
705
+ """
706
+
707
+ def __init__(self, stack_factor: int = 8):
708
+ super().__init__()
709
+ self.stack_factor = stack_factor
710
+
711
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
712
+ B, T, C = audio_embeds.shape
713
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
714
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
715
+ B, T, C = audio_embeds.shape
716
+ audio_embeds = audio_embeds.view(
717
+ B, T // self.stack_factor, C * self.stack_factor
718
+ )
719
+ return audio_embeds
720
+
721
+
722
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
723
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
724
+ super().__init__(hidden_size=hidden_size, eps=eps)
725
+ self.weight.data.fill_(init)
726
+
727
+
728
+ class SwiGLU(nn.Module):
729
+ def forward(self, x):
730
+ x, gate = x.chunk(2, dim=-1)
731
+ return F.silu(gate) * x
732
+
733
+
734
+ class UltravoxProjector(nn.Module):
735
+ def __init__(self, config: UltravoxConfig):
736
+ super().__init__()
737
+ self.hidden_dim = config.hidden_size
738
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
739
+ dim_in = config.audio_config.hidden_size * config.stack_factor
740
+ self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
741
+ self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
742
+ dim_mid = self.hidden_dim
743
+ self.act = transformers.activations.get_activation(config.projector_act)
744
+ dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
745
+ dim_out = config.text_config.hidden_size
746
+ self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
747
+
748
+ # Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
749
+ # while v0.5.0 and above uses layer_norm after the first linear layer.
750
+ if config.projector_ln_mid:
751
+ self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
752
+ self.ln_post: nn.Module = nn.Identity()
753
+ else:
754
+ self.ln_mid = nn.Identity()
755
+ self.ln_post = RMSNorm(dim_out, init=config.norm_init)
756
+
757
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
758
+ """
759
+ Takes in audio features from the audio tower and projects them to the text model's embedding space.
760
+ It reduces the number of frames by a factor of `stack_factor` and increases the number of channels by the same factor.
761
+ If the number of audio frames are not a multiple of the stack factor, the last few frames will be padded with zeros.
762
+
763
+ Input shape:
764
+ audio_features: B, T*S, C
765
+ Output shape:
766
+ hidden_states: B, T, D
767
+ Where:
768
+ B: batch size
769
+ F: number of frames in the audio tower
770
+ T: number of output embeddings
771
+ T = ceil(F / S)
772
+ S: stack factor
773
+ C: number of channels out of the encoder (aka audio tower)
774
+ H: hidden size of the projector (config.hidden_size)
775
+ D: dimension of the text model (config.text_config.hidden_size)
776
+
777
+ """
778
+ # B, F, C -> B, T, C*S
779
+ audio_features = self._pad_and_stack(audio_features)
780
+ audio_features = self.ln_pre(audio_features)
781
+ # B, T, C*S -> B, T, H
782
+ hidden_states = self.linear_1(audio_features)
783
+ # B, T, H -> B, T, H/2 (assuming swiglu)
784
+ hidden_states = self.act(hidden_states)
785
+ hidden_states = self.ln_mid(hidden_states)
786
+ # B, T, H/2 -> B, T, D
787
+ hidden_states = self.linear_2(hidden_states)
788
+ hidden_states = self.ln_post(hidden_states)
789
+ return hidden_states
790
+
791
+
792
+ class ModifiedWhisperEncoder(
793
+ whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
794
+ ):
795
+ """
796
+ Encoder portion of OpenAI's Whisper model.
797
+
798
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
799
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
800
+ 2. allow less than 30 second of audio padding to be passed in:
801
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
802
+ - embed_pos is now sliced to match the length of `inputs_embeds`
803
+
804
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
805
+ """
806
+
807
+ base_model_prefix = "model.encoder"
808
+ _no_split_modules = ["WhisperEncoderLayer"]
809
+ _keys_to_ignore_on_load_unexpected = ["model.decoder.*"]
810
+
811
+ def __init__(self, config: transformers.WhisperConfig):
812
+ super().__init__(config)
813
+ self.config.is_decoder = False
814
+
815
+ @property
816
+ def max_context_length(self):
817
+ return (
818
+ self.config.max_source_positions
819
+ * self.conv1.stride[0]
820
+ * self.conv2.stride[0]
821
+ )
822
+
823
+ def init_latency_mask(
824
+ self, audio_latency_block_size: int | None, dtype: torch.dtype
825
+ ):
826
+ if audio_latency_block_size is None:
827
+ self.audio_streaming_mask = None
828
+ return
829
+
830
+ # Use max_context_length directly in the calculation
831
+ max_seqlen = self.max_context_length
832
+ assert (
833
+ max_seqlen > 0
834
+ ), f"maximum sequence length must be positive, got {max_seqlen}"
835
+ assert (
836
+ max_seqlen % audio_latency_block_size == 0
837
+ ), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
838
+ # Given the block size, we calculate number of blocks.
839
+ audio_latency_nblocks = max_seqlen // audio_latency_block_size
840
+ audio_streaming_mask = (
841
+ torch.tril(
842
+ torch.ones(audio_latency_nblocks, audio_latency_nblocks),
843
+ diagonal=0,
844
+ )
845
+ .repeat_interleave(audio_latency_block_size, dim=0)
846
+ .repeat_interleave(audio_latency_block_size, dim=1)
847
+ )
848
+ audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
849
+ audio_streaming_mask = audio_streaming_mask[None, None, :, :]
850
+ self.register_buffer(
851
+ "audio_streaming_mask", audio_streaming_mask, persistent=False
852
+ )
853
+
854
+ def forward(
855
+ self,
856
+ input_features,
857
+ audio_len=None,
858
+ head_mask=None,
859
+ output_attentions=None,
860
+ output_hidden_states=None,
861
+ return_dict=None,
862
+ ):
863
+ expected_seq_length = self.max_context_length
864
+ if input_features.shape[-1] > expected_seq_length:
865
+ raise ValueError(
866
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
867
+ )
868
+
869
+ output_attentions = (
870
+ output_attentions
871
+ if output_attentions is not None
872
+ else self.config.output_attentions
873
+ )
874
+ output_hidden_states = (
875
+ output_hidden_states
876
+ if output_hidden_states is not None
877
+ else self.config.output_hidden_states
878
+ )
879
+ return_dict = (
880
+ return_dict if return_dict is not None else self.config.use_return_dict
881
+ )
882
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
883
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
884
+
885
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
886
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
887
+
888
+ hidden_states = inputs_embeds + embed_pos
889
+ hidden_states = nn.functional.dropout(
890
+ hidden_states, p=self.dropout, training=self.training
891
+ )
892
+
893
+ encoder_states = () if output_hidden_states else None
894
+ all_attentions = () if output_attentions else None
895
+
896
+ # Create attention mask based on audio lengths to mask out padding tokens
897
+ # For each sample in batch:
898
+ # - Convert raw audio length to feature length after convolutions
899
+ # - Create boolean mask that is True for valid positions and False for padding
900
+ # - Convert to extended attention mask format expected by transformer layers
901
+ # (1.0 for positions to attend to, large negative for positions to ignore)
902
+ # This masking ensures consistent behavior between training and inference
903
+ # by preventing the model from attending to padding tokens in both cases
904
+ attention_mask = None
905
+ if audio_len is not None:
906
+ audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
907
+ max_seq_len = hidden_states.shape[1]
908
+ attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
909
+ None, :
910
+ ].lt(audio_feature_len.view(-1, 1))
911
+ attention_mask = self.get_extended_attention_mask(
912
+ attention_mask,
913
+ None,
914
+ dtype=hidden_states.dtype,
915
+ )
916
+
917
+ if self.audio_streaming_mask is not None:
918
+ seqlen = hidden_states.size(-2)
919
+ if attention_mask is not None:
920
+ attention_mask = torch.minimum(
921
+ self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
922
+ ) # merge
923
+ else:
924
+ attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
925
+ attention_mask = attention_mask.to(hidden_states.dtype)
926
+
927
+ # check if head_mask has a correct number of layers specified if desired
928
+ if head_mask is not None:
929
+ assert head_mask.size()[0] == (
930
+ len(self.layers)
931
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
932
+
933
+ for idx, encoder_layer in enumerate(self.layers):
934
+ if output_hidden_states:
935
+ encoder_states = encoder_states + (hidden_states,)
936
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
937
+ to_drop = False
938
+ if self.training:
939
+ dropout_probability = torch.rand([])
940
+ if dropout_probability < self.layerdrop: # skip the layer
941
+ to_drop = True
942
+
943
+ if to_drop:
944
+ layer_outputs = (None, None)
945
+ else:
946
+ if self.gradient_checkpointing and self.training:
947
+ layer_outputs = self._gradient_checkpointing_func(
948
+ encoder_layer.__call__,
949
+ hidden_states,
950
+ attention_mask,
951
+ (head_mask[idx] if head_mask is not None else None),
952
+ output_attentions,
953
+ )
954
+ else:
955
+ layer_outputs = encoder_layer(
956
+ hidden_states,
957
+ attention_mask,
958
+ layer_head_mask=(
959
+ head_mask[idx] if head_mask is not None else None
960
+ ),
961
+ output_attentions=output_attentions,
962
+ )
963
+
964
+ hidden_states = layer_outputs[0]
965
+
966
+ if output_attentions:
967
+ all_attentions = all_attentions + (layer_outputs[1],)
968
+
969
+ hidden_states = self.layer_norm(hidden_states)
970
+ if output_hidden_states:
971
+ encoder_states = encoder_states + (hidden_states,)
972
+
973
+ if not return_dict:
974
+ return tuple(
975
+ v
976
+ for v in [hidden_states, encoder_states, all_attentions]
977
+ if v is not None
978
+ )
979
+ return transformers.modeling_outputs.BaseModelOutput(
980
+ last_hidden_state=hidden_states,
981
+ hidden_states=encoder_states,
982
+ attentions=all_attentions,
983
+ )
984
+
985
+
986
+ UltravoxConfig.register_for_auto_class()
987
+ UltravoxModel.register_for_auto_class()
988
+
989
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
990
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
991
+
992
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
ultravox_pipeline.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import numpy as np
5
+ import transformers
6
+
7
+ # We must use relative import in this directory to allow uploading to HF Hub
8
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
9
+ from .ultravox_model import UltravoxModel
10
+ from .ultravox_processing import UltravoxProcessor
11
+ from .ultravox_tokenizer import from_pretrained_text_tokenizer
12
+ from .ultravox_tokenizer import get_audio_token_id
13
+
14
+
15
+ class UltravoxPipeline(transformers.Pipeline):
16
+ def __init__(
17
+ self,
18
+ model: UltravoxModel,
19
+ tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
20
+ audio_processor: Optional[transformers.ProcessorMixin] = None,
21
+ chat_template: Optional[str] = None,
22
+ **kwargs
23
+ ):
24
+ if tokenizer is None:
25
+ try:
26
+ tokenizer = from_pretrained_text_tokenizer(model.config._name_or_path)
27
+ except: # noqa: E722
28
+ tokenizer = from_pretrained_text_tokenizer(
29
+ model.config.text_model_id or model.config.text_config._name_or_path
30
+ )
31
+
32
+ if chat_template:
33
+ tokenizer.chat_template = chat_template
34
+
35
+ model.config.audio_token_index = get_audio_token_id(tokenizer)
36
+
37
+ if audio_processor is None:
38
+ audio_processor = transformers.AutoProcessor.from_pretrained(
39
+ model.config.audio_model_id or model.config.audio_config._name_or_path
40
+ )
41
+
42
+ super().__init__(model=model, tokenizer=tokenizer, **kwargs)
43
+
44
+ self.processor = UltravoxProcessor(
45
+ audio_processor=audio_processor,
46
+ tokenizer=tokenizer,
47
+ stack_factor=model.config.stack_factor,
48
+ audio_context_size=model.audio_tower_context_length,
49
+ )
50
+
51
+ def _sanitize_parameters(self, **kwargs):
52
+ generation_keys = ["temperature", "max_new_tokens", "repetition_penalty"]
53
+ generation_kwargs = {k: kwargs[k] for k in kwargs if k in generation_keys}
54
+ return {}, generation_kwargs, {}
55
+
56
+ def preprocess(self, inputs: Dict[str, Any]):
57
+ turns: list = inputs.get("turns", [])
58
+
59
+ audio = inputs.get("audio", None)
60
+ # Convert to float32 if needed.
61
+ if isinstance(audio, np.ndarray):
62
+ if audio.dtype == np.float64:
63
+ audio = audio.astype(np.float32)
64
+ elif audio.dtype == np.int16:
65
+ audio = audio.astype(np.float32) / np.float32(32768.0)
66
+ elif audio.dtype == np.int32:
67
+ audio = audio.astype(np.float32) / np.float32(2147483648.0)
68
+
69
+ if audio is not None and (len(turns) == 0 or turns[-1]["role"] != "user"):
70
+ prompt = inputs.get("prompt", "<|audio|>")
71
+ if "<|audio|>" not in prompt:
72
+ logging.warning(
73
+ "Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
74
+ )
75
+
76
+ prompt += " <|audio|>"
77
+ turns.append({"role": "user", "content": prompt})
78
+
79
+ text = self.processor.tokenizer.apply_chat_template(
80
+ turns, add_generation_prompt=True, tokenize=False
81
+ )
82
+
83
+ if "sampling_rate" not in inputs and audio is not None:
84
+ logging.warning(
85
+ "No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
86
+ )
87
+
88
+ output = self.processor(
89
+ text=text,
90
+ audio=audio,
91
+ sampling_rate=inputs.get("sampling_rate", 16000),
92
+ )
93
+ if "audio_values" in output:
94
+ output["audio_values"] = output["audio_values"].to(self.model.dtype)
95
+
96
+ return output
97
+
98
+ def _forward(
99
+ self,
100
+ model_inputs: Dict[str, Any],
101
+ temperature: Optional[float] = None,
102
+ max_new_tokens: Optional[int] = None,
103
+ repetition_penalty: float = 1.1,
104
+ ) -> List[int]:
105
+ temperature = temperature or None
106
+ do_sample = temperature is not None
107
+
108
+ terminators = [self.tokenizer.eos_token_id]
109
+ if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
110
+ terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
111
+
112
+ input_len = model_inputs["input_ids"].shape[1]
113
+
114
+ outputs = self.model.generate(
115
+ **model_inputs,
116
+ do_sample=do_sample,
117
+ temperature=temperature,
118
+ max_new_tokens=max_new_tokens,
119
+ repetition_penalty=repetition_penalty,
120
+ eos_token_id=terminators
121
+ )
122
+ return outputs[0][input_len:]
123
+
124
+ def postprocess(self, model_outputs) -> str:
125
+ output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
126
+ return output_text
127
+
128
+
129
+ transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
130
+ "ultravox-pipeline",
131
+ pipeline_class=UltravoxPipeline,
132
+ pt_model=transformers.AutoModel,
133
+ type="multimodal",
134
+ )
ultravox_processing.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from typing import Any, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import transformers
8
+
9
+ from .ultravox_config import UltravoxConfig
10
+
11
+
12
+ @dataclasses.dataclass
13
+ class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
14
+ # when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
15
+ include_alt_fields: bool = False
16
+
17
+ def __call__(self, features, *args, **kwargs):
18
+ audio_values = [x for f in features for x in f.pop("audio_values", [])]
19
+ audio_lens = [x for f in features for x in f.pop("audio_lens", [])]
20
+ audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])]
21
+ audio_token_start_idx = [
22
+ x for f in features for x in f.pop("audio_token_start_idx", [])
23
+ ]
24
+
25
+ if self.include_alt_fields:
26
+ # these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
27
+ alt_features = [
28
+ {
29
+ "input_ids": f.pop("alt_input_ids"),
30
+ "attention_mask": f.pop("alt_attention_mask"),
31
+ "labels": f.pop("alt_labels"),
32
+ }
33
+ for f in features
34
+ ]
35
+
36
+ batch = super().__call__(features, *args, **kwargs)
37
+ if self.include_alt_fields:
38
+ alt_batch = super().__call__(alt_features, *args, **kwargs)
39
+ batch["alt_input_ids"] = alt_batch["input_ids"]
40
+ batch["alt_attention_mask"] = alt_batch["attention_mask"]
41
+ batch["alt_labels"] = alt_batch["labels"]
42
+
43
+ # Only process audio fields if we have non-empty audio values
44
+ if audio_values and len(audio_values) > 0 and len(audio_values[0]) > 0:
45
+ batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx)
46
+ batch["audio_lens"] = torch.stack(audio_lens)
47
+ batch["audio_token_len"] = torch.stack(audio_token_len)
48
+ # Pad the last dimension of all audio_values to the same length, with 0s on the right.
49
+ max_len = max([x.shape[-1] for x in audio_values])
50
+ batch["audio_values"] = torch.stack(
51
+ [F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
52
+ )
53
+ if self.tokenizer.padding_side == "left":
54
+ input_ids_lens = torch.LongTensor(
55
+ [f["input_ids"].shape[-1] for f in features]
56
+ )
57
+ displacement = batch["input_ids"].shape[-1] - input_ids_lens
58
+ displacement = displacement.repeat_interleave(
59
+ batch["audio_batch_size"].squeeze(-1)
60
+ )
61
+ batch["audio_token_start_idx"] += displacement.to(
62
+ batch["audio_token_start_idx"].device
63
+ )
64
+ return batch
65
+
66
+
67
+ class UltravoxProcessor(transformers.ProcessorMixin):
68
+ """
69
+ Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
70
+
71
+ Args:
72
+ audio_processor: The audio processor for the audio encoder.
73
+ tokenizer: The tokenizer for the language model.
74
+ """
75
+
76
+ attributes = ["audio_processor", "tokenizer"]
77
+ audio_processor_class = ("WhisperProcessor",)
78
+ tokenizer_class = (
79
+ "PreTrainedTokenizer",
80
+ "PreTrainedTokenizerFast",
81
+ )
82
+
83
+ tokenizer: transformers.PreTrainedTokenizerBase
84
+ audio_processor: transformers.ProcessorMixin
85
+
86
+ def __init__(
87
+ self,
88
+ audio_processor=None,
89
+ tokenizer=None,
90
+ audio_padding: str = "longest",
91
+ encoder_ds_factor: int = 2,
92
+ stack_factor: int = 8,
93
+ audio_placeholder: str = "<|audio|>",
94
+ # Defaults to whisper encoder context size
95
+ audio_context_size: Optional[int] = 3000,
96
+ ):
97
+ """
98
+ Args:
99
+ audio_processor: The audio processor for the audio encoder.
100
+ tokenizer: The tokenizer for the language model.
101
+ audio_padding: The padding strategy for the audio encoder.
102
+ stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
103
+ encoder_ds_factor: The downsampling factor of the audio encoder.
104
+ audio_placeholder: The placeholder for the audio in the text.
105
+ audio_context_size: The maximum number of frames that the audio encoder can handle.
106
+ """
107
+ self.audio_padding = audio_padding
108
+ self.encoder_ds_factor = encoder_ds_factor
109
+ self.stack_factor = stack_factor
110
+ self.audio_placeholder = audio_placeholder
111
+ self.audio_context_size = audio_context_size
112
+ assert (
113
+ tokenizer.eos_token is not None
114
+ ), "The tokenizer has no EOS token. Cannot recover."
115
+ self.vocab = tokenizer.get_vocab()
116
+ # VLLM currently relies on updating audio_token_replacement, hence to be safe
117
+ # we should not update it. This dependency should be removed in the future.
118
+ self.audio_token_replacement = tokenizer.eos_token
119
+ if tokenizer.pad_token_id is None:
120
+ tokenizer.pad_token_id = tokenizer.eos_token_id
121
+
122
+ # Use a dummy audio processor to satisfy the base class for text-only training
123
+ if audio_processor is None:
124
+ audio_processor = transformers.AutoProcessor.from_pretrained(
125
+ "openai/whisper-tiny"
126
+ )
127
+
128
+ super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
129
+
130
+ @classmethod
131
+ def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
132
+ config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
133
+ pretrained_model_name_or_path, **kwargs
134
+ )
135
+ audio_processor = transformers.AutoProcessor.from_pretrained(
136
+ config.audio_model_id
137
+ or config.audio_config._name_or_path
138
+ or "openai/whisper-tiny"
139
+ )
140
+
141
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
142
+ pretrained_model_name_or_path, **kwargs
143
+ )
144
+ tokenizer.padding_side = "left"
145
+ tokenizer.pad_token = tokenizer.eos_token
146
+
147
+ return cls(
148
+ audio_processor=audio_processor,
149
+ tokenizer=tokenizer,
150
+ stack_factor=config.stack_factor,
151
+ )
152
+
153
+ def _chunk_and_pad_audio(
154
+ self,
155
+ audio_values: torch.Tensor,
156
+ audio_lens: torch.Tensor,
157
+ include_audio_num_chunks: bool = False,
158
+ ) -> Dict[str, Any]:
159
+ """
160
+ Processes the audio batch by chunking any items in the batch according to the audio_context_size,
161
+ padding the last chunk if needed, and returns a dictionary with updated audio data.
162
+
163
+ Args:
164
+ audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
165
+ audio_lens (torch.Tensor): A tensor of audio lengths.
166
+
167
+ Returns:
168
+ Dict[str, Any]: Dictionary with the following keys:
169
+ - "audio_values": The concatenated audio tensor after chunking and padding.
170
+ - "audio_lens": Tensor of lengths for each chunk.
171
+ - "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk.
172
+ - "audio_batch_size": A Tensor with one integer representing the number of chunks.
173
+
174
+ """
175
+ chunked_audio_values: List[torch.Tensor] = []
176
+ chunked_audio_lens: List[int] = []
177
+ is_continuation_list: List[bool] = []
178
+ num_chunks: List[int] = []
179
+ context_size = self.audio_context_size or audio_values.shape[-1]
180
+
181
+ for i in range(audio_values.shape[0]): # iterate over the batch
182
+ num_chunks.append(int(np.ceil(audio_lens[i] / context_size)))
183
+ for offset in range(0, audio_lens[i], context_size):
184
+ is_continuation = offset > 0
185
+ chunk = audio_values[i, :, offset : offset + context_size]
186
+ if is_continuation and chunk.shape[-1] < context_size:
187
+ # N.B. We only need to pad continuation chunks. If none of the samples require chunking, the
188
+ # batch might not (need to) be padded all the way to the audio_context_size, in which case
189
+ # we've already included the padding above. On the other hand, if we have any continuation
190
+ # chunks we know that the batch needs to be padded to audio_context_size because that's what
191
+ # we're slicing to.
192
+ chunk = F.pad(chunk, (0, context_size - chunk.shape[-1]))
193
+ chunked_audio_values.append(chunk)
194
+ chunked_audio_lens.append(
195
+ min(int(audio_lens[i].item()) - offset, context_size)
196
+ )
197
+ is_continuation_list.append(is_continuation)
198
+
199
+ data = {
200
+ "audio_values": torch.stack(chunked_audio_values, dim=0),
201
+ "audio_lens": torch.tensor(
202
+ chunked_audio_lens, dtype=torch.int64, device=audio_values.device
203
+ ),
204
+ "audio_is_continuation": torch.tensor(
205
+ is_continuation_list, dtype=torch.bool, device=audio_values.device
206
+ ),
207
+ "audio_batch_size": torch.tensor(
208
+ [len(chunked_audio_values)], device=audio_values.device
209
+ ),
210
+ }
211
+ if include_audio_num_chunks:
212
+ data["audio_num_chunks"] = torch.tensor(
213
+ num_chunks, dtype=torch.int64, device=audio_values.device
214
+ )
215
+ return data
216
+
217
+ def __call__(
218
+ self,
219
+ text: Optional[str] = None,
220
+ audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
221
+ audios: Optional[
222
+ Union[
223
+ List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor]
224
+ ]
225
+ ] = None,
226
+ sampling_rate: Optional[int] = None,
227
+ return_tensors: Optional[
228
+ Union[str, transformers.TensorType]
229
+ ] = transformers.TensorType.PYTORCH,
230
+ include_audio_num_chunks: bool = False,
231
+ **kwargs,
232
+ ) -> transformers.BatchFeature:
233
+ """
234
+ Main method to prepare for the model one text sequence and audio. This method forwards the `text`
235
+ and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
236
+ the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
237
+ audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring
238
+ of the above two methods for more information.
239
+
240
+ Args:
241
+ text (`str`, `List[str]`):
242
+ The sequence to be encoded. Sequence can be a string or (pretokenized string).
243
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
244
+ The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor.
245
+ audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
246
+ A list or two dimensional array of audio to be prepared.
247
+ sampling_rate (`int`, *optional*, defaults to 16000):
248
+ Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
249
+ you are doing.
250
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
251
+ If set, will return tensors of a particular framework. Acceptable values are:
252
+
253
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
254
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
255
+ - `'np'`: Return NumPy `np.ndarray` objects.
256
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
257
+
258
+ Returns:
259
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
260
+
261
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
262
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
263
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
264
+ `None`).
265
+ - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
266
+ - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
267
+ Returned when `audio` is not `None`.
268
+ - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
269
+ """
270
+ # TODO: Add support for multiple text inputs.
271
+ if audio is not None and audios is not None:
272
+ raise ValueError("Only one of `audio` or `audios` should be provided.")
273
+ elif audio is not None:
274
+ audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio]
275
+ elif audios is None:
276
+ audios = []
277
+
278
+ data = {}
279
+ audio_is_continuation = []
280
+ if len(audios) > 0:
281
+ audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios]
282
+
283
+ # Pad out each audio to at least 2 hops (the minimum required by the processor).
284
+ hop_length = self.audio_processor.feature_extractor.hop_length
285
+ audios = [
286
+ (
287
+ np.pad(x, (0, 2 * hop_length - len(x)), mode="constant")
288
+ if len(x) < 2 * hop_length
289
+ else x
290
+ )
291
+ for x in audios
292
+ ]
293
+
294
+ # Main audio processing. The processor is model-specific.
295
+ x: transformers.BatchFeature = self.audio_processor(
296
+ audios,
297
+ sampling_rate=sampling_rate,
298
+ padding="longest",
299
+ pad_to_multiple_of=hop_length, # The attention mask effectively gets padded to the hop length, so pad the audio to be consistent.
300
+ truncation=False,
301
+ return_attention_mask=True,
302
+ **kwargs,
303
+ )
304
+
305
+ data.update(
306
+ self._chunk_and_pad_audio(
307
+ audio_values=torch.as_tensor(
308
+ x.input_features if "input_features" in x else x.input_values
309
+ ),
310
+ audio_lens=torch.as_tensor(x.attention_mask).sum(-1),
311
+ include_audio_num_chunks=include_audio_num_chunks,
312
+ )
313
+ )
314
+
315
+ audio_is_continuation = data.pop("audio_is_continuation")
316
+ data["audio_token_len"] = torch.ceil(
317
+ data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor)
318
+ ).to(dtype=torch.int)
319
+
320
+ if text is not None:
321
+ if not isinstance(text, str):
322
+ raise ValueError("Text must be a string. Batch mode not supported yet.")
323
+
324
+ # Special tokens like BOS should already have been added by the caller.
325
+ tokenized_parts = self.tokenizer(
326
+ text.split(
327
+ "<|audio|>" # The placeholder isn't part of the vocabulary, so split the text around it.
328
+ ),
329
+ add_special_tokens=False,
330
+ **kwargs,
331
+ )
332
+
333
+ audio_token_start_idx = []
334
+ placeholder_index = -1
335
+ split_input_ids = tokenized_parts["input_ids"]
336
+ input_ids: List[int] = []
337
+
338
+ audio_replacement_token_id = self.vocab[self.audio_token_replacement]
339
+
340
+ for i, token_len in enumerate(data.get("audio_token_len", [])):
341
+ if not audio_is_continuation[i]:
342
+ placeholder_index += 1
343
+ if placeholder_index >= len(split_input_ids):
344
+ raise ValueError(
345
+ f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)"
346
+ )
347
+
348
+ input_ids.extend(split_input_ids[placeholder_index])
349
+
350
+ audio_token_start_idx.append(len(input_ids))
351
+
352
+ input_ids.extend([audio_replacement_token_id] * token_len)
353
+
354
+ # Include any tokens after the last audio.
355
+ placeholder_index += 1
356
+ if placeholder_index != len(split_input_ids) - 1:
357
+ raise ValueError(
358
+ f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)"
359
+ )
360
+ input_ids.extend(split_input_ids[placeholder_index])
361
+
362
+ if "audio_token_len" in data:
363
+ data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx)
364
+
365
+ data["input_ids"] = [input_ids]
366
+ data["attention_mask"] = [[1] * len(input_ids)]
367
+
368
+ # Ensure that there are no audio placeholders after the last audio.
369
+
370
+ return transformers.BatchFeature(data=data, tensor_type=return_tensors)
371
+
372
+ def batch_decode(self, *args, **kwargs):
373
+ return self.tokenizer.batch_decode(*args, **kwargs)
374
+
375
+ def decode(self, *args, **kwargs):
376
+ return self.tokenizer.decode(*args, **kwargs)
377
+
378
+ @property
379
+ def model_input_names(self):
380
+ tokenizer_input_names = self.tokenizer.model_input_names
381
+ audio_processor_input_names = self.audio_processor.model_input_names
382
+ return list(set(tokenizer_input_names + audio_processor_input_names))
383
+
384
+
385
+ UltravoxProcessor.register_for_auto_class()
386
+
387
+ transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)
ultravox_tokenizer.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ import transformers
4
+
5
+ AUDIO_TOKEN = "<|audio|>"
6
+
7
+
8
+ def from_pretrained_text_tokenizer(
9
+ *args, **kwargs
10
+ ) -> transformers.PreTrainedTokenizerBase:
11
+ """
12
+ Create a tokenizer with the additional special token for audio.
13
+ This is mainly used for VLLM to work properly. This repo does not currently require it.
14
+ """
15
+
16
+ tokenizer = transformers.AutoTokenizer.from_pretrained(*args, **kwargs)
17
+ tokenizer.add_special_tokens({"additional_special_tokens": [AUDIO_TOKEN]})
18
+ logging.info(f"Audio token id: {get_audio_token_id(tokenizer)}")
19
+ return tokenizer
20
+
21
+
22
+ def get_audio_token_id(tokenizer: transformers.PreTrainedTokenizerBase) -> int:
23
+ audio_token_id = tokenizer.encode(AUDIO_TOKEN, add_special_tokens=False)
24
+ assert len(audio_token_id) == 1, "Audio token should be a single token"
25
+ return audio_token_id[0]