--- library_name: transformers tags: - VAD - audio - transformer - endpointing --- # Model Card: UltraVAD UltraVAD is a context-aware, audio-native endpointing model. It estimates the probability that a speaker has finished their turn in real time by fusing recent dialog text with the user’s audio. UltraVAD consumes the dialogue history and the last user audio turn, then produces a probability for the end-of-turn token `<|eot_id|>`. ## Model Details - **Developer:** Ultravox.ai - **Type:** Context-aware audio–text fusion endpointing - **Backbone:** Llama-8B (post-trained) - **Languages (26):** ar, bg, zh, cs, da, nl, en, fi, fr, de, el, hi, hu, it, ja, pl, pt, ro, ru, sk, es, sv, ta, tr, uk, vi **What it predicts.** UltraVAD computes the probability `P( | context, user_audio)` ## Sources - **Website/Repo:** https://ultravox.ai - **Demo:** https://demo.ultravox.ai/ - **Benchmark:** https://huggingface.co/datasets/fixie-ai/turntaking-contextual-tts ## Usage Use UltraVAD as a turn-taking oracle in voice agents. Run it alongside a lightweight streaming VAD; when short silences are detected, call UltraVAD and trigger your agent’s response once the `` probability crosses your threshold. ```python import transformers import torch import librosa import os pipe = transformers.pipeline(model='fixie-ai/ultraVAD', trust_remote_code=True, device="cpu") sr = 16000 wav_path = os.path.join(os.path.dirname(__file__), "sample.wav") audio, sr = librosa.load(wav_path, sr=sr) turns = [ {"role": "assistant", "content": "Hi, how are you?"}, ] # Build model inputs via pipeline preprocess inputs = {"audio": audio, "turns": turns, "sampling_rate": sr} model_inputs = pipe.preprocess(inputs) # Move tensors to model device device = next(pipe.model.parameters()).device model_inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in model_inputs.items()} # Forward pass (no generation) with torch.inference_mode(): output = pipe.model.forward(**model_inputs, return_dict=True) # Compute last-audio token position logits = output.logits # (1, seq_len, vocab) audio_pos = int( model_inputs["audio_token_start_idx"].item() + model_inputs["audio_token_len"].item() - 1 ) # Resolve <|eot_id|> token id and compute probability at last-audio index token_id = pipe.tokenizer.convert_tokens_to_ids("<|eot_id|>") if token_id is None or token_id == pipe.tokenizer.unk_token_id: raise RuntimeError("<|eot_id|> not found in tokenizer.") audio_logits = logits[0, audio_pos, :] audio_probs = torch.softmax(audio_logits.float(), dim=-1) eot_prob_audio = audio_probs[token_id].item() print(f"P(<|eot_id|>) = {eot_prob_audio:.6f}") threshold = 0.1 if eot_prob_audio > threshold: print("Is End of Turn") else: print("Is Not End of Turn") ``` ## Training Text-only post-training (LLM): Post-train the backbone to predict in dialog, yielding a probability over likely stop points rather than brittle binary labels. Data: Synthetic conversational corpora with inserted tokens, translation-augmented across 26 languages. Audio-native fusion (Ultravox projector): Attach and fine-tune the Ultravox audio projector so the model conditions jointly on audio embeddings and text, aligning prosodic cues with the objective. Data: Robust to real-world noise, device/mic variance, overlapping speech. Calibration: Choose a decision threshold to balance precision vs. recall per language/domain. Recommended starting threshold: 0.1. Raise the threshold if you find the model interrupting too eagerly, and lower the threshold if you find the model not responding when its supposed to. ## Performance & Deployment Latency (forward pass): ~65-110 ms on an A6000. Common pattern: Pair with a streaming VAD (e.g., Silero). Invoke UltraVAD on short silences; its latency is often hidden under TTS time-to-first-token. ## Evaluation UltraVAD is evaluated on both context-dependent and single-turn datasets. Contextual benchmark: 400 held-out samples requiring dialog history (fixie-ai/turntaking-contextual-tts). Single-turn sets: Smart-Turn V2’s Orpheus synthetic datasets (aggregate). Results Context-dependent turn-taking (400 held-out samples) | **Metric** | **UltraVAD** | **Smart-Turn V2** | |---|---:|---:| | **Accuracy** | 77.5% | 63.0% | | **Precision** | 69.6% | 59.8% | | **Recall** | 97.5% | 79.0% | | **F1-Score** | 81.3% | 68.1% | | **AUC** | 89.6% | 70.0% | Single-turn datasets (Orpheus aggregate) | **Dataset** | **UltraVAD** | **Smart-Turn V2** | |---|---:|---:| | **orpheus-aggregate-test** | 93.7% | 94.3% |