File size: 6,778 Bytes
4e255c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e18932
4e255c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e18932
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99515
- loss:Contrastive
base_model: lightonai/GTE-ModernColBERT-v1
datasets:
- reasonir/reasonir-data
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- accuracy
model-index:
- name: PyLate model based on lightonai/GTE-ModernColBERT-v1
  results:
  - task:
      type: col-berttriplet
      name: Col BERTTriplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: accuracy
      value: 0.9970178604125977
      name: Accuracy
license: cc-by-nc-4.0
---
[<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/67b2f4e49edebc815a3a4739/R1g957j1aBbx8lhZbWmxw.jpeg" width="200"/>](https://huggingface.co/fjmgAI)
## Fine-Tuned Model

**`fjmgAI/reason-colBERT-150M-GTE-ModernColBERT`**

## Base Model
**`lightonai/GTE-ModernColBERT-v1`**

## Fine-Tuning Method
Fine-tuning was performed using **[PyLate](https://github.com/lightonai/pylate)**, with contrastive training on the [rag-comprehensive-triplets](https://huggingface.co/datasets/baconnier/rag-comprehensive-triplets) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Dataset
**[`reasonir/reasonir-data`](https://huggingface.co/datasets/reasonir/reasonir-data)**

### Description
This dataset has been used for the English language and contains **101,000 examples**, designed for **rag-comprehensive-triplets**, using a data preprocessing script from the BRIGHT dataset.
## Fine-Tuning Details
- The model was trained using the **Contrastive Training**.
- Evaluated with <code>pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator</code>

| Metric       | Value      |
|:-------------|:-----------|
| **accuracy** | **0.997** |


## Usage
First install the PyLate library:

```bash
pip install -U pylate
```

### Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

#### Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

```python
import torch
from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model and Move the model to GPU if available, otherwise use CPU
model = models.ColBERT(
    model_name_or_path=("fjmgAI/reason-colBERT-150M-GTE-ModernColBERT", trust_remote_code=True)
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)
```

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)
```

#### Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)
```

### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

```python
import torch
from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=("fjmgAI/reason-colBERT-150M-GTE-ModernColBERT", trust_remote_code=True),
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```



### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0


## Purpose
This tuned model is designed to be used in scenarios that require **efficient embedding-based retrieval through reasoning** comparing embeddings at the token level with its MaxSim operation, ideal for **question-answering and document retrieval**.


- **Developed by:** fjmgAI
- **License:** 
Unfortunately, since the [ReasonIR data](https://huggingface.co/datasets/reasonir/reasonir-data) has been released under a cc-by-nc-4.0 license, we cannot release this model under an Apache 2.0 license. However, the authors of ReasonIR [released code to generate the data](https://github.com/facebookresearch/ReasonIR/tree/main/synthetic_data_generation). Anyone willing to reproduce the data could then easily reproduce this model under an Apache 2.0

[<img src="https://github.com/lightonai/pylate/blob/main/docs/img/logo.png?raw=true" width="200"/>](https://github.com/lightonai/pylate)