File size: 6,778 Bytes
4e255c6 7e18932 4e255c6 7e18932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99515
- loss:Contrastive
base_model: lightonai/GTE-ModernColBERT-v1
datasets:
- reasonir/reasonir-data
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- accuracy
model-index:
- name: PyLate model based on lightonai/GTE-ModernColBERT-v1
results:
- task:
type: col-berttriplet
name: Col BERTTriplet
dataset:
name: Unknown
type: unknown
metrics:
- type: accuracy
value: 0.9970178604125977
name: Accuracy
license: cc-by-nc-4.0
---
[<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/67b2f4e49edebc815a3a4739/R1g957j1aBbx8lhZbWmxw.jpeg" width="200"/>](https://huggingface.co/fjmgAI)
## Fine-Tuned Model
**`fjmgAI/reason-colBERT-150M-GTE-ModernColBERT`**
## Base Model
**`lightonai/GTE-ModernColBERT-v1`**
## Fine-Tuning Method
Fine-tuning was performed using **[PyLate](https://github.com/lightonai/pylate)**, with contrastive training on the [rag-comprehensive-triplets](https://huggingface.co/datasets/baconnier/rag-comprehensive-triplets) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Dataset
**[`reasonir/reasonir-data`](https://huggingface.co/datasets/reasonir/reasonir-data)**
### Description
This dataset has been used for the English language and contains **101,000 examples**, designed for **rag-comprehensive-triplets**, using a data preprocessing script from the BRIGHT dataset.
## Fine-Tuning Details
- The model was trained using the **Contrastive Training**.
- Evaluated with <code>pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator</code>
| Metric | Value |
|:-------------|:-----------|
| **accuracy** | **0.997** |
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
#### Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
```python
import torch
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model and Move the model to GPU if available, otherwise use CPU
model = models.ColBERT(
model_name_or_path=("fjmgAI/reason-colBERT-150M-GTE-ModernColBERT", trust_remote_code=True)
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
import torch
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=("fjmgAI/reason-colBERT-150M-GTE-ModernColBERT", trust_remote_code=True),
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
## Purpose
This tuned model is designed to be used in scenarios that require **efficient embedding-based retrieval through reasoning** comparing embeddings at the token level with its MaxSim operation, ideal for **question-answering and document retrieval**.
- **Developed by:** fjmgAI
- **License:**
Unfortunately, since the [ReasonIR data](https://huggingface.co/datasets/reasonir/reasonir-data) has been released under a cc-by-nc-4.0 license, we cannot release this model under an Apache 2.0 license. However, the authors of ReasonIR [released code to generate the data](https://github.com/facebookresearch/ReasonIR/tree/main/synthetic_data_generation). Anyone willing to reproduce the data could then easily reproduce this model under an Apache 2.0
[<img src="https://github.com/lightonai/pylate/blob/main/docs/img/logo.png?raw=true" width="200"/>](https://github.com/lightonai/pylate) |