initial commit
Browse files- README.md +158 -0
- loss.tsv +21 -0
- pytorch_model.bin +3 -0
- training.log +892 -0
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: de
|
7 |
+
datasets:
|
8 |
+
- conll2003
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## German NER in Flair (large model)
|
13 |
+
|
14 |
+
This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **94,36** (CoNLL-03)
|
17 |
+
|
18 |
+
**! This model only works with Flair version 0.8 (will be released in the next few days) !**
|
19 |
+
|
20 |
+
Predicts 4 tags:
|
21 |
+
|
22 |
+
| **tag** | **meaning** |
|
23 |
+
|---------------------------------|-----------|
|
24 |
+
| PER | person name |
|
25 |
+
| LOC | location name |
|
26 |
+
| ORG | organization name |
|
27 |
+
| MISC | other name |
|
28 |
+
|
29 |
+
Based on [document-level XLM-R embeddings](https://www.aclweb.org/anthology/C18-1139/).
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
### Demo: How to use in Flair
|
34 |
+
|
35 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
36 |
+
|
37 |
+
```python
|
38 |
+
from flair.data import Sentence
|
39 |
+
from flair.models import SequenceTagger
|
40 |
+
|
41 |
+
# load tagger
|
42 |
+
tagger = SequenceTagger.load("flair/ner-german-large")
|
43 |
+
|
44 |
+
# make example sentence
|
45 |
+
sentence = Sentence("George Washington went to Washington")
|
46 |
+
|
47 |
+
# predict NER tags
|
48 |
+
tagger.predict(sentence)
|
49 |
+
|
50 |
+
# print sentence
|
51 |
+
print(sentence)
|
52 |
+
|
53 |
+
# print predicted NER spans
|
54 |
+
print('The following NER tags are found:')
|
55 |
+
# iterate over entities and print
|
56 |
+
for entity in sentence.get_spans('ner'):
|
57 |
+
print(entity)
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
This yields the following output:
|
62 |
+
```
|
63 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
64 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
65 |
+
```
|
66 |
+
|
67 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*".
|
68 |
+
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
### Training: Script to train this model
|
73 |
+
|
74 |
+
The following Flair script was used to train this model:
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
|
79 |
+
# 1. get the corpus
|
80 |
+
from flair.datasets import CONLL_03_GERMAN
|
81 |
+
|
82 |
+
corpus = CONLL_03_GERMAN()
|
83 |
+
|
84 |
+
# 2. what tag do we want to predict?
|
85 |
+
tag_type = 'ner'
|
86 |
+
|
87 |
+
# 3. make the tag dictionary from the corpus
|
88 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
89 |
+
|
90 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
91 |
+
from flair.embeddings import TransformerWordEmbeddings
|
92 |
+
|
93 |
+
embeddings = TransformerWordEmbeddings(
|
94 |
+
model='xlm-roberta-large',
|
95 |
+
layers="-1",
|
96 |
+
subtoken_pooling="first",
|
97 |
+
fine_tune=True,
|
98 |
+
use_context=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
102 |
+
from flair.models import SequenceTagger
|
103 |
+
|
104 |
+
tagger = SequenceTagger(
|
105 |
+
hidden_size=256,
|
106 |
+
embeddings=embeddings,
|
107 |
+
tag_dictionary=tag_dictionary,
|
108 |
+
tag_type='ner',
|
109 |
+
use_crf=False,
|
110 |
+
use_rnn=False,
|
111 |
+
reproject_embeddings=False,
|
112 |
+
)
|
113 |
+
|
114 |
+
# 6. initialize trainer with AdamW optimizer
|
115 |
+
from flair.trainers import ModelTrainer
|
116 |
+
|
117 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
118 |
+
|
119 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
120 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
121 |
+
|
122 |
+
trainer.train('resources/taggers/ner-german-large',
|
123 |
+
learning_rate=5.0e-6,
|
124 |
+
mini_batch_size=4,
|
125 |
+
mini_batch_chunk_size=1,
|
126 |
+
max_epochs=20,
|
127 |
+
scheduler=OneCycleLR,
|
128 |
+
embeddings_storage_mode='none',
|
129 |
+
weight_decay=0.,
|
130 |
+
)
|
131 |
+
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
### Cite
|
140 |
+
|
141 |
+
Please cite the following paper when using this model.
|
142 |
+
|
143 |
+
```
|
144 |
+
@misc{schweter2020flert,
|
145 |
+
title={FLERT: Document-Level Features for Named Entity Recognition},
|
146 |
+
author={Stefan Schweter and Alan Akbik},
|
147 |
+
year={2020},
|
148 |
+
eprint={2011.06993},
|
149 |
+
archivePrefix={arXiv},
|
150 |
+
primaryClass={cs.CL}
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
154 |
+
---
|
155 |
+
|
156 |
+
### Issues?
|
157 |
+
|
158 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 16:51:59 4 0.0000 0.2866137816264941
|
3 |
+
2 17:16:36 4 0.0000 0.19963635197194995
|
4 |
+
3 17:41:09 4 0.0000 0.19381841593759824
|
5 |
+
4 18:05:44 4 0.0000 0.16904323373543453
|
6 |
+
5 18:30:18 4 0.0000 0.17083178105798114
|
7 |
+
6 18:54:35 4 0.0000 0.16211920515636655
|
8 |
+
7 19:18:47 4 0.0000 0.16189787430929792
|
9 |
+
8 19:42:57 4 0.0000 0.15914436206804433
|
10 |
+
9 20:07:08 4 0.0000 0.1469039810866205
|
11 |
+
10 20:31:16 4 0.0000 0.1492166711907655
|
12 |
+
11 20:55:24 4 0.0000 0.15147419168516288
|
13 |
+
12 21:19:32 4 0.0000 0.13647247537528812
|
14 |
+
13 21:43:54 4 0.0000 0.14614263093116467
|
15 |
+
14 22:08:30 4 0.0000 0.13674926033805127
|
16 |
+
15 22:33:01 4 0.0000 0.1387276056972103
|
17 |
+
16 22:57:29 4 0.0000 0.13758350506155864
|
18 |
+
17 23:21:41 4 0.0000 0.13729583443464166
|
19 |
+
18 23:45:55 4 0.0000 0.13997356167795372
|
20 |
+
19 00:10:06 4 0.0000 0.13157929521994233
|
21 |
+
20 00:34:21 4 0.0000 0.1353108691912222
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf4313719a9b40a2daa419d066fa1fae405827bc126bde5ecd283b068b34790
|
3 |
+
size 2239866697
|
training.log
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-01-15 16:27:19,924 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-01-15 16:27:19,927 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
64 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
65 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
87 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
88 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
110 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
111 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
133 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
134 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
156 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
157 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
179 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
180 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
202 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
203 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
225 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
226 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
248 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
249 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
271 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
272 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
(12): RobertaLayer(
|
291 |
+
(attention): RobertaAttention(
|
292 |
+
(self): RobertaSelfAttention(
|
293 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
294 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
295 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
)
|
298 |
+
(output): RobertaSelfOutput(
|
299 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
300 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
301 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(intermediate): RobertaIntermediate(
|
305 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
306 |
+
)
|
307 |
+
(output): RobertaOutput(
|
308 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
309 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
310 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
311 |
+
)
|
312 |
+
)
|
313 |
+
(13): RobertaLayer(
|
314 |
+
(attention): RobertaAttention(
|
315 |
+
(self): RobertaSelfAttention(
|
316 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
317 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
318 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
)
|
321 |
+
(output): RobertaSelfOutput(
|
322 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
323 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
324 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
(intermediate): RobertaIntermediate(
|
328 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
329 |
+
)
|
330 |
+
(output): RobertaOutput(
|
331 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
332 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
333 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(14): RobertaLayer(
|
337 |
+
(attention): RobertaAttention(
|
338 |
+
(self): RobertaSelfAttention(
|
339 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
340 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
341 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
342 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
343 |
+
)
|
344 |
+
(output): RobertaSelfOutput(
|
345 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(intermediate): RobertaIntermediate(
|
351 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
352 |
+
)
|
353 |
+
(output): RobertaOutput(
|
354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
)
|
359 |
+
(15): RobertaLayer(
|
360 |
+
(attention): RobertaAttention(
|
361 |
+
(self): RobertaSelfAttention(
|
362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
366 |
+
)
|
367 |
+
(output): RobertaSelfOutput(
|
368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
371 |
+
)
|
372 |
+
)
|
373 |
+
(intermediate): RobertaIntermediate(
|
374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
375 |
+
)
|
376 |
+
(output): RobertaOutput(
|
377 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
378 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
379 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
380 |
+
)
|
381 |
+
)
|
382 |
+
(16): RobertaLayer(
|
383 |
+
(attention): RobertaAttention(
|
384 |
+
(self): RobertaSelfAttention(
|
385 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
386 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
387 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
388 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
389 |
+
)
|
390 |
+
(output): RobertaSelfOutput(
|
391 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
392 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
393 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
394 |
+
)
|
395 |
+
)
|
396 |
+
(intermediate): RobertaIntermediate(
|
397 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
398 |
+
)
|
399 |
+
(output): RobertaOutput(
|
400 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
401 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
402 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
403 |
+
)
|
404 |
+
)
|
405 |
+
(17): RobertaLayer(
|
406 |
+
(attention): RobertaAttention(
|
407 |
+
(self): RobertaSelfAttention(
|
408 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
409 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
410 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
411 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
412 |
+
)
|
413 |
+
(output): RobertaSelfOutput(
|
414 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
415 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(intermediate): RobertaIntermediate(
|
420 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
421 |
+
)
|
422 |
+
(output): RobertaOutput(
|
423 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
424 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
425 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(18): RobertaLayer(
|
429 |
+
(attention): RobertaAttention(
|
430 |
+
(self): RobertaSelfAttention(
|
431 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
433 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
435 |
+
)
|
436 |
+
(output): RobertaSelfOutput(
|
437 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
438 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
439 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
(intermediate): RobertaIntermediate(
|
443 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
444 |
+
)
|
445 |
+
(output): RobertaOutput(
|
446 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
447 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
448 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
449 |
+
)
|
450 |
+
)
|
451 |
+
(19): RobertaLayer(
|
452 |
+
(attention): RobertaAttention(
|
453 |
+
(self): RobertaSelfAttention(
|
454 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
455 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
(output): RobertaSelfOutput(
|
460 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
461 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
462 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
463 |
+
)
|
464 |
+
)
|
465 |
+
(intermediate): RobertaIntermediate(
|
466 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
467 |
+
)
|
468 |
+
(output): RobertaOutput(
|
469 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
470 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
471 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
472 |
+
)
|
473 |
+
)
|
474 |
+
(20): RobertaLayer(
|
475 |
+
(attention): RobertaAttention(
|
476 |
+
(self): RobertaSelfAttention(
|
477 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
478 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
479 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
481 |
+
)
|
482 |
+
(output): RobertaSelfOutput(
|
483 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
484 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(intermediate): RobertaIntermediate(
|
489 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
490 |
+
)
|
491 |
+
(output): RobertaOutput(
|
492 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
493 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
494 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(21): RobertaLayer(
|
498 |
+
(attention): RobertaAttention(
|
499 |
+
(self): RobertaSelfAttention(
|
500 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
501 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
502 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
503 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
504 |
+
)
|
505 |
+
(output): RobertaSelfOutput(
|
506 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
507 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
508 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(intermediate): RobertaIntermediate(
|
512 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
513 |
+
)
|
514 |
+
(output): RobertaOutput(
|
515 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
516 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
517 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
518 |
+
)
|
519 |
+
)
|
520 |
+
(22): RobertaLayer(
|
521 |
+
(attention): RobertaAttention(
|
522 |
+
(self): RobertaSelfAttention(
|
523 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
525 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
526 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
527 |
+
)
|
528 |
+
(output): RobertaSelfOutput(
|
529 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
530 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(intermediate): RobertaIntermediate(
|
535 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
536 |
+
)
|
537 |
+
(output): RobertaOutput(
|
538 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
539 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
540 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
541 |
+
)
|
542 |
+
)
|
543 |
+
(23): RobertaLayer(
|
544 |
+
(attention): RobertaAttention(
|
545 |
+
(self): RobertaSelfAttention(
|
546 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
549 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
550 |
+
)
|
551 |
+
(output): RobertaSelfOutput(
|
552 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
553 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
554 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
555 |
+
)
|
556 |
+
)
|
557 |
+
(intermediate): RobertaIntermediate(
|
558 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
(pooler): RobertaPooler(
|
569 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(activation): Tanh()
|
571 |
+
)
|
572 |
+
)
|
573 |
+
)
|
574 |
+
(word_dropout): WordDropout(p=0.05)
|
575 |
+
(locked_dropout): LockedDropout(p=0.5)
|
576 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
577 |
+
(beta): 1.0
|
578 |
+
(weights): None
|
579 |
+
(weight_tensor) None
|
580 |
+
)"
|
581 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
582 |
+
2021-01-15 16:27:19,928 Corpus: "Corpus: 12705 train + 3068 dev + 3160 test sentences"
|
583 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
584 |
+
2021-01-15 16:27:19,928 Parameters:
|
585 |
+
2021-01-15 16:27:19,928 - learning_rate: "5e-06"
|
586 |
+
2021-01-15 16:27:19,928 - mini_batch_size: "4"
|
587 |
+
2021-01-15 16:27:19,928 - patience: "3"
|
588 |
+
2021-01-15 16:27:19,928 - anneal_factor: "0.5"
|
589 |
+
2021-01-15 16:27:19,928 - max_epochs: "20"
|
590 |
+
2021-01-15 16:27:19,928 - shuffle: "True"
|
591 |
+
2021-01-15 16:27:19,928 - train_with_dev: "True"
|
592 |
+
2021-01-15 16:27:19,928 - batch_growth_annealing: "False"
|
593 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
594 |
+
2021-01-15 16:27:19,928 Model training base path: "resources/contextdrop/flert-de-ft+dev-xlm-roberta-large-context+drop-64-True-42"
|
595 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
596 |
+
2021-01-15 16:27:19,929 Device: cuda:2
|
597 |
+
2021-01-15 16:27:19,929 ----------------------------------------------------------------------------------------------------
|
598 |
+
2021-01-15 16:27:19,929 Embeddings storage mode: none
|
599 |
+
2021-01-15 16:27:19,939 ----------------------------------------------------------------------------------------------------
|
600 |
+
2021-01-15 16:29:48,177 epoch 1 - iter 394/3944 - loss 0.58149384 - samples/sec: 10.63 - lr: 0.000005
|
601 |
+
2021-01-15 16:32:16,470 epoch 1 - iter 788/3944 - loss 0.43146001 - samples/sec: 10.63 - lr: 0.000005
|
602 |
+
2021-01-15 16:34:43,836 epoch 1 - iter 1182/3944 - loss 0.38010955 - samples/sec: 10.70 - lr: 0.000005
|
603 |
+
2021-01-15 16:37:11,698 epoch 1 - iter 1576/3944 - loss 0.34431028 - samples/sec: 10.66 - lr: 0.000005
|
604 |
+
2021-01-15 16:39:39,747 epoch 1 - iter 1970/3944 - loss 0.32744939 - samples/sec: 10.65 - lr: 0.000005
|
605 |
+
2021-01-15 16:42:07,631 epoch 1 - iter 2364/3944 - loss 0.31857823 - samples/sec: 10.66 - lr: 0.000005
|
606 |
+
2021-01-15 16:44:34,485 epoch 1 - iter 2758/3944 - loss 0.30456838 - samples/sec: 10.73 - lr: 0.000005
|
607 |
+
2021-01-15 16:47:02,394 epoch 1 - iter 3152/3944 - loss 0.29905511 - samples/sec: 10.66 - lr: 0.000005
|
608 |
+
2021-01-15 16:49:29,868 epoch 1 - iter 3546/3944 - loss 0.29295683 - samples/sec: 10.69 - lr: 0.000005
|
609 |
+
2021-01-15 16:51:58,152 epoch 1 - iter 3940/3944 - loss 0.28678117 - samples/sec: 10.63 - lr: 0.000005
|
610 |
+
2021-01-15 16:51:59,459 ----------------------------------------------------------------------------------------------------
|
611 |
+
2021-01-15 16:51:59,459 EPOCH 1 done: loss 0.2866 - lr 0.0000050
|
612 |
+
2021-01-15 16:51:59,459 BAD EPOCHS (no improvement): 4
|
613 |
+
2021-01-15 16:51:59,462 ----------------------------------------------------------------------------------------------------
|
614 |
+
2021-01-15 16:54:27,337 epoch 2 - iter 394/3944 - loss 0.23763366 - samples/sec: 10.66 - lr: 0.000005
|
615 |
+
2021-01-15 16:56:55,082 epoch 2 - iter 788/3944 - loss 0.20691177 - samples/sec: 10.67 - lr: 0.000005
|
616 |
+
2021-01-15 16:59:22,869 epoch 2 - iter 1182/3944 - loss 0.21072023 - samples/sec: 10.66 - lr: 0.000005
|
617 |
+
2021-01-15 17:01:50,770 epoch 2 - iter 1576/3944 - loss 0.20705774 - samples/sec: 10.66 - lr: 0.000005
|
618 |
+
2021-01-15 17:04:18,029 epoch 2 - iter 1970/3944 - loss 0.20345128 - samples/sec: 10.70 - lr: 0.000005
|
619 |
+
2021-01-15 17:06:45,050 epoch 2 - iter 2364/3944 - loss 0.19762390 - samples/sec: 10.72 - lr: 0.000005
|
620 |
+
2021-01-15 17:09:11,995 epoch 2 - iter 2758/3944 - loss 0.20206661 - samples/sec: 10.73 - lr: 0.000005
|
621 |
+
2021-01-15 17:11:39,892 epoch 2 - iter 3152/3944 - loss 0.19768991 - samples/sec: 10.66 - lr: 0.000005
|
622 |
+
2021-01-15 17:14:07,315 epoch 2 - iter 3546/3944 - loss 0.20115805 - samples/sec: 10.69 - lr: 0.000005
|
623 |
+
2021-01-15 17:16:34,784 epoch 2 - iter 3940/3944 - loss 0.19983876 - samples/sec: 10.69 - lr: 0.000005
|
624 |
+
2021-01-15 17:16:36,073 ----------------------------------------------------------------------------------------------------
|
625 |
+
2021-01-15 17:16:36,074 EPOCH 2 done: loss 0.1996 - lr 0.0000049
|
626 |
+
2021-01-15 17:16:36,074 BAD EPOCHS (no improvement): 4
|
627 |
+
2021-01-15 17:16:36,077 ----------------------------------------------------------------------------------------------------
|
628 |
+
2021-01-15 17:19:03,268 epoch 3 - iter 394/3944 - loss 0.16475767 - samples/sec: 10.71 - lr: 0.000005
|
629 |
+
2021-01-15 17:21:30,430 epoch 3 - iter 788/3944 - loss 0.16467943 - samples/sec: 10.71 - lr: 0.000005
|
630 |
+
2021-01-15 17:23:57,785 epoch 3 - iter 1182/3944 - loss 0.16820842 - samples/sec: 10.70 - lr: 0.000005
|
631 |
+
2021-01-15 17:26:25,077 epoch 3 - iter 1576/3944 - loss 0.17111347 - samples/sec: 10.70 - lr: 0.000005
|
632 |
+
2021-01-15 17:28:51,818 epoch 3 - iter 1970/3944 - loss 0.17649180 - samples/sec: 10.74 - lr: 0.000005
|
633 |
+
2021-01-15 17:31:18,679 epoch 3 - iter 2364/3944 - loss 0.18734800 - samples/sec: 10.73 - lr: 0.000005
|
634 |
+
2021-01-15 17:33:45,680 epoch 3 - iter 2758/3944 - loss 0.18971106 - samples/sec: 10.72 - lr: 0.000005
|
635 |
+
2021-01-15 17:36:13,246 epoch 3 - iter 3152/3944 - loss 0.18746164 - samples/sec: 10.68 - lr: 0.000005
|
636 |
+
2021-01-15 17:38:40,672 epoch 3 - iter 3546/3944 - loss 0.19218287 - samples/sec: 10.69 - lr: 0.000005
|
637 |
+
2021-01-15 17:41:07,957 epoch 3 - iter 3940/3944 - loss 0.19381799 - samples/sec: 10.70 - lr: 0.000005
|
638 |
+
2021-01-15 17:41:09,257 ----------------------------------------------------------------------------------------------------
|
639 |
+
2021-01-15 17:41:09,257 EPOCH 3 done: loss 0.1938 - lr 0.0000047
|
640 |
+
2021-01-15 17:41:09,257 BAD EPOCHS (no improvement): 4
|
641 |
+
2021-01-15 17:41:09,260 ----------------------------------------------------------------------------------------------------
|
642 |
+
2021-01-15 17:43:36,593 epoch 4 - iter 394/3944 - loss 0.16488209 - samples/sec: 10.70 - lr: 0.000005
|
643 |
+
2021-01-15 17:46:04,133 epoch 4 - iter 788/3944 - loss 0.17473605 - samples/sec: 10.68 - lr: 0.000005
|
644 |
+
2021-01-15 17:48:31,440 epoch 4 - iter 1182/3944 - loss 0.16738039 - samples/sec: 10.70 - lr: 0.000005
|
645 |
+
2021-01-15 17:50:58,858 epoch 4 - iter 1576/3944 - loss 0.16596805 - samples/sec: 10.69 - lr: 0.000005
|
646 |
+
2021-01-15 17:53:26,260 epoch 4 - iter 1970/3944 - loss 0.16483490 - samples/sec: 10.69 - lr: 0.000005
|
647 |
+
2021-01-15 17:55:53,072 epoch 4 - iter 2364/3944 - loss 0.16752558 - samples/sec: 10.74 - lr: 0.000005
|
648 |
+
2021-01-15 17:58:19,944 epoch 4 - iter 2758/3944 - loss 0.16537132 - samples/sec: 10.73 - lr: 0.000005
|
649 |
+
2021-01-15 18:00:47,459 epoch 4 - iter 3152/3944 - loss 0.16501133 - samples/sec: 10.68 - lr: 0.000005
|
650 |
+
2021-01-15 18:03:15,474 epoch 4 - iter 3546/3944 - loss 0.16726116 - samples/sec: 10.65 - lr: 0.000005
|
651 |
+
2021-01-15 18:05:43,265 epoch 4 - iter 3940/3944 - loss 0.16914137 - samples/sec: 10.66 - lr: 0.000005
|
652 |
+
2021-01-15 18:05:44,543 ----------------------------------------------------------------------------------------------------
|
653 |
+
2021-01-15 18:05:44,543 EPOCH 4 done: loss 0.1690 - lr 0.0000045
|
654 |
+
2021-01-15 18:05:44,543 BAD EPOCHS (no improvement): 4
|
655 |
+
2021-01-15 18:05:44,547 ----------------------------------------------------------------------------------------------------
|
656 |
+
2021-01-15 18:08:12,011 epoch 5 - iter 394/3944 - loss 0.15833616 - samples/sec: 10.69 - lr: 0.000004
|
657 |
+
2021-01-15 18:10:38,832 epoch 5 - iter 788/3944 - loss 0.16551527 - samples/sec: 10.74 - lr: 0.000004
|
658 |
+
2021-01-15 18:13:06,451 epoch 5 - iter 1182/3944 - loss 0.17177677 - samples/sec: 10.68 - lr: 0.000004
|
659 |
+
2021-01-15 18:15:34,493 epoch 5 - iter 1576/3944 - loss 0.17301128 - samples/sec: 10.65 - lr: 0.000004
|
660 |
+
2021-01-15 18:18:03,239 epoch 5 - iter 1970/3944 - loss 0.17650116 - samples/sec: 10.60 - lr: 0.000004
|
661 |
+
2021-01-15 18:20:32,247 epoch 5 - iter 2364/3944 - loss 0.17631064 - samples/sec: 10.58 - lr: 0.000004
|
662 |
+
2021-01-15 18:22:59,227 epoch 5 - iter 2758/3944 - loss 0.17537379 - samples/sec: 10.72 - lr: 0.000004
|
663 |
+
2021-01-15 18:25:24,556 epoch 5 - iter 3152/3944 - loss 0.17617518 - samples/sec: 10.85 - lr: 0.000004
|
664 |
+
2021-01-15 18:27:50,096 epoch 5 - iter 3546/3944 - loss 0.17367857 - samples/sec: 10.83 - lr: 0.000004
|
665 |
+
2021-01-15 18:30:16,704 epoch 5 - iter 3940/3944 - loss 0.17093901 - samples/sec: 10.75 - lr: 0.000004
|
666 |
+
2021-01-15 18:30:18,004 ----------------------------------------------------------------------------------------------------
|
667 |
+
2021-01-15 18:30:18,004 EPOCH 5 done: loss 0.1708 - lr 0.0000043
|
668 |
+
2021-01-15 18:30:18,004 BAD EPOCHS (no improvement): 4
|
669 |
+
2021-01-15 18:30:18,007 ----------------------------------------------------------------------------------------------------
|
670 |
+
2021-01-15 18:32:42,968 epoch 6 - iter 394/3944 - loss 0.17698825 - samples/sec: 10.87 - lr: 0.000004
|
671 |
+
2021-01-15 18:35:08,371 epoch 6 - iter 788/3944 - loss 0.16713416 - samples/sec: 10.84 - lr: 0.000004
|
672 |
+
2021-01-15 18:37:34,014 epoch 6 - iter 1182/3944 - loss 0.16902562 - samples/sec: 10.82 - lr: 0.000004
|
673 |
+
2021-01-15 18:40:00,144 epoch 6 - iter 1576/3944 - loss 0.16574844 - samples/sec: 10.79 - lr: 0.000004
|
674 |
+
2021-01-15 18:42:26,534 epoch 6 - iter 1970/3944 - loss 0.16657012 - samples/sec: 10.77 - lr: 0.000004
|
675 |
+
2021-01-15 18:44:52,613 epoch 6 - iter 2364/3944 - loss 0.16641916 - samples/sec: 10.79 - lr: 0.000004
|
676 |
+
2021-01-15 18:47:17,983 epoch 6 - iter 2758/3944 - loss 0.16274268 - samples/sec: 10.84 - lr: 0.000004
|
677 |
+
2021-01-15 18:49:43,878 epoch 6 - iter 3152/3944 - loss 0.16172776 - samples/sec: 10.80 - lr: 0.000004
|
678 |
+
2021-01-15 18:52:09,331 epoch 6 - iter 3546/3944 - loss 0.16291188 - samples/sec: 10.84 - lr: 0.000004
|
679 |
+
2021-01-15 18:54:34,272 epoch 6 - iter 3940/3944 - loss 0.16208591 - samples/sec: 10.87 - lr: 0.000004
|
680 |
+
2021-01-15 18:54:35,553 ----------------------------------------------------------------------------------------------------
|
681 |
+
2021-01-15 18:54:35,553 EPOCH 6 done: loss 0.1621 - lr 0.0000040
|
682 |
+
2021-01-15 18:54:35,553 BAD EPOCHS (no improvement): 4
|
683 |
+
2021-01-15 18:54:35,556 ----------------------------------------------------------------------------------------------------
|
684 |
+
2021-01-15 18:57:00,031 epoch 7 - iter 394/3944 - loss 0.15674837 - samples/sec: 10.91 - lr: 0.000004
|
685 |
+
2021-01-15 18:59:25,217 epoch 7 - iter 788/3944 - loss 0.16222971 - samples/sec: 10.86 - lr: 0.000004
|
686 |
+
2021-01-15 19:01:50,483 epoch 7 - iter 1182/3944 - loss 0.17608659 - samples/sec: 10.85 - lr: 0.000004
|
687 |
+
2021-01-15 19:04:15,644 epoch 7 - iter 1576/3944 - loss 0.17042676 - samples/sec: 10.86 - lr: 0.000004
|
688 |
+
2021-01-15 19:06:40,626 epoch 7 - iter 1970/3944 - loss 0.16835536 - samples/sec: 10.87 - lr: 0.000004
|
689 |
+
2021-01-15 19:09:06,269 epoch 7 - iter 2364/3944 - loss 0.17005717 - samples/sec: 10.82 - lr: 0.000004
|
690 |
+
2021-01-15 19:11:30,455 epoch 7 - iter 2758/3944 - loss 0.16986731 - samples/sec: 10.93 - lr: 0.000004
|
691 |
+
2021-01-15 19:13:55,363 epoch 7 - iter 3152/3944 - loss 0.16607768 - samples/sec: 10.88 - lr: 0.000004
|
692 |
+
2021-01-15 19:16:20,669 epoch 7 - iter 3546/3944 - loss 0.16408475 - samples/sec: 10.85 - lr: 0.000004
|
693 |
+
2021-01-15 19:18:46,350 epoch 7 - iter 3940/3944 - loss 0.16187247 - samples/sec: 10.82 - lr: 0.000004
|
694 |
+
2021-01-15 19:18:47,632 ----------------------------------------------------------------------------------------------------
|
695 |
+
2021-01-15 19:18:47,632 EPOCH 7 done: loss 0.1619 - lr 0.0000036
|
696 |
+
2021-01-15 19:18:47,632 BAD EPOCHS (no improvement): 4
|
697 |
+
2021-01-15 19:18:47,635 ----------------------------------------------------------------------------------------------------
|
698 |
+
2021-01-15 19:21:13,232 epoch 8 - iter 394/3944 - loss 0.15860862 - samples/sec: 10.83 - lr: 0.000004
|
699 |
+
2021-01-15 19:23:37,769 epoch 8 - iter 788/3944 - loss 0.16488914 - samples/sec: 10.90 - lr: 0.000004
|
700 |
+
2021-01-15 19:26:03,243 epoch 8 - iter 1182/3944 - loss 0.16503533 - samples/sec: 10.83 - lr: 0.000004
|
701 |
+
2021-01-15 19:28:28,171 epoch 8 - iter 1576/3944 - loss 0.16139434 - samples/sec: 10.88 - lr: 0.000003
|
702 |
+
2021-01-15 19:30:53,669 epoch 8 - iter 1970/3944 - loss 0.15723985 - samples/sec: 10.83 - lr: 0.000003
|
703 |
+
2021-01-15 19:33:18,230 epoch 8 - iter 2364/3944 - loss 0.15695920 - samples/sec: 10.90 - lr: 0.000003
|
704 |
+
2021-01-15 19:35:43,271 epoch 8 - iter 2758/3944 - loss 0.15942351 - samples/sec: 10.87 - lr: 0.000003
|
705 |
+
2021-01-15 19:38:07,861 epoch 8 - iter 3152/3944 - loss 0.16047035 - samples/sec: 10.90 - lr: 0.000003
|
706 |
+
2021-01-15 19:40:31,578 epoch 8 - iter 3546/3944 - loss 0.15915561 - samples/sec: 10.97 - lr: 0.000003
|
707 |
+
2021-01-15 19:42:56,291 epoch 8 - iter 3940/3944 - loss 0.15889894 - samples/sec: 10.89 - lr: 0.000003
|
708 |
+
2021-01-15 19:42:57,531 ----------------------------------------------------------------------------------------------------
|
709 |
+
2021-01-15 19:42:57,531 EPOCH 8 done: loss 0.1591 - lr 0.0000033
|
710 |
+
2021-01-15 19:42:57,531 BAD EPOCHS (no improvement): 4
|
711 |
+
2021-01-15 19:42:57,534 ----------------------------------------------------------------------------------------------------
|
712 |
+
2021-01-15 19:45:22,077 epoch 9 - iter 394/3944 - loss 0.15628960 - samples/sec: 10.90 - lr: 0.000003
|
713 |
+
2021-01-15 19:47:46,787 epoch 9 - iter 788/3944 - loss 0.15383703 - samples/sec: 10.89 - lr: 0.000003
|
714 |
+
2021-01-15 19:50:11,703 epoch 9 - iter 1182/3944 - loss 0.14587839 - samples/sec: 10.88 - lr: 0.000003
|
715 |
+
2021-01-15 19:52:36,604 epoch 9 - iter 1576/3944 - loss 0.14536078 - samples/sec: 10.88 - lr: 0.000003
|
716 |
+
2021-01-15 19:55:01,857 epoch 9 - iter 1970/3944 - loss 0.14842223 - samples/sec: 10.85 - lr: 0.000003
|
717 |
+
2021-01-15 19:57:26,976 epoch 9 - iter 2364/3944 - loss 0.14781136 - samples/sec: 10.86 - lr: 0.000003
|
718 |
+
2021-01-15 19:59:52,570 epoch 9 - iter 2758/3944 - loss 0.14980740 - samples/sec: 10.83 - lr: 0.000003
|
719 |
+
2021-01-15 20:02:16,766 epoch 9 - iter 3152/3944 - loss 0.15147019 - samples/sec: 10.93 - lr: 0.000003
|
720 |
+
2021-01-15 20:04:41,587 epoch 9 - iter 3546/3944 - loss 0.14992780 - samples/sec: 10.88 - lr: 0.000003
|
721 |
+
2021-01-15 20:07:07,065 epoch 9 - iter 3940/3944 - loss 0.14688711 - samples/sec: 10.83 - lr: 0.000003
|
722 |
+
2021-01-15 20:07:08,315 ----------------------------------------------------------------------------------------------------
|
723 |
+
2021-01-15 20:07:08,315 EPOCH 9 done: loss 0.1469 - lr 0.0000029
|
724 |
+
2021-01-15 20:07:08,315 BAD EPOCHS (no improvement): 4
|
725 |
+
2021-01-15 20:07:08,318 ----------------------------------------------------------------------------------------------------
|
726 |
+
2021-01-15 20:09:33,307 epoch 10 - iter 394/3944 - loss 0.15646665 - samples/sec: 10.87 - lr: 0.000003
|
727 |
+
2021-01-15 20:11:57,958 epoch 10 - iter 788/3944 - loss 0.15117971 - samples/sec: 10.90 - lr: 0.000003
|
728 |
+
2021-01-15 20:14:23,257 epoch 10 - iter 1182/3944 - loss 0.15319049 - samples/sec: 10.85 - lr: 0.000003
|
729 |
+
2021-01-15 20:16:47,405 epoch 10 - iter 1576/3944 - loss 0.14632406 - samples/sec: 10.93 - lr: 0.000003
|
730 |
+
2021-01-15 20:19:13,077 epoch 10 - iter 1970/3944 - loss 0.14880268 - samples/sec: 10.82 - lr: 0.000003
|
731 |
+
2021-01-15 20:21:37,974 epoch 10 - iter 2364/3944 - loss 0.14738769 - samples/sec: 10.88 - lr: 0.000003
|
732 |
+
2021-01-15 20:24:02,312 epoch 10 - iter 2758/3944 - loss 0.14992138 - samples/sec: 10.92 - lr: 0.000003
|
733 |
+
2021-01-15 20:26:26,416 epoch 10 - iter 3152/3944 - loss 0.14923992 - samples/sec: 10.94 - lr: 0.000003
|
734 |
+
2021-01-15 20:28:50,624 epoch 10 - iter 3546/3944 - loss 0.14988541 - samples/sec: 10.93 - lr: 0.000003
|
735 |
+
2021-01-15 20:31:15,232 epoch 10 - iter 3940/3944 - loss 0.14923823 - samples/sec: 10.90 - lr: 0.000003
|
736 |
+
2021-01-15 20:31:16,444 ----------------------------------------------------------------------------------------------------
|
737 |
+
2021-01-15 20:31:16,445 EPOCH 10 done: loss 0.1492 - lr 0.0000025
|
738 |
+
2021-01-15 20:31:16,445 BAD EPOCHS (no improvement): 4
|
739 |
+
2021-01-15 20:31:16,447 ----------------------------------------------------------------------------------------------------
|
740 |
+
2021-01-15 20:33:41,402 epoch 11 - iter 394/3944 - loss 0.16146740 - samples/sec: 10.87 - lr: 0.000002
|
741 |
+
2021-01-15 20:36:05,837 epoch 11 - iter 788/3944 - loss 0.16349808 - samples/sec: 10.91 - lr: 0.000002
|
742 |
+
2021-01-15 20:38:30,901 epoch 11 - iter 1182/3944 - loss 0.15115769 - samples/sec: 10.87 - lr: 0.000002
|
743 |
+
2021-01-15 20:40:55,438 epoch 11 - iter 1576/3944 - loss 0.14705117 - samples/sec: 10.90 - lr: 0.000002
|
744 |
+
2021-01-15 20:43:20,378 epoch 11 - iter 1970/3944 - loss 0.14991591 - samples/sec: 10.87 - lr: 0.000002
|
745 |
+
2021-01-15 20:45:45,151 epoch 11 - iter 2364/3944 - loss 0.15439655 - samples/sec: 10.89 - lr: 0.000002
|
746 |
+
2021-01-15 20:48:09,941 epoch 11 - iter 2758/3944 - loss 0.15580945 - samples/sec: 10.89 - lr: 0.000002
|
747 |
+
2021-01-15 20:50:34,492 epoch 11 - iter 3152/3944 - loss 0.15253824 - samples/sec: 10.90 - lr: 0.000002
|
748 |
+
2021-01-15 20:52:58,700 epoch 11 - iter 3546/3944 - loss 0.15092320 - samples/sec: 10.93 - lr: 0.000002
|
749 |
+
2021-01-15 20:55:23,174 epoch 11 - iter 3940/3944 - loss 0.15157769 - samples/sec: 10.91 - lr: 0.000002
|
750 |
+
2021-01-15 20:55:24,418 ----------------------------------------------------------------------------------------------------
|
751 |
+
2021-01-15 20:55:24,418 EPOCH 11 done: loss 0.1515 - lr 0.0000021
|
752 |
+
2021-01-15 20:55:24,418 BAD EPOCHS (no improvement): 4
|
753 |
+
2021-01-15 20:55:24,421 ----------------------------------------------------------------------------------------------------
|
754 |
+
2021-01-15 20:57:49,024 epoch 12 - iter 394/3944 - loss 0.13353775 - samples/sec: 10.90 - lr: 0.000002
|
755 |
+
2021-01-15 21:00:13,363 epoch 12 - iter 788/3944 - loss 0.12481125 - samples/sec: 10.92 - lr: 0.000002
|
756 |
+
2021-01-15 21:02:37,921 epoch 12 - iter 1182/3944 - loss 0.13012621 - samples/sec: 10.90 - lr: 0.000002
|
757 |
+
2021-01-15 21:05:02,587 epoch 12 - iter 1576/3944 - loss 0.13179293 - samples/sec: 10.90 - lr: 0.000002
|
758 |
+
2021-01-15 21:07:27,496 epoch 12 - iter 1970/3944 - loss 0.13504151 - samples/sec: 10.88 - lr: 0.000002
|
759 |
+
2021-01-15 21:09:52,384 epoch 12 - iter 2364/3944 - loss 0.13639646 - samples/sec: 10.88 - lr: 0.000002
|
760 |
+
2021-01-15 21:12:16,819 epoch 12 - iter 2758/3944 - loss 0.13538659 - samples/sec: 10.91 - lr: 0.000002
|
761 |
+
2021-01-15 21:14:41,429 epoch 12 - iter 3152/3944 - loss 0.13401163 - samples/sec: 10.90 - lr: 0.000002
|
762 |
+
2021-01-15 21:17:06,129 epoch 12 - iter 3546/3944 - loss 0.13558124 - samples/sec: 10.89 - lr: 0.000002
|
763 |
+
2021-01-15 21:19:30,783 epoch 12 - iter 3940/3944 - loss 0.13632296 - samples/sec: 10.90 - lr: 0.000002
|
764 |
+
2021-01-15 21:19:32,074 ----------------------------------------------------------------------------------------------------
|
765 |
+
2021-01-15 21:19:32,075 EPOCH 12 done: loss 0.1365 - lr 0.0000017
|
766 |
+
2021-01-15 21:19:32,075 BAD EPOCHS (no improvement): 4
|
767 |
+
2021-01-15 21:19:32,086 ----------------------------------------------------------------------------------------------------
|
768 |
+
2021-01-15 21:21:56,456 epoch 13 - iter 394/3944 - loss 0.13665988 - samples/sec: 10.92 - lr: 0.000002
|
769 |
+
2021-01-15 21:24:21,213 epoch 13 - iter 788/3944 - loss 0.13434678 - samples/sec: 10.89 - lr: 0.000002
|
770 |
+
2021-01-15 21:26:45,716 epoch 13 - iter 1182/3944 - loss 0.14362465 - samples/sec: 10.91 - lr: 0.000002
|
771 |
+
2021-01-15 21:29:10,027 epoch 13 - iter 1576/3944 - loss 0.14463862 - samples/sec: 10.92 - lr: 0.000002
|
772 |
+
2021-01-15 21:31:35,804 epoch 13 - iter 1970/3944 - loss 0.14445941 - samples/sec: 10.81 - lr: 0.000002
|
773 |
+
2021-01-15 21:34:02,830 epoch 13 - iter 2364/3944 - loss 0.14383136 - samples/sec: 10.72 - lr: 0.000002
|
774 |
+
2021-01-15 21:36:29,998 epoch 13 - iter 2758/3944 - loss 0.14458719 - samples/sec: 10.71 - lr: 0.000001
|
775 |
+
2021-01-15 21:38:58,765 epoch 13 - iter 3152/3944 - loss 0.14583862 - samples/sec: 10.59 - lr: 0.000001
|
776 |
+
2021-01-15 21:41:27,066 epoch 13 - iter 3546/3944 - loss 0.14570568 - samples/sec: 10.63 - lr: 0.000001
|
777 |
+
2021-01-15 21:43:53,640 epoch 13 - iter 3940/3944 - loss 0.14616666 - samples/sec: 10.75 - lr: 0.000001
|
778 |
+
2021-01-15 21:43:54,933 ----------------------------------------------------------------------------------------------------
|
779 |
+
2021-01-15 21:43:54,933 EPOCH 13 done: loss 0.1461 - lr 0.0000014
|
780 |
+
2021-01-15 21:43:54,933 BAD EPOCHS (no improvement): 4
|
781 |
+
2021-01-15 21:43:54,953 ----------------------------------------------------------------------------------------------------
|
782 |
+
2021-01-15 21:46:22,842 epoch 14 - iter 394/3944 - loss 0.12543846 - samples/sec: 10.66 - lr: 0.000001
|
783 |
+
2021-01-15 21:48:49,756 epoch 14 - iter 788/3944 - loss 0.12854973 - samples/sec: 10.73 - lr: 0.000001
|
784 |
+
2021-01-15 21:51:16,782 epoch 14 - iter 1182/3944 - loss 0.12800828 - samples/sec: 10.72 - lr: 0.000001
|
785 |
+
2021-01-15 21:53:43,875 epoch 14 - iter 1576/3944 - loss 0.13018865 - samples/sec: 10.72 - lr: 0.000001
|
786 |
+
2021-01-15 21:56:11,947 epoch 14 - iter 1970/3944 - loss 0.13230140 - samples/sec: 10.64 - lr: 0.000001
|
787 |
+
2021-01-15 21:58:40,070 epoch 14 - iter 2364/3944 - loss 0.13276864 - samples/sec: 10.64 - lr: 0.000001
|
788 |
+
2021-01-15 22:01:07,197 epoch 14 - iter 2758/3944 - loss 0.13188423 - samples/sec: 10.71 - lr: 0.000001
|
789 |
+
2021-01-15 22:03:33,892 epoch 14 - iter 3152/3944 - loss 0.13622326 - samples/sec: 10.74 - lr: 0.000001
|
790 |
+
2021-01-15 22:06:01,226 epoch 14 - iter 3546/3944 - loss 0.13623591 - samples/sec: 10.70 - lr: 0.000001
|
791 |
+
2021-01-15 22:08:29,247 epoch 14 - iter 3940/3944 - loss 0.13681664 - samples/sec: 10.65 - lr: 0.000001
|
792 |
+
2021-01-15 22:08:30,571 ----------------------------------------------------------------------------------------------------
|
793 |
+
2021-01-15 22:08:30,571 EPOCH 14 done: loss 0.1367 - lr 0.0000010
|
794 |
+
2021-01-15 22:08:30,571 BAD EPOCHS (no improvement): 4
|
795 |
+
2021-01-15 22:08:30,619 ----------------------------------------------------------------------------------------------------
|
796 |
+
2021-01-15 22:10:58,784 epoch 15 - iter 394/3944 - loss 0.14687040 - samples/sec: 10.64 - lr: 0.000001
|
797 |
+
2021-01-15 22:13:25,824 epoch 15 - iter 788/3944 - loss 0.13773561 - samples/sec: 10.72 - lr: 0.000001
|
798 |
+
2021-01-15 22:15:52,774 epoch 15 - iter 1182/3944 - loss 0.13724811 - samples/sec: 10.73 - lr: 0.000001
|
799 |
+
2021-01-15 22:18:19,309 epoch 15 - iter 1576/3944 - loss 0.14105250 - samples/sec: 10.76 - lr: 0.000001
|
800 |
+
2021-01-15 22:20:46,418 epoch 15 - iter 1970/3944 - loss 0.13929364 - samples/sec: 10.71 - lr: 0.000001
|
801 |
+
2021-01-15 22:23:12,930 epoch 15 - iter 2364/3944 - loss 0.13891907 - samples/sec: 10.76 - lr: 0.000001
|
802 |
+
2021-01-15 22:25:40,051 epoch 15 - iter 2758/3944 - loss 0.13941754 - samples/sec: 10.71 - lr: 0.000001
|
803 |
+
2021-01-15 22:28:06,583 epoch 15 - iter 3152/3944 - loss 0.14071295 - samples/sec: 10.76 - lr: 0.000001
|
804 |
+
2021-01-15 22:30:32,954 epoch 15 - iter 3546/3944 - loss 0.13981342 - samples/sec: 10.77 - lr: 0.000001
|
805 |
+
2021-01-15 22:33:00,397 epoch 15 - iter 3940/3944 - loss 0.13880390 - samples/sec: 10.69 - lr: 0.000001
|
806 |
+
2021-01-15 22:33:01,714 ----------------------------------------------------------------------------------------------------
|
807 |
+
2021-01-15 22:33:01,715 EPOCH 15 done: loss 0.1387 - lr 0.0000007
|
808 |
+
2021-01-15 22:33:01,715 BAD EPOCHS (no improvement): 4
|
809 |
+
2021-01-15 22:33:01,718 ----------------------------------------------------------------------------------------------------
|
810 |
+
2021-01-15 22:35:29,035 epoch 16 - iter 394/3944 - loss 0.14291727 - samples/sec: 10.70 - lr: 0.000001
|
811 |
+
2021-01-15 22:37:56,417 epoch 16 - iter 788/3944 - loss 0.13149588 - samples/sec: 10.69 - lr: 0.000001
|
812 |
+
2021-01-15 22:40:23,990 epoch 16 - iter 1182/3944 - loss 0.13203036 - samples/sec: 10.68 - lr: 0.000001
|
813 |
+
2021-01-15 22:42:51,538 epoch 16 - iter 1576/3944 - loss 0.13134927 - samples/sec: 10.68 - lr: 0.000001
|
814 |
+
2021-01-15 22:45:19,113 epoch 16 - iter 1970/3944 - loss 0.13179903 - samples/sec: 10.68 - lr: 0.000001
|
815 |
+
2021-01-15 22:47:46,156 epoch 16 - iter 2364/3944 - loss 0.13354076 - samples/sec: 10.72 - lr: 0.000001
|
816 |
+
2021-01-15 22:50:13,300 epoch 16 - iter 2758/3944 - loss 0.13476940 - samples/sec: 10.71 - lr: 0.000001
|
817 |
+
2021-01-15 22:52:38,377 epoch 16 - iter 3152/3944 - loss 0.13497255 - samples/sec: 10.86 - lr: 0.000001
|
818 |
+
2021-01-15 22:55:03,400 epoch 16 - iter 3546/3944 - loss 0.13634147 - samples/sec: 10.87 - lr: 0.000001
|
819 |
+
2021-01-15 22:57:27,892 epoch 16 - iter 3940/3944 - loss 0.13727031 - samples/sec: 10.91 - lr: 0.000000
|
820 |
+
2021-01-15 22:57:29,178 ----------------------------------------------------------------------------------------------------
|
821 |
+
2021-01-15 22:57:29,178 EPOCH 16 done: loss 0.1376 - lr 0.0000005
|
822 |
+
2021-01-15 22:57:29,178 BAD EPOCHS (no improvement): 4
|
823 |
+
2021-01-15 22:57:29,181 ----------------------------------------------------------------------------------------------------
|
824 |
+
2021-01-15 22:59:53,548 epoch 17 - iter 394/3944 - loss 0.14524632 - samples/sec: 10.92 - lr: 0.000000
|
825 |
+
2021-01-15 23:02:18,357 epoch 17 - iter 788/3944 - loss 0.14652155 - samples/sec: 10.88 - lr: 0.000000
|
826 |
+
2021-01-15 23:04:43,610 epoch 17 - iter 1182/3944 - loss 0.13884438 - samples/sec: 10.85 - lr: 0.000000
|
827 |
+
2021-01-15 23:07:08,806 epoch 17 - iter 1576/3944 - loss 0.13549453 - samples/sec: 10.86 - lr: 0.000000
|
828 |
+
2021-01-15 23:09:34,317 epoch 17 - iter 1970/3944 - loss 0.13560330 - samples/sec: 10.83 - lr: 0.000000
|
829 |
+
2021-01-15 23:11:59,595 epoch 17 - iter 2364/3944 - loss 0.13972037 - samples/sec: 10.85 - lr: 0.000000
|
830 |
+
2021-01-15 23:14:24,656 epoch 17 - iter 2758/3944 - loss 0.14040167 - samples/sec: 10.87 - lr: 0.000000
|
831 |
+
2021-01-15 23:16:49,375 epoch 17 - iter 3152/3944 - loss 0.13946642 - samples/sec: 10.89 - lr: 0.000000
|
832 |
+
2021-01-15 23:19:15,069 epoch 17 - iter 3546/3944 - loss 0.13849877 - samples/sec: 10.82 - lr: 0.000000
|
833 |
+
2021-01-15 23:21:40,239 epoch 17 - iter 3940/3944 - loss 0.13743522 - samples/sec: 10.86 - lr: 0.000000
|
834 |
+
2021-01-15 23:21:41,530 ----------------------------------------------------------------------------------------------------
|
835 |
+
2021-01-15 23:21:41,530 EPOCH 17 done: loss 0.1373 - lr 0.0000003
|
836 |
+
2021-01-15 23:21:41,530 BAD EPOCHS (no improvement): 4
|
837 |
+
2021-01-15 23:21:41,533 ----------------------------------------------------------------------------------------------------
|
838 |
+
2021-01-15 23:24:07,941 epoch 18 - iter 394/3944 - loss 0.13214318 - samples/sec: 10.77 - lr: 0.000000
|
839 |
+
2021-01-15 23:26:34,009 epoch 18 - iter 788/3944 - loss 0.14259440 - samples/sec: 10.79 - lr: 0.000000
|
840 |
+
2021-01-15 23:29:00,116 epoch 18 - iter 1182/3944 - loss 0.13753739 - samples/sec: 10.79 - lr: 0.000000
|
841 |
+
2021-01-15 23:31:25,087 epoch 18 - iter 1576/3944 - loss 0.13957844 - samples/sec: 10.87 - lr: 0.000000
|
842 |
+
2021-01-15 23:33:50,076 epoch 18 - iter 1970/3944 - loss 0.13743370 - samples/sec: 10.87 - lr: 0.000000
|
843 |
+
2021-01-15 23:36:14,776 epoch 18 - iter 2364/3944 - loss 0.13970779 - samples/sec: 10.89 - lr: 0.000000
|
844 |
+
2021-01-15 23:38:38,473 epoch 18 - iter 2758/3944 - loss 0.13932537 - samples/sec: 10.97 - lr: 0.000000
|
845 |
+
2021-01-15 23:41:03,249 epoch 18 - iter 3152/3944 - loss 0.13745278 - samples/sec: 10.89 - lr: 0.000000
|
846 |
+
2021-01-15 23:43:28,499 epoch 18 - iter 3546/3944 - loss 0.13924606 - samples/sec: 10.85 - lr: 0.000000
|
847 |
+
2021-01-15 23:45:53,779 epoch 18 - iter 3940/3944 - loss 0.13920658 - samples/sec: 10.85 - lr: 0.000000
|
848 |
+
2021-01-15 23:45:55,039 ----------------------------------------------------------------------------------------------------
|
849 |
+
2021-01-15 23:45:55,040 EPOCH 18 done: loss 0.1400 - lr 0.0000001
|
850 |
+
2021-01-15 23:45:55,040 BAD EPOCHS (no improvement): 4
|
851 |
+
2021-01-15 23:45:55,060 ----------------------------------------------------------------------------------------------------
|
852 |
+
2021-01-15 23:48:19,848 epoch 19 - iter 394/3944 - loss 0.12011491 - samples/sec: 10.89 - lr: 0.000000
|
853 |
+
2021-01-15 23:50:45,410 epoch 19 - iter 788/3944 - loss 0.12712191 - samples/sec: 10.83 - lr: 0.000000
|
854 |
+
2021-01-15 23:53:10,309 epoch 19 - iter 1182/3944 - loss 0.12601271 - samples/sec: 10.88 - lr: 0.000000
|
855 |
+
2021-01-15 23:55:35,025 epoch 19 - iter 1576/3944 - loss 0.12838937 - samples/sec: 10.89 - lr: 0.000000
|
856 |
+
2021-01-15 23:57:59,862 epoch 19 - iter 1970/3944 - loss 0.13018004 - samples/sec: 10.88 - lr: 0.000000
|
857 |
+
2021-01-16 00:00:24,890 epoch 19 - iter 2364/3944 - loss 0.12867846 - samples/sec: 10.87 - lr: 0.000000
|
858 |
+
2021-01-16 00:02:49,627 epoch 19 - iter 2758/3944 - loss 0.12932283 - samples/sec: 10.89 - lr: 0.000000
|
859 |
+
2021-01-16 00:05:14,400 epoch 19 - iter 3152/3944 - loss 0.12859496 - samples/sec: 10.89 - lr: 0.000000
|
860 |
+
2021-01-16 00:07:39,476 epoch 19 - iter 3546/3944 - loss 0.12980219 - samples/sec: 10.86 - lr: 0.000000
|
861 |
+
2021-01-16 00:10:04,796 epoch 19 - iter 3940/3944 - loss 0.13157911 - samples/sec: 10.85 - lr: 0.000000
|
862 |
+
2021-01-16 00:10:06,033 ----------------------------------------------------------------------------------------------------
|
863 |
+
2021-01-16 00:10:06,033 EPOCH 19 done: loss 0.1316 - lr 0.0000000
|
864 |
+
2021-01-16 00:10:06,033 BAD EPOCHS (no improvement): 4
|
865 |
+
2021-01-16 00:10:06,036 ----------------------------------------------------------------------------------------------------
|
866 |
+
2021-01-16 00:12:31,453 epoch 20 - iter 394/3944 - loss 0.12043092 - samples/sec: 10.84 - lr: 0.000000
|
867 |
+
2021-01-16 00:14:56,680 epoch 20 - iter 788/3944 - loss 0.13192874 - samples/sec: 10.85 - lr: 0.000000
|
868 |
+
2021-01-16 00:17:21,816 epoch 20 - iter 1182/3944 - loss 0.13095020 - samples/sec: 10.86 - lr: 0.000000
|
869 |
+
2021-01-16 00:19:46,815 epoch 20 - iter 1576/3944 - loss 0.13423819 - samples/sec: 10.87 - lr: 0.000000
|
870 |
+
2021-01-16 00:22:12,079 epoch 20 - iter 1970/3944 - loss 0.13458985 - samples/sec: 10.85 - lr: 0.000000
|
871 |
+
2021-01-16 00:24:37,900 epoch 20 - iter 2364/3944 - loss 0.13241959 - samples/sec: 10.81 - lr: 0.000000
|
872 |
+
2021-01-16 00:27:03,059 epoch 20 - iter 2758/3944 - loss 0.13235752 - samples/sec: 10.86 - lr: 0.000000
|
873 |
+
2021-01-16 00:29:28,845 epoch 20 - iter 3152/3944 - loss 0.13390899 - samples/sec: 10.81 - lr: 0.000000
|
874 |
+
2021-01-16 00:31:54,866 epoch 20 - iter 3546/3944 - loss 0.13467390 - samples/sec: 10.79 - lr: 0.000000
|
875 |
+
2021-01-16 00:34:19,750 epoch 20 - iter 3940/3944 - loss 0.13514658 - samples/sec: 10.88 - lr: 0.000000
|
876 |
+
2021-01-16 00:34:21,013 ----------------------------------------------------------------------------------------------------
|
877 |
+
2021-01-16 00:34:21,013 EPOCH 20 done: loss 0.1353 - lr 0.0000000
|
878 |
+
2021-01-16 00:34:21,013 BAD EPOCHS (no improvement): 4
|
879 |
+
2021-01-16 00:34:59,015 ----------------------------------------------------------------------------------------------------
|
880 |
+
2021-01-16 00:34:59,015 Testing using best model ...
|
881 |
+
2021-01-16 00:36:54,780 0.9319 0.9145 0.9231
|
882 |
+
2021-01-16 00:36:54,780
|
883 |
+
Results:
|
884 |
+
- F1-score (micro) 0.9231
|
885 |
+
- F1-score (macro) 0.8691
|
886 |
+
|
887 |
+
By class:
|
888 |
+
LOC tp: 981 - fp: 62 - fn: 70 - precision: 0.9406 - recall: 0.9334 - f1-score: 0.9370
|
889 |
+
MISC tp: 128 - fp: 26 - fn: 78 - precision: 0.8312 - recall: 0.6214 - f1-score: 0.7111
|
890 |
+
ORG tp: 497 - fp: 87 - fn: 87 - precision: 0.8510 - recall: 0.8510 - f1-score: 0.8510
|
891 |
+
PER tp: 1184 - fp: 29 - fn: 26 - precision: 0.9761 - recall: 0.9785 - f1-score: 0.9773
|
892 |
+
2021-01-16 00:36:54,780 ----------------------------------------------------------------------------------------------------
|