File size: 22,916 Bytes
e2738f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10481
- loss:MultipleNegativesRankingLoss
base_model: abhinand/MedEmbed-small-v0.1
widget:
- source_sentence: In the chest, the trachea divides as it enters the lungs to form
    the right and left what?
  sentences:
  - Adulthood is divided into the stages of early, middle, and late adulthood.
  - Motor vehicles account for almost half of fossil fuel use. Most vehicles run on
    gasoline, which comes from petroleum.
  - In the chest, the trachea divides as it enters the lungs to form the right and
    left bronchi . The bronchi contain cartilage, which prevents them from collapsing.
    Mucus in the bronchi traps any remaining particles in air. Tiny, hair-like structures
    called cilia line the bronchi and sweep the particles and mucus toward the throat
    so they can be expelled from the body.
- source_sentence: What atmospheric layer lies above the highest altitude an airplane
    can go and below the lowest altitude a spacecraft can orbit?
  sentences:
  - Renal plasma flow equals the blood flow per minute times the hematocrit. If a
    person has a hematocrit of 45, then the renal plasma flow is 55 percent. 1050*0.55
    = 578 mL plasma/min.
  - Not so fast. The mesosphere is the least known layer of the atmosphere. The mesosphere
    lies above the highest altitude an airplane can go. It lies below the lowest altitude
    a spacecraft can orbit. Maybe that's just as well. If you were in the mesosphere
    without a space suit, your blood would boil! This is because the pressure is so
    low that liquids would boil at normal body temperature.
  - 'Cell division is just one of several stages that a cell goes through during its
    lifetime. The cell cycle is a repeating series of events that include growth,
    DNA synthesis, and cell division. The cell cycle in prokaryotes is quite simple:
    the cell grows, its DNA replicates, and the cell divides. In eukaryotes, the cell
    cycle is more complicated.'
- source_sentence: What distinctive dna shape forms when the two nucleotide chains
    wrap around the same axis?
  sentences:
  - Simple Model of DNA. In this simple model of DNA, each line represents a nucleotide
    chain. The double helix shape forms when the two chains wrap around the same axis.
  - Most biochemical molecules are macromolecules, meaning that they are very large.
    Some contain thousands of monomer molecules.
  - The continental slope lies between the continental shelf and the abyssal plain.
    It has a steep slope with a sharp drop to the deep ocean floor.
- source_sentence: Einstein’s equation helps scientists understand what happens in
    nuclear reactions and why they produce so much what?
  sentences:
  - Einstein’s equation helps scientists understand what happens in nuclear reactions
    and why they produce so much energy. When the nucleus of a radioisotope undergoes
    fission or fusion in a nuclear reaction, it loses a tiny amount of mass. What
    happens to the lost mass? It isn’t really lost at all. It is converted to energy.
    How much energy? E = mc 2 . The change in mass is tiny, but it results in a great
    deal of energy.
  - Water is the main ingredient of many solutions. A solution is a mixture of two
    or more substances that has the same composition throughout. Some solutions are
    acids and some are bases. To understand acids and bases, you need to know more
    about pure water. In pure water (such as distilled water), a tiny fraction of
    water molecules naturally breaks down to form ions. An ion is an electrically
    charged atom or molecule. The breakdown of water is represented by the chemical
    equation.
  - 'The muscular system consists of all the muscles of the body. Muscles are organs
    composed mainly of muscle cells, which are also called muscle fibers . Each muscle
    fiber is a very long, thin cell that can do something no other cell can do. It
    can contract, or shorten. Muscle contractions are responsible for virtually all
    the movements of the body, both inside and out. There are three types of muscle
    tissues in the human body: cardiac, smooth, and skeletal muscle tissues. They
    are shown in Figure below and described below.'
- source_sentence: Microfilaments are mostly concentrated just beneath what?
  sentences:
  - Vertebrates have a closed circulatory system with a heart. Blood is completely
    contained within blood vessels that carry the blood throughout the body. The heart
    is divided into chambers that work together to pump blood. There are between two
    and four chambers in the vertebrate heart. With more chambers, there is more oxygen
    in the blood and more vigorous pumping action.
  - Weight measures the force of gravity pulling on an object. The SI unit for weight
    is the Newton (N).
  - Microfilaments , shown as (b) in Figure below , are made of two thin actin chains
    that are twisted around one another. Microfilaments are mostly concentrated just
    beneath the cell membrane, where they support the cell and help the cell keep
    its shape. Microfilaments form cytoplasmatic extentions, such as pseudopodia and
    microvilli , which allow certain cells to move. The actin of the microfilaments
    interacts with the protein myosin to cause contraction in muscle cells. Microfilaments
    are found in almost every cell, and are numerous in muscle cells and in cells
    that move by changing shape, such as phagocytes (white blood cells that search
    the body for bacteria and other invaders).
datasets:
- flaviawallen/MNLP_M3_rag_embedding_training
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on abhinand/MedEmbed-small-v0.1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [abhinand/MedEmbed-small-v0.1](https://huggingface.co/abhinand/MedEmbed-small-v0.1) on the [train](https://huggingface.co/datasets/flaviawallen/MNLP_M3_rag_embedding_training) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [abhinand/MedEmbed-small-v0.1](https://huggingface.co/abhinand/MedEmbed-small-v0.1) <!-- at revision 40a5850d046cfdb56154e332b4d7099b63e8d50e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [train](https://huggingface.co/datasets/flaviawallen/MNLP_M3_rag_embedding_training)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Microfilaments are mostly concentrated just beneath what?',
    'Microfilaments , shown as (b) in Figure below , are made of two thin actin chains that are twisted around one another. Microfilaments are mostly concentrated just beneath the cell membrane, where they support the cell and help the cell keep its shape. Microfilaments form cytoplasmatic extentions, such as pseudopodia and microvilli , which allow certain cells to move. The actin of the microfilaments interacts with the protein myosin to cause contraction in muscle cells. Microfilaments are found in almost every cell, and are numerous in muscle cells and in cells that move by changing shape, such as phagocytes (white blood cells that search the body for bacteria and other invaders).',
    'Weight measures the force of gravity pulling on an object. The SI unit for weight is the Newton (N).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: [train](https://huggingface.co/datasets/flaviawallen/MNLP_M3_rag_embedding_training) at [0b344ac](https://huggingface.co/datasets/flaviawallen/MNLP_M3_rag_embedding_training/tree/0b344ac3e3513dac08101975f56504971505c425)
* Size: 10,481 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 18.22 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 99.59 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                      | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What type of organism is commonly used in preparation of foods such as cheese and yogurt?</code>                                                                                      | <code>Mesophiles grow best in moderate temperature, typically between 25°C and 40°C (77°F and 104°F). Mesophiles are often found living in or on the bodies of humans or other animals. The optimal growth temperature of many pathogenic mesophiles is 37°C (98°F), the normal human body temperature. Mesophilic organisms have important uses in food preparation, including cheese, yogurt, beer and wine.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>What phenomenon makes global winds blow northeast to southwest or the reverse in the northern hemisphere and northwest to southeast or the reverse in the southern hemisphere?</code> | <code>Without Coriolis Effect the global winds would blow north to south or south to north. But Coriolis makes them blow northeast to southwest or the reverse in the Northern Hemisphere. The winds blow northwest to southeast or the reverse in the southern hemisphere.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  | <code>Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always what?</code>                                                                       | <code>Summary Changes of state are examples of phase changes, or phase transitions. All phase changes are accompanied by changes in the energy of a system. Changes from a more-ordered state to a less-ordered state (such as a liquid to a gas) areendothermic. Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always exothermic. The conversion of a solid to a liquid is called fusion (or melting). The energy required to melt 1 mol of a substance is its enthalpy of fusion (ΔHfus). The energy change required to vaporize 1 mol of a substance is the enthalpy of vaporization (ΔHvap). The direct conversion of a solid to a gas is sublimation. The amount of energy needed to sublime 1 mol of a substance is its enthalpy of sublimation (ΔHsub) and is the sum of the enthalpies of fusion and vaporization. Plots of the temperature of a substance versus heat added or versus heating time at a constant rate of heating are calledheating curves. Heating curves relate temper...</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.1524 | 100  | 0.1488        |
| 0.3049 | 200  | 0.0939        |
| 0.4573 | 300  | 0.0744        |
| 0.6098 | 400  | 0.1175        |
| 0.7622 | 500  | 0.0954        |
| 0.9146 | 600  | 0.0813        |


### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->