|
import torch |
|
from torchvision import transforms |
|
from PIL import Image |
|
from watermark_remover import WatermarkRemover |
|
import numpy as np |
|
|
|
image_path = "path to your test image" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
model = WatermarkRemover().to(device) |
|
model_path = "path to your model.pth" |
|
model.load_state_dict(torch.load(model_path, map_location=device)) |
|
model.eval() |
|
|
|
transform = transforms.Compose([transforms.Resize((256, 256)), |
|
transforms.ToTensor(),]) |
|
watermarked_image = Image.open(image_path).convert("RGB") |
|
original_size = watermarked_image.size |
|
input_tensor = transform(watermarked_image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
output_tensor = model(input_tensor) |
|
|
|
predicted_image = output_tensor.squeeze(0).cpu().permute(1, 2, 0).clamp(0, 1).numpy() |
|
predicted_pil = Image.fromarray((predicted_image * 255).astype(np.uint8)) |
|
predicted_pil = predicted_pil.resize(original_size, Image.Resampling.LANCZOS) |
|
predicted_pil.save("predicted_image.jpg", quality=100) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|