francisc0Sousa commited on
Commit
1a2037e
·
verified ·
1 Parent(s): 7dd6d28

End of training

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: cardiffnlp/twitter-roberta-base-sentiment
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: twitter-roberta-base-sentiment-finetuned-emotionverse
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # twitter-roberta-base-sentiment-finetuned-emotionverse
15
+
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 5.6856
19
+ - Model Preparation Time: 0.0181
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 64
40
+ - eval_batch_size: 64
41
+ - seed: 42
42
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3.0
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
50
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------:|
51
+ | 9.812 | 1.0 | 29 | 7.1491 | 0.0181 |
52
+ | 6.7031 | 2.0 | 58 | 5.9702 | 0.0181 |
53
+ | 6.0847 | 3.0 | 87 | 5.8832 | 0.0181 |
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.51.3
59
+ - Pytorch 2.6.0+cu124
60
+ - Datasets 2.14.4
61
+ - Tokenizers 0.21.1