Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,544 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- fr
|
8 |
+
library_name: nemo
|
9 |
+
datasets:
|
10 |
+
- librispeech_asr
|
11 |
+
- fisher_corpus
|
12 |
+
- Switchboard-1
|
13 |
+
- WSJ-0
|
14 |
+
- WSJ-1
|
15 |
+
- National-Singapore-Corpus-Part-1
|
16 |
+
- National-Singapore-Corpus-Part-6
|
17 |
+
- vctk
|
18 |
+
- voxpopuli
|
19 |
+
- europarl
|
20 |
+
- multilingual_librispeech
|
21 |
+
- mozilla-foundation/common_voice_8_0
|
22 |
+
- MLCommons/peoples_speech
|
23 |
+
thumbnail: null
|
24 |
+
tags:
|
25 |
+
- automatic-speech-recognition
|
26 |
+
- automatic-speech-translation
|
27 |
+
- speech
|
28 |
+
- audio
|
29 |
+
- Transformer
|
30 |
+
- FastConformer
|
31 |
+
- Conformer
|
32 |
+
- pytorch
|
33 |
+
- NeMo
|
34 |
+
- hf-asr-leaderboard
|
35 |
+
widget:
|
36 |
+
- example_title: Librispeech sample 1
|
37 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
38 |
+
- example_title: Librispeech sample 2
|
39 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
40 |
+
model-index:
|
41 |
+
- name: canary-1b
|
42 |
+
results:
|
43 |
+
- task:
|
44 |
+
name: Automatic Speech Recognition
|
45 |
+
type: automatic-speech-recognition
|
46 |
+
dataset:
|
47 |
+
name: LibriSpeech (other)
|
48 |
+
type: librispeech_asr
|
49 |
+
config: other
|
50 |
+
split: test
|
51 |
+
args:
|
52 |
+
language: en
|
53 |
+
metrics:
|
54 |
+
- name: Test WER
|
55 |
+
type: wer
|
56 |
+
value: 2.89
|
57 |
+
- task:
|
58 |
+
type: Automatic Speech Recognition
|
59 |
+
name: automatic-speech-recognition
|
60 |
+
dataset:
|
61 |
+
name: SPGI Speech
|
62 |
+
type: kensho/spgispeech
|
63 |
+
config: test
|
64 |
+
split: test
|
65 |
+
args:
|
66 |
+
language: en
|
67 |
+
metrics:
|
68 |
+
- name: Test WER
|
69 |
+
type: wer
|
70 |
+
value: 4.79
|
71 |
+
- task:
|
72 |
+
type: Automatic Speech Recognition
|
73 |
+
name: automatic-speech-recognition
|
74 |
+
dataset:
|
75 |
+
name: Mozilla Common Voice 16.1
|
76 |
+
type: mozilla-foundation/common_voice_16_1
|
77 |
+
config: en
|
78 |
+
split: test
|
79 |
+
args:
|
80 |
+
language: en
|
81 |
+
metrics:
|
82 |
+
- name: Test WER (En)
|
83 |
+
type: wer
|
84 |
+
value: 7.97
|
85 |
+
- task:
|
86 |
+
type: Automatic Speech Recognition
|
87 |
+
name: automatic-speech-recognition
|
88 |
+
dataset:
|
89 |
+
name: Mozilla Common Voice 16.1
|
90 |
+
type: mozilla-foundation/common_voice_16_1
|
91 |
+
config: de
|
92 |
+
split: test
|
93 |
+
args:
|
94 |
+
language: de
|
95 |
+
metrics:
|
96 |
+
- name: Test WER (De)
|
97 |
+
type: wer
|
98 |
+
value: 4.61
|
99 |
+
- task:
|
100 |
+
type: Automatic Speech Recognition
|
101 |
+
name: automatic-speech-recognition
|
102 |
+
dataset:
|
103 |
+
name: Mozilla Common Voice 16.1
|
104 |
+
type: mozilla-foundation/common_voice_16_1
|
105 |
+
config: es
|
106 |
+
split: test
|
107 |
+
args:
|
108 |
+
language: es
|
109 |
+
metrics:
|
110 |
+
- name: Test WER (ES)
|
111 |
+
type: wer
|
112 |
+
value: 3.99
|
113 |
+
- task:
|
114 |
+
type: Automatic Speech Recognition
|
115 |
+
name: automatic-speech-recognition
|
116 |
+
dataset:
|
117 |
+
name: Mozilla Common Voice 16.1
|
118 |
+
type: mozilla-foundation/common_voice_16_1
|
119 |
+
config: fr
|
120 |
+
split: test
|
121 |
+
args:
|
122 |
+
language: fr
|
123 |
+
metrics:
|
124 |
+
- name: Test WER (Fr)
|
125 |
+
type: wer
|
126 |
+
value: 6.53
|
127 |
+
- task:
|
128 |
+
type: Automatic Speech Translation
|
129 |
+
name: automatic-speech-translation
|
130 |
+
dataset:
|
131 |
+
name: FLEURS
|
132 |
+
type: google/fleurs
|
133 |
+
config: en_us
|
134 |
+
split: test
|
135 |
+
args:
|
136 |
+
language: en-de
|
137 |
+
metrics:
|
138 |
+
- name: Test BLEU (En->De)
|
139 |
+
type: bleu
|
140 |
+
value: 32.15
|
141 |
+
- task:
|
142 |
+
type: Automatic Speech Translation
|
143 |
+
name: automatic-speech-translation
|
144 |
+
dataset:
|
145 |
+
name: FLEURS
|
146 |
+
type: google/fleurs
|
147 |
+
config: en_us
|
148 |
+
split: test
|
149 |
+
args:
|
150 |
+
language: en-de
|
151 |
+
metrics:
|
152 |
+
- name: Test BLEU (En->Es)
|
153 |
+
type: bleu
|
154 |
+
value: 22.66
|
155 |
+
- task:
|
156 |
+
type: Automatic Speech Translation
|
157 |
+
name: automatic-speech-translation
|
158 |
+
dataset:
|
159 |
+
name: FLEURS
|
160 |
+
type: google/fleurs
|
161 |
+
config: en_us
|
162 |
+
split: test
|
163 |
+
args:
|
164 |
+
language: en-de
|
165 |
+
metrics:
|
166 |
+
- name: Test BLEU (En->Fr)
|
167 |
+
type: bleu
|
168 |
+
value: 40.76
|
169 |
+
- task:
|
170 |
+
type: Automatic Speech Translation
|
171 |
+
name: automatic-speech-translation
|
172 |
+
dataset:
|
173 |
+
name: FLEURS
|
174 |
+
type: google/fleurs
|
175 |
+
config: de_de
|
176 |
+
split: test
|
177 |
+
args:
|
178 |
+
language: de-en
|
179 |
+
metrics:
|
180 |
+
- name: Test BLEU (De->En)
|
181 |
+
type: bleu
|
182 |
+
value: 33.98
|
183 |
+
- task:
|
184 |
+
type: Automatic Speech Translation
|
185 |
+
name: automatic-speech-translation
|
186 |
+
dataset:
|
187 |
+
name: FLEURS
|
188 |
+
type: google/fleurs
|
189 |
+
config: es_419
|
190 |
+
split: test
|
191 |
+
args:
|
192 |
+
language: es-en
|
193 |
+
metrics:
|
194 |
+
- name: Test BLEU (Es->En)
|
195 |
+
type: bleu
|
196 |
+
value: 21.80
|
197 |
+
- task:
|
198 |
+
type: Automatic Speech Translation
|
199 |
+
name: automatic-speech-translation
|
200 |
+
dataset:
|
201 |
+
name: FLEURS
|
202 |
+
type: google/fleurs
|
203 |
+
config: fr_fr
|
204 |
+
split: test
|
205 |
+
args:
|
206 |
+
language: fr-en
|
207 |
+
metrics:
|
208 |
+
- name: Test BLEU (Fr->En)
|
209 |
+
type: bleu
|
210 |
+
value: 30.95
|
211 |
+
- task:
|
212 |
+
type: Automatic Speech Translation
|
213 |
+
name: automatic-speech-translation
|
214 |
+
dataset:
|
215 |
+
name: COVOST
|
216 |
+
type: covost2
|
217 |
+
config: de_de
|
218 |
+
split: test
|
219 |
+
args:
|
220 |
+
language: de-en
|
221 |
+
metrics:
|
222 |
+
- name: Test BLEU (De->En)
|
223 |
+
type: bleu
|
224 |
+
value: 37.67
|
225 |
+
- task:
|
226 |
+
type: Automatic Speech Translation
|
227 |
+
name: automatic-speech-translation
|
228 |
+
dataset:
|
229 |
+
name: COVOST
|
230 |
+
type: covost2
|
231 |
+
config: es_419
|
232 |
+
split: test
|
233 |
+
args:
|
234 |
+
language: es-en
|
235 |
+
metrics:
|
236 |
+
- name: Test BLEU (Es->En)
|
237 |
+
type: bleu
|
238 |
+
value: 40.7
|
239 |
+
- task:
|
240 |
+
type: Automatic Speech Translation
|
241 |
+
name: automatic-speech-translation
|
242 |
+
dataset:
|
243 |
+
name: COVOST
|
244 |
+
type: covost2
|
245 |
+
config: fr_fr
|
246 |
+
split: test
|
247 |
+
args:
|
248 |
+
language: fr-en
|
249 |
+
metrics:
|
250 |
+
- name: Test BLEU (Fr->En)
|
251 |
+
type: bleu
|
252 |
+
value: 40.42
|
253 |
+
|
254 |
+
metrics:
|
255 |
+
- wer
|
256 |
+
- bleu
|
257 |
+
pipeline_tag: automatic-speech-recognition
|
258 |
+
---
|
259 |
|
260 |
+
|
261 |
+
# Canary 1B
|
262 |
+
|
263 |
+
<style>
|
264 |
+
img {
|
265 |
+
display: inline;
|
266 |
+
}
|
267 |
+
</style>
|
268 |
+
|
269 |
+
[](#model-architecture)
|
270 |
+
| [](#model-architecture)
|
271 |
+
| [](#datasets)
|
272 |
+
|
273 |
+
NVIDIA [NeMo Canary](https://nvidia.github.io/NeMo/blogs/2024/2024-02-canary/) is a family of multi-lingual multi-tasking models that achieves state-of-the art performance on multiple benchmarks. With 1 billion parameters, Canary-1B supports automatic speech-to-text recognition (ASR) in 4 languages (English, German, French, Spanish) and translation from English to German/French/Spanish and from German/French/Spanish to English with or without punctuation and capitalization (PnC).
|
274 |
+
|
275 |
+
## Model Architecture
|
276 |
+
|
277 |
+
Canary is an encoder-decoder model with FastConformer [1] encoder and Transformer Decoder [2].
|
278 |
+
With audio features extracted from the encoder, task tokens such as `<source language>`, `<target language>`, `<task>` and `<toggle PnC>`
|
279 |
+
are fed into the Transformer Decoder to trigger the text generation process. Canary uses a concatenated tokenizer [5] from individual
|
280 |
+
SentencePiece [3] tokenizers of each language, which makes it easy to scale up to more languages.
|
281 |
+
The Canay-1B model has 24 encoder layers and 24 layers of decoder layers in total.
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
## NVIDIA NeMo
|
286 |
+
|
287 |
+
To train, fine-tune or Transcribe with Canary, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed Cython and latest PyTorch version.
|
288 |
+
```
|
289 |
+
pip install git+https://github.com/NVIDIA/[email protected]#egg=nemo_toolkit[asr]
|
290 |
+
```
|
291 |
+
|
292 |
+
|
293 |
+
## How to Use this Model
|
294 |
+
|
295 |
+
The model is available for use in the NeMo toolkit [4], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
296 |
+
|
297 |
+
### Loading the Model
|
298 |
+
|
299 |
+
```python
|
300 |
+
from nemo.collections.asr.models import EncDecMultiTaskModel
|
301 |
+
|
302 |
+
# load model
|
303 |
+
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
304 |
+
|
305 |
+
# update dcode params
|
306 |
+
decode_cfg = canary_model.cfg.decoding
|
307 |
+
decode_cfg.beam.beam_size = 1
|
308 |
+
canary_model.change_decoding_strategy(decode_cfg)
|
309 |
+
```
|
310 |
+
|
311 |
+
### Input Format
|
312 |
+
Input to Canary can be either a list of paths to audio files or a jsonl manifest file.
|
313 |
+
|
314 |
+
If the input is a list of paths, Canary assumes that the audio is English and Transcribes it. I.e., Canary default behaviour is English ASR.
|
315 |
+
```python
|
316 |
+
predicted_text = canary_model.transcribe(
|
317 |
+
paths2audio_files=['path1.wav', 'path2.wav'],
|
318 |
+
batch_size=16, # batch size to run the inference with
|
319 |
+
)[0].text
|
320 |
+
```
|
321 |
+
|
322 |
+
To use Canary for transcribing other supported languages or perform Speech-to-Text translation, specify the input as jsonl manifest file, where each line in the file is a dictionary containing the following fields:
|
323 |
+
|
324 |
+
```yaml
|
325 |
+
# Example of a line in input_manifest.json
|
326 |
+
{
|
327 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
328 |
+
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
329 |
+
"taskname": "asr", # use "s2t_translation" for speech-to-text translation with r1.23, or "ast" if using the NeMo main branch
|
330 |
+
"source_lang": "en", # language of the audio input, set `source_lang`==`target_lang` for ASR, choices=['en','de','es','fr']
|
331 |
+
"target_lang": "en", # language of the text output, choices=['en','de','es','fr']
|
332 |
+
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
333 |
+
"answer": "na",
|
334 |
+
}
|
335 |
+
```
|
336 |
+
|
337 |
+
and then use:
|
338 |
+
```python
|
339 |
+
predicted_text = canary_model.transcribe(
|
340 |
+
"<path to input manifest file>",
|
341 |
+
batch_size=16, # batch size to run the inference with
|
342 |
+
)[0].text
|
343 |
+
```
|
344 |
+
|
345 |
+
|
346 |
+
### Automatic Speech-to-text Recognition (ASR)
|
347 |
+
|
348 |
+
An example manifest for transcribing English audios can be:
|
349 |
+
|
350 |
+
```yaml
|
351 |
+
# Example of a line in input_manifest.json
|
352 |
+
{
|
353 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
354 |
+
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
355 |
+
"taskname": "asr",
|
356 |
+
"source_lang": "en", # language of the audio input, set `source_lang`==`target_lang` for ASR, choices=['en','de','es','fr']
|
357 |
+
"target_lang": "en", # language of the text output, choices=['en','de','es','fr']
|
358 |
+
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
359 |
+
"answer": "na",
|
360 |
+
}
|
361 |
+
```
|
362 |
+
|
363 |
+
|
364 |
+
### Automatic Speech-to-text Translation (AST)
|
365 |
+
|
366 |
+
An example manifest for transcribing English audios into German text can be:
|
367 |
+
|
368 |
+
```yaml
|
369 |
+
# Example of a line in input_manifest.json
|
370 |
+
{
|
371 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
372 |
+
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
373 |
+
"taskname": "s2t_translation", # r1.23 only recognizes "s2t_translation", but "ast" is supported if using the NeMo main branch
|
374 |
+
"source_lang": "en", # language of the audio input, choices=['en','de','es','fr']
|
375 |
+
"target_lang": "de", # language of the text output, choices=['en','de','es','fr']
|
376 |
+
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
377 |
+
"answer": "na"
|
378 |
+
}
|
379 |
+
```
|
380 |
+
|
381 |
+
Alternatively, one can use `transcribe_speech.py` script to do the same.
|
382 |
+
|
383 |
+
```bash
|
384 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
385 |
+
pretrained_name="nvidia/canary-1b"
|
386 |
+
audio_dir="<path to audio_directory>" # transcribes all the wav files in audio_directory
|
387 |
+
```
|
388 |
+
|
389 |
+
|
390 |
+
```bash
|
391 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
392 |
+
pretrained_name="nvidia/canary-1b"
|
393 |
+
dataset_manifest="<path to manifest file>"
|
394 |
+
```
|
395 |
+
|
396 |
+
|
397 |
+
### Input
|
398 |
+
|
399 |
+
This model accepts single channel (mono) audio sampled at 16000 Hz, along with the task/languages/PnC tags as input.
|
400 |
+
|
401 |
+
### Output
|
402 |
+
|
403 |
+
The model outputs the transcribed/translated text corresponding to the input audio, in the specified target language and with or without punctuation and capitalization.
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
## Training
|
408 |
+
|
409 |
+
Canary-1B is trained using the NVIDIA NeMo toolkit [4] for 150k steps with dynamic bucketing and a batch duration of 360s per GPU on 128 NVIDIA A100 80GB GPUs.
|
410 |
+
The model can be trained using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed.py) and [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/speech_multitask/fast-conformer_aed.yaml).
|
411 |
+
|
412 |
+
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
413 |
+
|
414 |
+
|
415 |
+
### Datasets
|
416 |
+
|
417 |
+
The Canary-1B model is trained on a total of 85k hrs of speech data. It consists of 31k hrs of public data, 20k hrs collected by [Suno](https://suno.ai/), and 34k hrs of in-house data.
|
418 |
+
|
419 |
+
The constituents of public data are as follows.
|
420 |
+
|
421 |
+
#### English (25.5k hours)
|
422 |
+
- Librispeech 960 hours
|
423 |
+
- Fisher Corpus
|
424 |
+
- Switchboard-1 Dataset
|
425 |
+
- WSJ-0 and WSJ-1
|
426 |
+
- National Speech Corpus (Part 1, Part 6)
|
427 |
+
- VCTK
|
428 |
+
- VoxPopuli (EN)
|
429 |
+
- Europarl-ASR (EN)
|
430 |
+
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
|
431 |
+
- Mozilla Common Voice (v7.0)
|
432 |
+
- People's Speech - 12,000 hour subset
|
433 |
+
- Mozilla Common Voice (v11.0) - 1,474 hour subset
|
434 |
+
|
435 |
+
#### German (2.5k hours)
|
436 |
+
- Mozilla Common Voice (v12.0) - 800 hour subset
|
437 |
+
- Multilingual Librispeech (MLS DE) - 1,500 hour subset
|
438 |
+
- VoxPopuli (DE) - 200 hr subset
|
439 |
+
|
440 |
+
#### Spanish (1.4k hours)
|
441 |
+
- Mozilla Common Voice (v12.0) - 395 hour subset
|
442 |
+
- Multilingual Librispeech (MLS ES) - 780 hour subset
|
443 |
+
- VoxPopuli (ES) - 108 hour subset
|
444 |
+
- Fisher - 141 hour subset
|
445 |
+
|
446 |
+
#### French (1.8k hours)
|
447 |
+
- Mozilla Common Voice (v12.0) - 708 hour subset
|
448 |
+
- Multilingual Librispeech (MLS FR) - 926 hour subset
|
449 |
+
- VoxPopuli (FR) - 165 hour subset
|
450 |
+
|
451 |
+
|
452 |
+
## Performance
|
453 |
+
|
454 |
+
In both ASR and AST experiments, predictions were generated using beam search with width 5 and length penalty 1.0.
|
455 |
+
|
456 |
+
### ASR Performance (w/o PnC)
|
457 |
+
|
458 |
+
The ASR performance is measured with word error rate (WER), and we process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).
|
459 |
+
|
460 |
+
WER on [MCV-16.1](https://commonvoice.mozilla.org/en/datasets) test set:
|
461 |
+
|
462 |
+
| **Version** | **Model** | **En** | **De** | **Es** | **Fr** |
|
463 |
+
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
|
464 |
+
| 1.23.0 | canary-1b | 7.97 | 4.61 | 3.99 | 6.53 |
|
465 |
+
|
466 |
+
|
467 |
+
WER on [MLS](https://huggingface.co/datasets/facebook/multilingual_librispeech) test set:
|
468 |
+
|
469 |
+
| **Version** | **Model** | **En** | **De** | **Es** | **Fr** |
|
470 |
+
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
|
471 |
+
| 1.23.0 | canary-1b | 3.06 | 4.19 | 3.15 | 4.12 |
|
472 |
+
|
473 |
+
|
474 |
+
More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
|
475 |
+
|
476 |
+
### AST Performance
|
477 |
+
|
478 |
+
We evaluate AST performance with [BLEU score](https://lightning.ai/docs/torchmetrics/stable/text/sacre_bleu_score.html), and use native annotations with punctuation and capitalization in the datasets.
|
479 |
+
|
480 |
+
BLEU score on [FLEURS](https://huggingface.co/datasets/google/fleurs) test set:
|
481 |
+
|
482 |
+
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** | **De->En** | **Es->En** | **Fr->En** |
|
483 |
+
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
|
484 |
+
| 1.23.0 | canary-1b | 32.15 | 22.66 | 40.76 | 33.98 | 21.80 | 30.95 |
|
485 |
+
|
486 |
+
|
487 |
+
BLEU score on [COVOST-v2](https://github.com/facebookresearch/covost) test set:
|
488 |
+
|
489 |
+
| **Version** | **Model** | **De->En** | **Es->En** | **Fr->En** |
|
490 |
+
|:-----------:|:---------:|:----------:|:----------:|:----------:|
|
491 |
+
| 1.23.0 | canary-1b | 37.67 | 40.7 | 40.42 |
|
492 |
+
|
493 |
+
BLEU score on [mExpresso](https://huggingface.co/facebook/seamless-expressive#mexpresso-multilingual-expresso) test set:
|
494 |
+
|
495 |
+
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** |
|
496 |
+
|:-----------:|:---------:|:----------:|:----------:|:----------:|
|
497 |
+
| 1.23.0 | canary-1b | 23.84 | 35.74 | 28.29 |
|
498 |
+
|
499 |
+
## Model Fairness Evaluation
|
500 |
+
|
501 |
+
As outlined in the paper "Towards Measuring Fairness in AI: the Casual Conversations Dataset", we assessed the Canary-1B model for fairness. The model was evaluated on the CausalConversations-v1 dataset, and the results are reported as follows:
|
502 |
+
|
503 |
+
### Gender Bias:
|
504 |
+
|
505 |
+
| Gender | Male | Female | N/A | Other |
|
506 |
+
| :--- | :--- | :--- | :--- | :--- |
|
507 |
+
| Num utterances | 19325 | 24532 | 926 | 33 |
|
508 |
+
| % WER | 14.64 | 12.92 | 17.88 | 126.92 |
|
509 |
+
|
510 |
+
### Age Bias:
|
511 |
+
|
512 |
+
| Age Group | (18-30) | (31-45) | (46-85) | (1-100) |
|
513 |
+
| :--- | :--- | :--- | :--- | :--- |
|
514 |
+
| Num utterances | 15956 | 14585 | 13349 | 43890 |
|
515 |
+
| % WER | 14.64 | 13.07 | 13.47 | 13.76 |
|
516 |
+
|
517 |
+
(Error rates for fairness evaluation are determined by normalizing both the reference and predicted text, similar to the methods used in the evaluations found at https://github.com/huggingface/open_asr_leaderboard.)
|
518 |
+
|
519 |
+
## NVIDIA Riva: Deployment
|
520 |
+
|
521 |
+
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
|
522 |
+
Additionally, Riva provides:
|
523 |
+
|
524 |
+
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
|
525 |
+
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
|
526 |
+
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
|
527 |
+
|
528 |
+
Canary is available as a NIM endpoint via Riva. Try the model yourself here: [https://build.nvidia.com/nvidia/canary-1b-asr](https://build.nvidia.com/nvidia/canary-1b-asr).
|
529 |
+
|
530 |
+
|
531 |
+
## References
|
532 |
+
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
|
533 |
+
|
534 |
+
[2] [Attention is all you need](https://arxiv.org/abs/1706.03762)
|
535 |
+
|
536 |
+
[3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
|
537 |
+
|
538 |
+
[4] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
539 |
+
|
540 |
+
[5] [Unified Model for Code-Switching Speech Recognition and Language Identification Based on Concatenated Tokenizer](https://aclanthology.org/2023.calcs-1.7.pdf)
|
541 |
+
|
542 |
+
## Licence
|
543 |
+
|
544 |
+
License to use this model is covered by the [CC-BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en#:~:text=NonCommercial%20%E2%80%94%20You%20may%20not%20use,doing%20anything%20the%20license%20permits.). By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-NC-4.0 license.
|