future7 nielsr HF Staff commited on
Commit
f9d0bf8
·
verified ·
1 Parent(s): fa3a3c1

Improve model card: Add paper link and refine description (#2)

Browse files

- Improve model card: Add paper link and refine description (2c8c0ba506f7c5576909d1fd19627d656b496a91)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -1,4 +1,11 @@
1
  ---
 
 
 
 
 
 
 
2
  library_name: transformers
3
  pipeline_tag: text-generation
4
  tags:
@@ -7,19 +14,11 @@ tags:
7
  - RAG evaluation
8
  - cognitive statements
9
  - factual consistency
10
- datasets:
11
- - future7/CogniBench
12
- - future7/CogniBench-L
13
- language:
14
- - en
15
- base_model:
16
- - meta-llama/Meta-Llama-3-8B
17
  ---
18
 
19
-
20
  # CogniDet: Cognitive Faithfulness Detector for LLMs
21
 
22
- **CogniDet** is a state-of-the-art model for detecting **both factual and cognitive hallucinations** in Large Language Model (LLM) outputs. Developed as part of the [CogniBench](https://github.com/FUTUREEEEEE/CogniBench) framework, it specifically addresses the challenge of evaluating inference-based statements beyond simple fact regurgitation.
23
 
24
  ## Key Features ✨
25
  1. **Dual Detection Capability**
@@ -55,7 +54,9 @@ model = AutoModelForCausalLM.from_pretrained(model_id)
55
 
56
  def detect_hallucinations(context, response):
57
  inputs = tokenizer(
58
- f"CONTEXT: {context}\nRESPONSE: {response}\nHALLUCINATIONS:",
 
 
59
  return_tensors="pt"
60
  )
61
  outputs = model.generate(**inputs, max_new_tokens=100)
 
1
  ---
2
+ base_model:
3
+ - meta-llama/Meta-Llama-3-8B
4
+ datasets:
5
+ - future7/CogniBench
6
+ - future7/CogniBench-L
7
+ language:
8
+ - en
9
  library_name: transformers
10
  pipeline_tag: text-generation
11
  tags:
 
14
  - RAG evaluation
15
  - cognitive statements
16
  - factual consistency
 
 
 
 
 
 
 
17
  ---
18
 
 
19
  # CogniDet: Cognitive Faithfulness Detector for LLMs
20
 
21
+ **CogniDet** is a state-of-the-art model for detecting **both factual and cognitive hallucinations** in Large Language Model (LLM) outputs. Developed as part of the [CogniBench](https://github.com/FUTUREEEEEE/CogniBench) framework, it specifically addresses the challenge of evaluating inference-based statements beyond simple fact regurgitation. The model is presented in the paper [CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models](https://huggingface.co/papers/2505.20767).
22
 
23
  ## Key Features ✨
24
  1. **Dual Detection Capability**
 
54
 
55
  def detect_hallucinations(context, response):
56
  inputs = tokenizer(
57
+ f"CONTEXT: {context}
58
+ RESPONSE: {response}
59
+ HALLUCINATIONS:",
60
  return_tensors="pt"
61
  )
62
  outputs = model.generate(**inputs, max_new_tokens=100)