fznx92 commited on
Commit
179a858
1 Parent(s): 2fc3736

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -2
README.md CHANGED
@@ -1,6 +1,12 @@
1
  ---
2
  library_name: peft
3
  base_model: openai/whisper-large-v2
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -25,10 +31,38 @@ openai-whisper-large-v2-LORA-ja
25
 
26
  ## How to Get Started with the Model
27
 
28
- Use the code below to get started with the model.
 
 
 
 
 
 
 
29
 
30
- [More Information Needed]
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ### Training Data
34
 
 
1
  ---
2
  library_name: peft
3
  base_model: openai/whisper-large-v2
4
+ datasets:
5
+ - mozilla-foundation/common_voice_16_0
6
+ language:
7
+ - ja
8
+ metrics:
9
+ - wer
10
  ---
11
 
12
  # Model Card for Model ID
 
31
 
32
  ## How to Get Started with the Model
33
 
34
+ import torch
35
+ from transformers import (
36
+ AutomaticSpeechRecognitionPipeline,
37
+ WhisperForConditionalGeneration,
38
+ WhisperTokenizer,
39
+ WhisperProcessor,
40
+ )
41
+ from peft import PeftModel, PeftConfig
42
 
43
+ peft_model_id = "fznx92/openai-whisper-large-v2-ja-transcribe-colab"
44
+ sample = "insert mp3 file location here"
45
 
46
+ language = "japanese"
47
+ task = "transcribe"
48
+
49
+ peft_config = PeftConfig.from_pretrained(peft_model_id)
50
+ model = WhisperForConditionalGeneration.from_pretrained(
51
+ peft_config.base_model_name_or_path,
52
+ )
53
+ model = PeftModel.from_pretrained(model, peft_model_id)
54
+ model.to("cuda").half()
55
+
56
+ processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
57
+
58
+ pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, batch_size=8, torch_dtype=torch.float16, device="cuda:0")
59
+
60
+ def transcribe(audio, return_timestamps=False):
61
+ text = pipe(audio, chunk_length_s=30, return_timestamps=return_timestamps, generate_kwargs={"language": language, "task": task})["text"]
62
+ return text
63
+
64
+ transcript = transcribe(sample)
65
+ print(transcript)
66
 
67
  ### Training Data
68