Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: openai/whisper-large-v2
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -25,10 +31,38 @@ openai-whisper-large-v2-LORA-ja
|
|
25 |
|
26 |
## How to Get Started with the Model
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
### Training Data
|
34 |
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: openai/whisper-large-v2
|
4 |
+
datasets:
|
5 |
+
- mozilla-foundation/common_voice_16_0
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
---
|
11 |
|
12 |
# Model Card for Model ID
|
|
|
31 |
|
32 |
## How to Get Started with the Model
|
33 |
|
34 |
+
import torch
|
35 |
+
from transformers import (
|
36 |
+
AutomaticSpeechRecognitionPipeline,
|
37 |
+
WhisperForConditionalGeneration,
|
38 |
+
WhisperTokenizer,
|
39 |
+
WhisperProcessor,
|
40 |
+
)
|
41 |
+
from peft import PeftModel, PeftConfig
|
42 |
|
43 |
+
peft_model_id = "fznx92/openai-whisper-large-v2-ja-transcribe-colab"
|
44 |
+
sample = "insert mp3 file location here"
|
45 |
|
46 |
+
language = "japanese"
|
47 |
+
task = "transcribe"
|
48 |
+
|
49 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
50 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
51 |
+
peft_config.base_model_name_or_path,
|
52 |
+
)
|
53 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
54 |
+
model.to("cuda").half()
|
55 |
+
|
56 |
+
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
|
57 |
+
|
58 |
+
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, batch_size=8, torch_dtype=torch.float16, device="cuda:0")
|
59 |
+
|
60 |
+
def transcribe(audio, return_timestamps=False):
|
61 |
+
text = pipe(audio, chunk_length_s=30, return_timestamps=return_timestamps, generate_kwargs={"language": language, "task": task})["text"]
|
62 |
+
return text
|
63 |
+
|
64 |
+
transcript = transcribe(sample)
|
65 |
+
print(transcript)
|
66 |
|
67 |
### Training Data
|
68 |
|