--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer model-index: - name: deberta-large-semeval25_EN08_fold2 results: [] --- # deberta-large-semeval25_EN08_fold2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.7224 - Precision Samples: 0.1123 - Recall Samples: 0.7856 - F1 Samples: 0.1886 - Precision Macro: 0.3681 - Recall Macro: 0.6639 - F1 Macro: 0.2792 - Precision Micro: 0.1054 - Recall Micro: 0.7394 - F1 Micro: 0.1844 - Precision Weighted: 0.1953 - Recall Weighted: 0.7394 - F1 Weighted: 0.2101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 10.1108 | 1.0 | 73 | 9.1532 | 0.1078 | 0.4896 | 0.1658 | 0.8477 | 0.3196 | 0.2145 | 0.1041 | 0.3879 | 0.1641 | 0.6101 | 0.3879 | 0.0866 | | 8.9481 | 2.0 | 146 | 8.6922 | 0.1037 | 0.6457 | 0.1672 | 0.7149 | 0.4241 | 0.2235 | 0.0947 | 0.5515 | 0.1616 | 0.4524 | 0.5515 | 0.1227 | | 9.1563 | 3.0 | 219 | 8.6496 | 0.0968 | 0.7189 | 0.1614 | 0.5923 | 0.5060 | 0.2388 | 0.0875 | 0.6485 | 0.1542 | 0.3085 | 0.6485 | 0.1447 | | 8.7006 | 4.0 | 292 | 8.2522 | 0.1016 | 0.7955 | 0.1617 | 0.5424 | 0.5864 | 0.2606 | 0.0877 | 0.7333 | 0.1567 | 0.2756 | 0.7333 | 0.1672 | | 8.1242 | 5.0 | 365 | 7.9321 | 0.1011 | 0.7940 | 0.1721 | 0.4725 | 0.6190 | 0.2653 | 0.0945 | 0.7364 | 0.1675 | 0.2425 | 0.7364 | 0.1754 | | 7.4891 | 6.0 | 438 | 8.0728 | 0.1081 | 0.7863 | 0.1824 | 0.4759 | 0.6115 | 0.2650 | 0.0989 | 0.7303 | 0.1743 | 0.2454 | 0.7303 | 0.1816 | | 8.3973 | 7.0 | 511 | 7.8203 | 0.1074 | 0.7803 | 0.1817 | 0.3908 | 0.6341 | 0.2637 | 0.1002 | 0.7424 | 0.1765 | 0.1962 | 0.7424 | 0.1906 | | 7.0048 | 8.0 | 584 | 7.7429 | 0.1097 | 0.7953 | 0.1849 | 0.3862 | 0.6590 | 0.2731 | 0.1017 | 0.7515 | 0.1791 | 0.2017 | 0.7515 | 0.2014 | | 6.3856 | 9.0 | 657 | 7.7281 | 0.1081 | 0.7852 | 0.1823 | 0.3555 | 0.6382 | 0.2597 | 0.1016 | 0.7424 | 0.1788 | 0.1924 | 0.7424 | 0.2033 | | 5.8015 | 10.0 | 730 | 7.7224 | 0.1123 | 0.7856 | 0.1886 | 0.3681 | 0.6639 | 0.2792 | 0.1054 | 0.7394 | 0.1844 | 0.1953 | 0.7394 | 0.2101 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1