--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer model-index: - name: deberta-large-semeval25_EN08_fold3 results: [] --- # deberta-large-semeval25_EN08_fold3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.2442 - Precision Samples: 0.1144 - Recall Samples: 0.7997 - F1 Samples: 0.1930 - Precision Macro: 0.3896 - Recall Macro: 0.6167 - F1 Macro: 0.2236 - Precision Micro: 0.1104 - Recall Micro: 0.7507 - F1 Micro: 0.1924 - Precision Weighted: 0.2237 - Recall Weighted: 0.7507 - F1 Weighted: 0.2130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 8.2513 | 1.0 | 73 | 9.8237 | 0.1093 | 0.4542 | 0.1631 | 0.8860 | 0.2559 | 0.1808 | 0.1110 | 0.3399 | 0.1674 | 0.6512 | 0.3399 | 0.0922 | | 6.8883 | 2.0 | 146 | 9.3725 | 0.1082 | 0.6445 | 0.1710 | 0.7810 | 0.3726 | 0.1997 | 0.0995 | 0.5637 | 0.1692 | 0.4732 | 0.5637 | 0.1274 | | 8.4363 | 3.0 | 219 | 8.8450 | 0.1195 | 0.7090 | 0.1933 | 0.6684 | 0.4525 | 0.2167 | 0.1073 | 0.6374 | 0.1837 | 0.3811 | 0.6374 | 0.1603 | | 8.6787 | 4.0 | 292 | 8.5427 | 0.1068 | 0.7465 | 0.1790 | 0.5303 | 0.5162 | 0.1950 | 0.0967 | 0.6941 | 0.1697 | 0.2823 | 0.6941 | 0.1599 | | 6.8889 | 5.0 | 365 | 8.5407 | 0.1100 | 0.7823 | 0.1854 | 0.4867 | 0.5780 | 0.2249 | 0.1022 | 0.7337 | 0.1794 | 0.2365 | 0.7337 | 0.1842 | | 7.9121 | 6.0 | 438 | 8.4019 | 0.1096 | 0.7957 | 0.1858 | 0.4441 | 0.5804 | 0.2166 | 0.1041 | 0.7365 | 0.1825 | 0.2387 | 0.7365 | 0.1936 | | 7.1827 | 7.0 | 511 | 8.3315 | 0.1085 | 0.8046 | 0.1846 | 0.4158 | 0.6204 | 0.2251 | 0.1042 | 0.7507 | 0.1831 | 0.2210 | 0.7507 | 0.2018 | | 5.9674 | 8.0 | 584 | 8.1923 | 0.1100 | 0.8047 | 0.1857 | 0.3929 | 0.6172 | 0.2292 | 0.1046 | 0.7620 | 0.1839 | 0.2236 | 0.7620 | 0.2136 | | 6.397 | 9.0 | 657 | 8.2536 | 0.1113 | 0.8023 | 0.1884 | 0.3999 | 0.6139 | 0.2328 | 0.1077 | 0.7507 | 0.1883 | 0.2269 | 0.7507 | 0.2148 | | 6.4848 | 10.0 | 730 | 8.2442 | 0.1144 | 0.7997 | 0.1930 | 0.3896 | 0.6167 | 0.2236 | 0.1104 | 0.7507 | 0.1924 | 0.2237 | 0.7507 | 0.2130 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1