--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_maxf1_fold3 results: [] --- # mdeberta-semeval25_maxf1_fold3 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.3380 - Precision Samples: 0.1633 - Recall Samples: 0.5122 - F1 Samples: 0.2311 - Precision Macro: 0.8671 - Recall Macro: 0.2933 - F1 Macro: 0.2022 - Precision Micro: 0.1506 - Recall Micro: 0.3994 - F1 Micro: 0.2188 - Precision Weighted: 0.6317 - Recall Weighted: 0.3994 - F1 Weighted: 0.1249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 11.0696 | 1.0 | 19 | 10.6040 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1556 | 0.1556 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 10.193 | 2.0 | 38 | 10.2581 | 0.1747 | 0.2540 | 0.1918 | 0.9816 | 0.1789 | 0.1641 | 0.1753 | 0.1445 | 0.1584 | 0.8838 | 0.1445 | 0.0480 | | 9.6612 | 3.0 | 57 | 10.0671 | 0.1425 | 0.2939 | 0.1781 | 0.9714 | 0.1889 | 0.1637 | 0.1456 | 0.1700 | 0.1569 | 0.8577 | 0.1700 | 0.0472 | | 9.0942 | 4.0 | 76 | 9.8758 | 0.1474 | 0.3411 | 0.1891 | 0.9189 | 0.2076 | 0.1690 | 0.1385 | 0.2181 | 0.1694 | 0.7494 | 0.2181 | 0.0607 | | 9.3042 | 5.0 | 95 | 9.6689 | 0.1613 | 0.4720 | 0.2241 | 0.8971 | 0.2654 | 0.1874 | 0.1473 | 0.3598 | 0.2091 | 0.6810 | 0.3598 | 0.1058 | | 9.0703 | 6.0 | 114 | 9.5397 | 0.1626 | 0.4743 | 0.2237 | 0.8953 | 0.2670 | 0.1855 | 0.1471 | 0.3626 | 0.2093 | 0.6781 | 0.3626 | 0.1029 | | 9.5375 | 7.0 | 133 | 9.4382 | 0.1630 | 0.4948 | 0.2286 | 0.8764 | 0.2833 | 0.1983 | 0.1506 | 0.3853 | 0.2166 | 0.6480 | 0.3853 | 0.1220 | | 8.4717 | 8.0 | 152 | 9.3612 | 0.1642 | 0.5086 | 0.2317 | 0.8738 | 0.2881 | 0.1987 | 0.1481 | 0.3966 | 0.2157 | 0.6417 | 0.3966 | 0.1207 | | 9.1265 | 9.0 | 171 | 9.3158 | 0.1621 | 0.5051 | 0.2286 | 0.8604 | 0.2921 | 0.1978 | 0.1478 | 0.3994 | 0.2158 | 0.6221 | 0.3994 | 0.1195 | | 9.0143 | 10.0 | 190 | 9.3380 | 0.1633 | 0.5122 | 0.2311 | 0.8671 | 0.2933 | 0.2022 | 0.1506 | 0.3994 | 0.2188 | 0.6317 | 0.3994 | 0.1249 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1