--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_maxf1_fold5 results: [] --- # mdeberta-semeval25_maxf1_fold5 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.7990 - Precision Samples: 0.1660 - Recall Samples: 0.4739 - F1 Samples: 0.2271 - Precision Macro: 0.8737 - Recall Macro: 0.3063 - F1 Macro: 0.2305 - Precision Micro: 0.1452 - Recall Micro: 0.3694 - F1 Micro: 0.2085 - Precision Weighted: 0.6156 - Recall Weighted: 0.3694 - F1 Weighted: 0.1150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 10.6336 | 1.0 | 19 | 9.9912 | 1.0 | 0.0 | 0.0 | 1.0 | 0.2 | 0.2 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 9.4458 | 2.0 | 38 | 9.6839 | 0.1655 | 0.2456 | 0.1864 | 0.9814 | 0.2222 | 0.2062 | 0.1655 | 0.1381 | 0.1506 | 0.8858 | 0.1381 | 0.0406 | | 9.4682 | 3.0 | 57 | 9.4970 | 0.1563 | 0.2984 | 0.1882 | 0.9642 | 0.2349 | 0.2108 | 0.1536 | 0.1772 | 0.1646 | 0.8400 | 0.1772 | 0.0523 | | 9.0448 | 4.0 | 76 | 9.3362 | 0.1425 | 0.3520 | 0.1881 | 0.9422 | 0.2569 | 0.2152 | 0.1377 | 0.2312 | 0.1726 | 0.7853 | 0.2312 | 0.0641 | | 9.0807 | 5.0 | 95 | 9.1579 | 0.1457 | 0.3938 | 0.1992 | 0.9336 | 0.2692 | 0.2188 | 0.1407 | 0.2763 | 0.1864 | 0.7446 | 0.2763 | 0.0831 | | 8.6731 | 6.0 | 114 | 9.0240 | 0.1615 | 0.4392 | 0.2203 | 0.8931 | 0.2830 | 0.2251 | 0.1454 | 0.3153 | 0.1991 | 0.6493 | 0.3153 | 0.0996 | | 8.9953 | 7.0 | 133 | 8.9087 | 0.1693 | 0.4769 | 0.2311 | 0.8866 | 0.3012 | 0.2322 | 0.1509 | 0.3634 | 0.2132 | 0.6350 | 0.3634 | 0.1190 | | 9.1116 | 8.0 | 152 | 8.8515 | 0.1689 | 0.4669 | 0.2294 | 0.8861 | 0.3010 | 0.2315 | 0.1482 | 0.3544 | 0.2090 | 0.6334 | 0.3544 | 0.1167 | | 8.5738 | 9.0 | 171 | 8.8080 | 0.1672 | 0.4879 | 0.2303 | 0.8754 | 0.3143 | 0.2330 | 0.1471 | 0.3904 | 0.2136 | 0.6191 | 0.3904 | 0.1203 | | 9.1037 | 10.0 | 190 | 8.7990 | 0.1660 | 0.4739 | 0.2271 | 0.8737 | 0.3063 | 0.2305 | 0.1452 | 0.3694 | 0.2085 | 0.6156 | 0.3694 | 0.1150 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1