Add sample code for loading the adapter
Browse files
README.md
CHANGED
|
@@ -23,14 +23,25 @@ pipeline_tag: summarization
|
|
| 23 |
This is a **LoRA fine-tuned adapter** built on [**meta-llama/Llama-3.2-1B-Instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It is designed for scientific paper summarization tasks and leverages **Low-Rank Adaptation (LoRA)** to enhance model performance efficiently while maintaining a low computational overhead.
|
| 24 |
|
| 25 |
|
| 26 |
-
|
| 27 |
| Model | ROUGE-1 | ROUGE-2 | ROUGE-3 | ROUGE-L |
|
| 28 |
|---------------------------|----------|----------|----------|----------|
|
| 29 |
| **Llama-3.2-1B-Instruct** | 36.69 | 7.47 | 1.95 | 19.36 |
|
| 30 |
| **Llama-PaperSummarization-LoRA** | **41.56** | **11.31** | **2.67** | **21.86** |
|
| 31 |
|
| 32 |
-
The model was evaluated on a **6K-sample test set** using **ROUGE scores** with
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
## **Dataset**
|
|
|
|
| 23 |
This is a **LoRA fine-tuned adapter** built on [**meta-llama/Llama-3.2-1B-Instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It is designed for scientific paper summarization tasks and leverages **Low-Rank Adaptation (LoRA)** to enhance model performance efficiently while maintaining a low computational overhead.
|
| 24 |
|
| 25 |
|
| 26 |
+
### **Performance comparison**
|
| 27 |
| Model | ROUGE-1 | ROUGE-2 | ROUGE-3 | ROUGE-L |
|
| 28 |
|---------------------------|----------|----------|----------|----------|
|
| 29 |
| **Llama-3.2-1B-Instruct** | 36.69 | 7.47 | 1.95 | 19.36 |
|
| 30 |
| **Llama-PaperSummarization-LoRA** | **41.56** | **11.31** | **2.67** | **21.86** |
|
| 31 |
|
| 32 |
+
The model was evaluated on a **6K-sample test set** using **ROUGE scores** with beam search (beam size = 4).
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### **How to load**
|
| 36 |
+
```python
|
| 37 |
+
from transformers import LlamaForCausalLM, AutoTokenizer
|
| 38 |
+
from peft import PeftModel
|
| 39 |
+
|
| 40 |
+
base_model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
| 41 |
+
peft_model_id = "gabe-zhang/Llama-PaperSummarization-LoRA"
|
| 42 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 43 |
+
model.merge_and_unload()
|
| 44 |
+
```
|
| 45 |
|
| 46 |
|
| 47 |
## **Dataset**
|