gabriellarson commited on
Commit
21a713a
·
verified ·
1 Parent(s): 6c4c23a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ license_name: lfm1.0
5
+ license_link: LICENSE
6
+ language:
7
+ - en
8
+ pipeline_tag: image-text-to-text
9
+ tags:
10
+ - liquid
11
+ - lfm2
12
+ - lfm2-vl
13
+ - edge
14
+ base_model:
15
+ - LiquidAI/LFM2-VL-1.6B
16
+ ---
17
+ <center>
18
+ <div style="text-align: center;">
19
+ <img
20
+ src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
21
+ alt="Liquid AI"
22
+ style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
23
+ />
24
+ </div>
25
+ </center>
26
+
27
+ # LFM2‑VL
28
+
29
+ LFM2‑VL is [Liquid AI](https://www.liquid.ai/)'s first series of multimodal models, designed to process text and images with variable resolutions.
30
+ Built on the [LFM2](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) backbone, it is optimized for low-latency and edge AI applications.
31
+
32
+ We're releasing the weights of two post-trained checkpoints with [450M](https://huggingface.co/LiquidAI/LFM2-VL-450M) (for highly constrained devices) and [1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) (more capable yet still lightweight) parameters.
33
+
34
+ * **2× faster inference speed** on GPUs compared to existing VLMs while maintaining competitive accuracy
35
+ * **Flexible architecture** with user-tunable speed-quality tradeoffs at inference time
36
+ * **Native resolution processing** up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion
37
+
38
+ Find more about our vision-language model in the [LFM2-VL post](https://www.liquid.ai/blog/lfm2-vl-efficient-vision-language-models) and its language backbone in the [LFM2 blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).
39
+
40
+ ## 📄 Model details
41
+
42
+ Due to their small size, **we recommend fine-tuning LFM2-VL models on narrow use cases** to maximize performance.
43
+ They were trained for instruction following and lightweight agentic flows.
44
+ Not intended for safety‑critical decisions.
45
+
46
+ | Property | [**LFM2-VL-450M**](https://huggingface.co/LiquidAI/LFM2-VL-450M) | [**LFM2-VL-1.6B**](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) |
47
+ |---|---:|---:|
48
+ | **Parameters (LM only)** | 350M | 1.2B |
49
+ | **Vision encoder** | SigLIP2 NaFlex base (86M) | SigLIP2 NaFlex shape‑optimized (400M) |
50
+ | **Backbone layers** | hybrid conv+attention | hybrid conv+attention |
51
+ | **Context (text)** | 32,768 tokens | 32,768 tokens |
52
+ | **Image tokens** | dynamic, user‑tunable | dynamic, user‑tunable |
53
+ | **Vocab size** | 65,536 | 65,536 |
54
+ | **Precision** | bfloat16 | bfloat16 |
55
+ | **License** | LFM Open License v1.0 | LFM Open License v1.0 |
56
+
57
+ **Supported languages:** English
58
+
59
+ **Generation parameters**: We recommend the following parameters:
60
+ - Text: `temperature=0.1`, `min_p=0.15`, `repetition_penalty=1.05`
61
+ - Vision: `min_image_tokens=64` `max_image_tokens=256`, `do_image_splitting=True`
62
+
63
+ **Chat template**: LFM2-VL uses a ChatML-like chat template as follows:
64
+
65
+ ```
66
+ <|startoftext|><|im_start|>system
67
+ You are a helpful multimodal assistant by Liquid AI.<|im_end|>
68
+ <|im_start|>user
69
+ <image>Describe this image.<|im_end|>
70
+ <|im_start|>assistant
71
+ This image shows a Caenorhabditis elegans (C. elegans) nematode.<|im_end|>
72
+ ```
73
+
74
+ Images are referenced with a sentinel (`<image>`), which is automatically replaced with the image tokens by the processor.
75
+
76
+ You can apply it using the dedicated [`.apply_chat_template()`](https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate) function from Hugging Face transformers.
77
+
78
+ **Architecture**
79
+ - **Hybrid backbone**: Language model tower (LFM2-1.2B or LFM2-350M) paired with SigLIP2 NaFlex vision encoders (400M shape-optimized or 86M base variant)
80
+ - **Native resolution processing**: Handles images up to 512×512 pixels without upscaling and preserves non-standard aspect ratios without distortion
81
+ - **Tiling strategy**: Splits large images into non-overlapping 512×512 patches and includes thumbnail encoding for global context (in 1.6B model)
82
+ - **Efficient token mapping**: 2-layer MLP connector with pixel unshuffle reduces image tokens (e.g., 256×384 image → 96 tokens, 1000×3000 → 1,020 tokens)
83
+ - **Inference-time flexibility**: User-tunable maximum image tokens and patch count for speed/quality tradeoff without retraining
84
+
85
+ **Training approach**
86
+ - Builds on the LFM2 base model with joint mid-training that fuses vision and language capabilities using a gradually adjusted text-to-image ratio
87
+ - Applies joint SFT with emphasis on image understanding and vision tasks
88
+ - Leverages large-scale open-source datasets combined with in-house synthetic vision data, selected for balanced task coverage
89
+ - Follows a progressive training strategy: base model → joint mid-training → supervised fine-tuning
90
+
91
+ ## 🏃 How to run LFM2-VL
92
+
93
+ You can run LFM2-VL with Hugging Face [`transformers`](https://github.com/huggingface/transformers) v4.55 or more recent as follows:
94
+
95
+ ```bash
96
+ pip install -U transformers pillow
97
+ ```
98
+
99
+ Here is an example of how to generate an answer with transformers in Python:
100
+
101
+ ```python
102
+ from transformers import AutoProcessor, AutoModelForImageTextToText
103
+ from transformers.image_utils import load_image
104
+ # Load model and processor
105
+ model_id = "LiquidAI/LFM2-VL-1.6B"
106
+ model = AutoModelForImageTextToText.from_pretrained(
107
+ model_id,
108
+ device_map="auto",
109
+ torch_dtype="bfloat16",
110
+ trust_remote_code=True
111
+ )
112
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
113
+ # Load image and create conversation
114
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
115
+ image = load_image(url)
116
+ conversation = [
117
+ {
118
+ "role": "user",
119
+ "content": [
120
+ {"type": "image", "image": image},
121
+ {"type": "text", "text": "What is in this image?"},
122
+ ],
123
+ },
124
+ ]
125
+ # Generate Answer
126
+ inputs = processor.apply_chat_template(
127
+ conversation,
128
+ add_generation_prompt=True,
129
+ return_tensors="pt",
130
+ return_dict=True,
131
+ tokenize=True,
132
+ ).to(model.device)
133
+ outputs = model.generate(**inputs, max_new_tokens=64)
134
+ processor.batch_decode(outputs, skip_special_tokens=True)[0]
135
+ # This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.
136
+ ```
137
+
138
+ You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/11EMJhcVB6OTEuv--OePyGK86k-38WU3q?usp=sharing).
139
+
140
+
141
+ ## 🔧 How to fine-tune
142
+
143
+ We recommend fine-tuning LFM2-VL models on your use cases to maximize performance.
144
+
145
+ | Notebook | Description | Link |
146
+ |-----------|----------------------------------------------------------------------|------|
147
+ | SFT (TRL) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using TRL. | <a href="https://colab.research.google.com/drive/1csXCLwJx7wI7aruudBp6ZIcnqfv8EMYN?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> |
148
+
149
+
150
+ ## 📈 Performance
151
+
152
+ | Model | RealWorldQA | MM-IFEval | InfoVQA (Val) | OCRBench | BLINK | MMStar | MMMU (Val) | MathVista | SEEDBench_IMG | MMVet | MME | MMLU |
153
+ |-------------------|-------------|-----------|---------------|----------|-------|--------|------------|-----------|---------------|-------|----------|-------|
154
+ | InternVL3-2B | 65.10 | 38.49 | 66.10 | 831 | 53.10 | 61.10 | 48.70 | 57.60 | 75.00 | 67.00 | 2186.40 | 64.80 |
155
+ | InternVL3-1B | 57.00 | 31.14 | 54.94 | 798 | 43.00 | 52.30 | 43.20 | 46.90 | 71.20 | 58.70 | 1912.40 | 49.80 |
156
+ | SmolVLM2-2.2B | 57.50 | 19.42 | 37.75 | 725 | 42.30 | 46.00 | 41.60 | 51.50 | 71.30 | 34.90 | 1792.50 | - |
157
+ | LFM2-VL-1.6B | 65.23 | 37.66 | 58.68 | 742 | 44.40 | 49.53 | 38.44 | 51.10 | 71.97 | 48.07 | 1753.04 | 50.99 |
158
+ | Model | RealWorldQA | MM-IFEval | InfoVQA (Val) | OCRBench | BLINK | MMStar | MMMU (Val) | MathVista | SEEDBench_IMG | MMVet | MME | MMLU |
159
+ |-------------------|-------------|-----------|---------------|----------|-------|--------|------------|-----------|---------------|-------|----------|-------|
160
+ | SmolVLM2-500M | 49.90 | 11.27 | 24.64 | 609 | 40.70 | 38.20 | 34.10 | 37.50 | 62.20 | 29.90 | 1448.30 | - |
161
+ | LFM2-VL-450M | 52.29 | 26.18 | 46.51 | 655 | 41.98 | 40.87 | 33.11 | 44.70 | 63.50 | 33.76 | 1239.06 | 40.16 |
162
+
163
+ We obtained MM-IFEval and InfoVQA (Val) scores for InternVL 3 and SmolVLM2 models using VLMEvalKit.
164
+
165
+ ## 📬 Contact
166
+
167
+ If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).