gabriellarson commited on
Commit
de6f376
·
verified ·
1 Parent(s): 9ed2c01

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - PowerInfer/SmallThinker-4BA0.6B-Instruct
8
+ ---
9
+ ## Introduction
10
+
11
+ SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
12
+ co-developed by the **IPADS and School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
13
+ Designed from the ground up for resource-constrained environments,
14
+ SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
15
+ without relying on the cloud.
16
+
17
+ ## Performance
18
+
19
+ Note: The model is trained mainly on English.
20
+
21
+ | Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
22
+ | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
23
+ | **SmallThinker-4BA0.6B-Instruct** | **66.11** | **31.31** | 80.02 | <u>60.60</u> | 69.69 | **42.20** | **82.32** | **61.75** |
24
+ | Qwen3-0.6B | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
25
+ | Qwen3-1.7B | <u>64.19</u> | <u>27.78</u> | <u>81.88</u> | **63.6** | 69.50 | <u>35.60</u> | 61.59 | <u>57.73</u> |
26
+ | Gemma3nE2b-it | 63.04 | 20.2 | **82.34** | 58.6 | **73.2** | 27.90 | <u>64.63</u> | 55.70 |
27
+ | Llama-3.2-3B-Instruct | 64.15 | 24.24 | 75.51 | 40 | <u>71.16</u> | 15.30 | 55.49 | 49.41 |
28
+ | Llama-3.2-1B-Instruct | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
29
+
30
+ For the MMLU evaluation, we use a 0-shot CoT setting.
31
+
32
+ All models are evaluated in non-thinking mode.
33
+
34
+
35
+ ## Speed
36
+ | Model | Memory(GiB) | i9 14900 | 1+13 8gen4 | rk3588 (16G) | rk3576 | Raspberry PI 5 | RDK X5 | rk3566 |
37
+ |-----------------------------------------------|---------------------|----------|------------|--------------|--------|----------------|--------|--------|
38
+ | SmallThinker 4B+sparse ffn +sparse lm_head | 2.24 | 108.17 | 78.99 | 39.76 | 15.10 | 28.77 | 7.23 | 6.33 |
39
+ | SmallThinker 4B+sparse ffn +sparse lm_head+limited memory | limit 1G| 29.99 | 20.91 | 15.04 | 2.60 | 0.75 | 0.67 | 0.74 |
40
+ | Qwen3 0.6B | 0.6 | 148.56 | 94.91 | 45.93 | 15.29 | 27.44 | 13.32 | 9.76 |
41
+ | Qwen3 1.7B | 1.3 | 62.24 | 41.00 | 20.29 | 6.09 | 11.08 | 6.35 | 4.15 |
42
+ | Qwen3 1.7B+limited memory | limit 1G | 2.66 | 1.09 | 1.00 | 0.47 | - | - | 0.11 |
43
+ | Gemma3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 3.80 | 6.66 | 3.46 | 2.45 |
44
+
45
+ Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
46
+ You can deploy SmallThinker with offloading support using [PowerInfer](https://github.com/SJTU-IPADS/PowerInfer/tree/main/smallthinker)
47
+ ## Model Card
48
+ <div align="center">
49
+ | **Architecture** | Mixture-of-Experts (MoE) |
50
+ |:---:|:---:|
51
+ | **Total Parameters** | 4B |
52
+ | **Activated Parameters** | 0.6B |
53
+ | **Number of Layers** | 32 |
54
+ | **Attention Hidden Dimension** | 1536 |
55
+ | **MoE Hidden Dimension** (per Expert) | 768 |
56
+ | **Number of Attention Heads** | 12 |
57
+ | **Number of Experts** | 32 |
58
+ | **Selected Experts per Token** | 4 |
59
+ | **Vocabulary Size** | 151,936 |
60
+ | **Context Length** | 32K |
61
+ | **Attention Mechanism** | GQA |
62
+ | **Activation Function** | ReGLU |
63
+ </div>
64
+ ## How to Run
65
+ ### Transformers
66
+ `transformers==4.53.3` is required, we are actively working to support the latest version.
67
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
68
+ ```python
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
+ import torch
71
+ path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
72
+ device = "cuda"
73
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
74
+ model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
75
+ messages = [
76
+ {"role": "user", "content": "Give me a short introduction to large language model."},
77
+ ]
78
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
79
+ model_outputs = model.generate(
80
+ model_inputs,
81
+ do_sample=True,
82
+ max_new_tokens=1024
83
+ )
84
+ output_token_ids = [
85
+ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
86
+ ]
87
+ responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
88
+ print(responses)
89
+ ```
90
+ ### ModelScope
91
+ `ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
92
+ ```python
93
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
94
+ ```
95
+ ## Statement
96
+ - Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
97
+ - Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
98
+ - SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.