thomasker commited on
Commit
bd23ebc
·
verified ·
1 Parent(s): 23cd204

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -21,22 +21,22 @@ tags:
21
  license: apache-2.0
22
  pipeline_tag: image-classification
23
  base_model:
24
- - galeio-research/nereus-sar-1
25
  ---
26
 
27
- # Model Card for Nereus-SAR-1-SWH
28
 
29
  ## Model Details
30
 
31
  ### Model Description
32
 
33
- Nereus-SAR-1-SWH is a linear probing head for significant wave height (SWH) prediction built on top of the Nereus-SAR-1 foundation model. It leverages the powerful features extracted by Nereus-SAR-1 to accurately predict ocean wave heights from Synthetic Aperture Radar (SAR) imagery.
34
 
35
  - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
36
  - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
37
  - **Model type:** Linear Regression Head on Vision Foundation Model
38
  - **License:** Apache License 2.0
39
- - **Base model:** Nereus-SAR-1 (ResNet50/ViT variants)
40
  - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
41
 
42
  ## Uses
@@ -69,7 +69,7 @@ import torch
69
  from transformers import AutoModelForImageClassification
70
 
71
  # Load the foundation model and the linear probing head
72
- nereus = AutoModelForImageClassification.from_pretrained("galeio-research/nereus-sar-1")
73
 
74
  # Prepare your SAR image (should be single-channel VV polarization)
75
  # Here using random data as example
@@ -77,7 +77,7 @@ dummy_image = torch.randn(1, 1, 256, 256) # (C, H, W)
77
 
78
  # Extract features
79
  with torch.no_grad():
80
- outputs = nereus(dummy_image)
81
  # For regression, use the single output value as the wave height prediction
82
  wave_height = outputs.logits.item() # Output in meters
83
  ```
@@ -88,7 +88,7 @@ with torch.no_grad():
88
 
89
  - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
90
  - **Source:** Wave height measurements from altimeters, buoys, and wave models
91
- - **Preprocessing:** Same as base Nereus-SAR-1 model
92
 
93
  ## Evaluation
94
 
@@ -119,11 +119,11 @@ The model outperforms existing approaches:
119
 
120
  - PyTorch >= 1.8.0
121
  - Transformers >= 4.30.0
122
- - Base Nereus-SAR-1 model
123
 
124
  ### Input Specifications
125
 
126
- - Same as base Nereus-SAR-1 model
127
  - Single channel (VV polarization) SAR images
128
  - 256x256 pixel resolution
129
 
 
21
  license: apache-2.0
22
  pipeline_tag: image-classification
23
  base_model:
24
+ - galeio-research/OceanSAR-1
25
  ---
26
 
27
+ # Model Card for OceanSAR-1-wave
28
 
29
  ## Model Details
30
 
31
  ### Model Description
32
 
33
+ OceanSAR-1-wave is a linear probing head for significant wave height (SWH) prediction built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately predict ocean wave heights from Synthetic Aperture Radar (SAR) imagery.
34
 
35
  - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
36
  - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
37
  - **Model type:** Linear Regression Head on Vision Foundation Model
38
  - **License:** Apache License 2.0
39
+ - **Base model:** OceanSAR-1 (ResNet50/ViT variants)
40
  - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
41
 
42
  ## Uses
 
69
  from transformers import AutoModelForImageClassification
70
 
71
  # Load the foundation model and the linear probing head
72
+ oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1")
73
 
74
  # Prepare your SAR image (should be single-channel VV polarization)
75
  # Here using random data as example
 
77
 
78
  # Extract features
79
  with torch.no_grad():
80
+ outputs = oceansar(dummy_image)
81
  # For regression, use the single output value as the wave height prediction
82
  wave_height = outputs.logits.item() # Output in meters
83
  ```
 
88
 
89
  - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
90
  - **Source:** Wave height measurements from altimeters, buoys, and wave models
91
+ - **Preprocessing:** Same as base OceanSAR-1 model
92
 
93
  ## Evaluation
94
 
 
119
 
120
  - PyTorch >= 1.8.0
121
  - Transformers >= 4.30.0
122
+ - Base OceanSAR-1 model
123
 
124
  ### Input Specifications
125
 
126
+ - Same as base OceanSAR-1 model
127
  - Single channel (VV polarization) SAR images
128
  - 256x256 pixel resolution
129