File size: 2,290 Bytes
cebac5a 1191042 cebac5a 1191042 cebac5a 1191042 cebac5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: nli-cross-encoder-roberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nli-cross-encoder-roberta
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4859
- Accuracy: 0.9448
- F1 Macro: 0.9469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.1806 | 1.0 | 211 | 0.3069 | 0.9088 | 0.9134 |
| 0.1021 | 2.0 | 422 | 0.1795 | 0.9530 | 0.9544 |
| 0.0343 | 3.0 | 633 | 0.4396 | 0.9365 | 0.9389 |
| 0.0182 | 4.0 | 844 | 0.4025 | 0.9475 | 0.9496 |
| 0.0047 | 5.0 | 1055 | 0.4674 | 0.9420 | 0.9441 |
| 0.0014 | 6.0 | 1266 | 0.4457 | 0.9448 | 0.9469 |
| 0.0049 | 7.0 | 1477 | 0.4835 | 0.9448 | 0.9469 |
| 0.0004 | 8.0 | 1688 | 0.4859 | 0.9448 | 0.9469 |
### Framework versions
- Transformers 4.56.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.22.0
|