--- library_name: transformers license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy model-index: - name: nli-cross-encoder-roberta results: [] --- # nli-cross-encoder-roberta This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4859 - Accuracy: 0.9448 - F1 Macro: 0.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.1806 | 1.0 | 211 | 0.3069 | 0.9088 | 0.9134 | | 0.1021 | 2.0 | 422 | 0.1795 | 0.9530 | 0.9544 | | 0.0343 | 3.0 | 633 | 0.4396 | 0.9365 | 0.9389 | | 0.0182 | 4.0 | 844 | 0.4025 | 0.9475 | 0.9496 | | 0.0047 | 5.0 | 1055 | 0.4674 | 0.9420 | 0.9441 | | 0.0014 | 6.0 | 1266 | 0.4457 | 0.9448 | 0.9469 | | 0.0049 | 7.0 | 1477 | 0.4835 | 0.9448 | 0.9469 | | 0.0004 | 8.0 | 1688 | 0.4859 | 0.9448 | 0.9469 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.22.0