--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-pii-masking-augmented-test5 results: [] --- # deberta-pii-masking-augmented-test5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0360 - Precision: 0.9402 - Recall: 0.9557 - F1: 0.9479 - Accuracy: 0.9891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.6188 | 0.0305 | 500 | 0.3788 | 0.5431 | 0.6547 | 0.5937 | 0.9030 | | 0.1746 | 0.0609 | 1000 | 0.1576 | 0.7686 | 0.8381 | 0.8019 | 0.9565 | | 0.0857 | 0.0914 | 1500 | 0.1094 | 0.8148 | 0.8787 | 0.8455 | 0.9669 | | 0.0624 | 0.1219 | 2000 | 0.0882 | 0.8475 | 0.8979 | 0.8720 | 0.9728 | | 0.0512 | 0.1524 | 2500 | 0.0610 | 0.8834 | 0.9161 | 0.8994 | 0.9811 | | 0.0445 | 0.1828 | 3000 | 0.0584 | 0.8968 | 0.9216 | 0.9090 | 0.9814 | | 0.0398 | 0.2133 | 3500 | 0.0545 | 0.9097 | 0.9324 | 0.9209 | 0.9836 | | 0.0355 | 0.2438 | 4000 | 0.0500 | 0.9125 | 0.9342 | 0.9232 | 0.9845 | | 0.0337 | 0.2743 | 4500 | 0.0477 | 0.9068 | 0.9355 | 0.9209 | 0.9843 | | 0.0309 | 0.3047 | 5000 | 0.0489 | 0.9214 | 0.9408 | 0.9310 | 0.9854 | | 0.0284 | 0.3352 | 5500 | 0.0444 | 0.9173 | 0.9433 | 0.9301 | 0.9861 | | 0.0278 | 0.3657 | 6000 | 0.0423 | 0.9247 | 0.9416 | 0.9331 | 0.9865 | | 0.0258 | 0.3962 | 6500 | 0.0410 | 0.9291 | 0.9471 | 0.9380 | 0.9873 | | 0.0242 | 0.4266 | 7000 | 0.0375 | 0.9301 | 0.9499 | 0.9399 | 0.9881 | | 0.0241 | 0.4571 | 7500 | 0.0380 | 0.9321 | 0.9500 | 0.9410 | 0.9882 | | 0.0217 | 0.4876 | 8000 | 0.0347 | 0.9404 | 0.9545 | 0.9474 | 0.9890 | | 0.0207 | 0.5181 | 8500 | 0.0335 | 0.9360 | 0.9526 | 0.9442 | 0.9892 | | 0.0204 | 0.5485 | 9000 | 0.0366 | 0.9364 | 0.9542 | 0.9452 | 0.9888 | | 0.019 | 0.5790 | 9500 | 0.0362 | 0.9355 | 0.9534 | 0.9444 | 0.9887 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3