garybake commited on
Commit
e5c4cb2
·
1 Parent(s): 58ef572

ppo_lunar_1500k_exp01

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 273.03 +/- 17.98
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -24,6 +24,7 @@ model-index:
24
 
25
 
26
 
 
27
  # **PPO** Agent playing **LunarLander-v2**
28
  This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
29
 
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 275.46 +/- 17.96
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
24
 
25
 
26
 
27
+
28
  # **PPO** Agent playing **LunarLander-v2**
29
  This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
30
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000026528F1A700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000026528F1A790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000026528F1A820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000026528F1A8B0>", "_build": "<function ActorCriticPolicy._build at 0x0000026528F1A940>", "forward": "<function ActorCriticPolicy.forward at 0x0000026528F1A9D0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000026528F1AA60>", "_predict": "<function ActorCriticPolicy._predict at 0x0000026528F1AAF0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000026528F1AB80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000026528F1AC10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000026528F1ACA0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000026528F15780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651823266.9548378, "learning_rate": 0.0003, "tensorboard_log": "D:\\tmp\\tf", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaDHr4fr2Y/RACHvX8g9b7CdDa+MriCPQAAAAAAAAAAc5ClPUOltD+N4aY+2RajvvtGmj0VDBc9AAAAAAAAAABmHaK8j94xutYV8DkVIek0RYKuOvKFDrkAAIA/AACAP8MjgL4d5DQ/wn4qPlOAyL6EaTu+4gMMPgAAAAAAAAAAAKMsvQX78T4VRHk9Q3mzvqeZTjyAEmw7AAAAAAAAAAAWDpI+gDcoP2O7Vr1hC9e+h9ZEPrYnlb0AAAAAAAAAAJoV2Tzfn1E+HXvbPf/4nb72oQU+I2BjPQAAAAAAAAAAZnjNvGyHi7uh7bs8akKlPLZu3rzhTIw9AACAPwAAgD/NgpY8brzDPhS9TL1msqe+Jrj3O1b65LwAAAAAAAAAAICCSD1cd166hdn8OTzhijSIxjC7usAUuQAAgD8AAIA/AESvO6m3IbwwuIc71Vq3POBGib07KpY9AACAPwAAgD8Av789K+ISP5JUJbtKvdW+LpdVPTb4070AAAAAAAAAAGbeZT4pgQ8/5ASyPDnfzb7RI2g+89FYvQAAAAAAAAAAZpy5PKbG0j4Kuui7NLO/vmY+pToFatI8AAAAAAAAAABmJYe9nxz0uyvkcT6gsnM9ES2tO97SSjwAAAAAAACAP5pgnbwbR4O8zCQbvrLPBz2hu+g9lprVvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFMstrYYbbkCUhpRSlIwBbJRL/YwBdJRHQKRwhTcZccF1fZQoaAZoCWgPQwiw/s9hflJyQJSGlFKUaBVL3mgWR0CkcI029+PSdX2UKGgGaAloD0MIMxmO5/NfcUCUhpRSlGgVS9VoFkdApHDlNvfj0nV9lChoBmgJaA9DCNMXQs57cHFAlIaUUpRoFUvkaBZHQKRw5DVpbll1fZQoaAZoCWgPQwjxvb9BO6xxQJSGlFKUaBVNJwFoFkdApHDzrgOz6nV9lChoBmgJaA9DCMVXO4qzn3JAlIaUUpRoFU0zAWgWR0CkcWOx8lXzdX2UKGgGaAloD0MIOEpenSO8cUCUhpRSlGgVTRMBaBZHQKRxhDjzZpV1fZQoaAZoCWgPQwgwhJz3v7ByQJSGlFKUaBVLzmgWR0CkcaS08eS0dX2UKGgGaAloD0MIzEI7p1mucUCUhpRSlGgVS99oFkdApHHEOPNmlXV9lChoBmgJaA9DCMdim1R0dHNAlIaUUpRoFUvraBZHQKRyGyt3fQ91fZQoaAZoCWgPQwg1fuGVZHlwQJSGlFKUaBVL5GgWR0CkciQ1ivxIdX2UKGgGaAloD0MIU+i8xu7XcUCUhpRSlGgVS8xoFkdApHJdvS+g13V9lChoBmgJaA9DCO2BVmCIvHJAlIaUUpRoFU0QAWgWR0CkcrsvRJEqdX2UKGgGaAloD0MITu/i/fgmckCUhpRSlGgVTQUBaBZHQKRyxTqB3A51fZQoaAZoCWgPQwiQZiyazrpwQJSGlFKUaBVL5mgWR0Ckcsy1maphdX2UKGgGaAloD0MIggNauoJBbUCUhpRSlGgVS99oFkdApHLdOqNp/XV9lChoBmgJaA9DCL8PBwlRXnJAlIaUUpRoFUv4aBZHQKRy27GNrCZ1fZQoaAZoCWgPQwiQ9dTqa6JxQJSGlFKUaBVL72gWR0CkcvU6o2n9dX2UKGgGaAloD0MI4e6s3fZsc0CUhpRSlGgVS9doFkdApHMjsY2sJnV9lChoBmgJaA9DCOCFrdnKUnNAlIaUUpRoFUvraBZHQKRzVTqjaf11fZQoaAZoCWgPQwj9M4P4wKxzQJSGlFKUaBVNDQFoFkdApHOsOiFj/nV9lChoBmgJaA9DCNMwfESMYnFAlIaUUpRoFUvqaBZHQKRz5DkU9IR1fZQoaAZoCWgPQwjO3a6XpsluQJSGlFKUaBVNAwFoFkdApHQDsa86FXV9lChoBmgJaA9DCMeEmEvqv3FAlIaUUpRoFUvtaBZHQKR0DLTx5LR1fZQoaAZoCWgPQwhA+FCipfBtQJSGlFKUaBVL3WgWR0CkdGMvAXVLdX2UKGgGaAloD0MIPdLgtjaqcUCUhpRSlGgVTQcBaBZHQKR0dDkU9IR1fZQoaAZoCWgPQwjnGfuSzchxQJSGlFKUaBVNAgFoFkdApHT1vS+g13V9lChoBmgJaA9DCCtqMA3DuHFAlIaUUpRoFU0ZAWgWR0CkdPw5FPSEdX2UKGgGaAloD0MIByeiX1tuckCUhpRSlGgVS+BoFkdApHUDLwF1S3V9lChoBmgJaA9DCArYDkasqXFAlIaUUpRoFUvbaBZHQKR1DTuv2Xd1fZQoaAZoCWgPQwhIqBlSRctyQJSGlFKUaBVL52gWR0CkdSuxrzoVdX2UKGgGaAloD0MIBHEeTmA/ckCUhpRSlGgVTQYBaBZHQKR1ZTqjaf11fZQoaAZoCWgPQwiXjGMk+61xQJSGlFKUaBVL5GgWR0CkdXuxrzoVdX2UKGgGaAloD0MIn8w/+qbsckCUhpRSlGgVTQ4BaBZHQKR1hLTx5LR1fZQoaAZoCWgPQwhFLc2tUBRwQJSGlFKUaBVL/2gWR0CkdYU6o2n9dX2UKGgGaAloD0MI3soSneVucUCUhpRSlGgVS/poFkdApIX6DoQnQnV9lChoBmgJaA9DCOZ4BaInLm9AlIaUUpRoFUvqaBZHQKSGSQyylep1fZQoaAZoCWgPQwgVyVcCqfpyQJSGlFKUaBVNAAFoFkdApIZJDLKV6nV9lChoBmgJaA9DCKgBg6QPBnNAlIaUUpRoFUvcaBZHQKSGqQ0XP7h1fZQoaAZoCWgPQwiX5lYIq35xQJSGlFKUaBVNFwFoFkdApIbIhY/3WXV9lChoBmgJaA9DCNCbilSY+XFAlIaUUpRoFU0aAWgWR0CkhtmIsRQKdX2UKGgGaAloD0MIqaENwEYadECUhpRSlGgVS/toFkdApIbgAuIykHV9lChoBmgJaA9DCL5ojxdSsG5AlIaUUpRoFUvYaBZHQKSHGQ0XP7h1fZQoaAZoCWgPQwj+7bJfdy9zQJSGlFKUaBVL4GgWR0CkhzoPCl7/dX2UKGgGaAloD0MIqfV+o52Ab0CUhpRSlGgVS/BoFkdApIdKkRBeHHV9lChoBmgJaA9DCEbNV8nHOnFAlIaUUpRoFUv6aBZHQKSHkIWP91l1fZQoaAZoCWgPQwi0klZ8Ax9zQJSGlFKUaBVNDAFoFkdApIeYAsCkoHV9lChoBmgJaA9DCK67eapDzXFAlIaUUpRoFUvyaBZHQKSHug5imVJ1fZQoaAZoCWgPQwjex9EcmbZxQJSGlFKUaBVNBwFoFkdApIf4hW5panV9lChoBmgJaA9DCK1qSUf5dnNAlIaUUpRoFU0bAWgWR0CkiDGI9C/odX2UKGgGaAloD0MI1GGFW/5HckCUhpRSlGgVS9toFkdApIhJDPWxyHV9lChoBmgJaA9DCO9054kne3FAlIaUUpRoFU0lAWgWR0CkiEoOhCdCdX2UKGgGaAloD0MIz7pGy0Eac0CUhpRSlGgVTQcBaBZHQKSIUg6EJ0J1fZQoaAZoCWgPQwjAsz16A1txQJSGlFKUaBVL32gWR0CkiFEM9bHIdX2UKGgGaAloD0MIvJUlOguNcECUhpRSlGgVS99oFkdApIjhiLEUCnV9lChoBmgJaA9DCNnRONTvNXNAlIaUUpRoFUvTaBZHQKSJEQzUI9l1fZQoaAZoCWgPQwj6RJ4k3R5zQJSGlFKUaBVL+WgWR0CkiRiFbmlqdX2UKGgGaAloD0MIKNGSx9PXcUCUhpRSlGgVS/ZoFkdApIkf/xUedXV9lChoBmgJaA9DCPyqXKi81HFAlIaUUpRoFU0OAWgWR0CkiSkJBw+/dX2UKGgGaAloD0MIIxPwayQHcUCUhpRSlGgVS+xoFkdApImCkO7QLXV9lChoBmgJaA9DCGYtBaR99nBAlIaUUpRoFUvzaBZHQKSJ6AMlTm51fZQoaAZoCWgPQwjtYS8UcBRwQJSGlFKUaBVL5WgWR0CkifIK2KEWdX2UKGgGaAloD0MIhetRuB4EbUCUhpRSlGgVS/5oFkdApIoIgeRxLnV9lChoBmgJaA9DCCcz3lZ6MXFAlIaUUpRoFUvdaBZHQKSKIIHkcS51fZQoaAZoCWgPQwjoTNpUnRRxQJSGlFKUaBVNNwFoFkdApIoyCvovBnV9lChoBmgJaA9DCH2W58FdknBAlIaUUpRoFUvJaBZHQKSKOQlruYx1fZQoaAZoCWgPQwgDmDJwABtzQJSGlFKUaBVL52gWR0CkimmFSKm9dX2UKGgGaAloD0MI3UPC9364c0CUhpRSlGgVTQkBaBZHQKSK2g6ltTF1fZQoaAZoCWgPQwgj2o6pOzNxQJSGlFKUaBVNDwFoFkdApIryDujRD3V9lChoBmgJaA9DCCxEh8DRtnJAlIaUUpRoFU0aAWgWR0CkixEM9bHIdX2UKGgGaAloD0MIZAPpYlPCb0CUhpRSlGgVS9ZoFkdApIspDPWxyHV9lChoBmgJaA9DCNu+R/21t3FAlIaUUpRoFUvvaBZHQKSLOYkVvdd1fZQoaAZoCWgPQwhW0opvaOZxQJSGlFKUaBVL6WgWR0Cki2gDA8B/dX2UKGgGaAloD0MIVWmLa7yncECUhpRSlGgVS/FoFkdApIt5DTjNp3V9lChoBmgJaA9DCCNKe4Nvd3NAlIaUUpRoFU0BAWgWR0Cki5CFj/dZdX2UKGgGaAloD0MIXfxtT5CycECUhpRSlGgVS8xoFkdApIvQAwPAf3V9lChoBmgJaA9DCJa04hvKK3BAlIaUUpRoFUvlaBZHQKSMEg6EJ0J1fZQoaAZoCWgPQwhg5jv4yR5yQJSGlFKUaBVNFQFoFkdApIwqkO7QLXV9lChoBmgJaA9DCCl3n+PjWHFAlIaUUpRoFUvoaBZHQKSMOIWP91l1fZQoaAZoCWgPQwjgEoB/ilJzQJSGlFKUaBVL6GgWR0CkjGIOhCdCdX2UKGgGaAloD0MI2jnNAq2QcECUhpRSlGgVS+ZoFkdApIxhDNQj2XV9lChoBmgJaA9DCBrAWyABTnBAlIaUUpRoFUvZaBZHQKSMeYixFAp1fZQoaAZoCWgPQwh6ceKr3aJwQJSGlFKUaBVNFQFoFkdApIy4hW5panV9lChoBmgJaA9DCEmcFVGTd25AlIaUUpRoFUvVaBZHQKSM2g+yJKt1fZQoaAZoCWgPQwgYzjXMkE5xQJSGlFKUaBVL0mgWR0CkjRkM1CPZdX2UKGgGaAloD0MIvHmqQ658c0CUhpRSlGgVS/VoFkdApI1ZDTjNp3V9lChoBmgJaA9DCI9tGXAWe3FAlIaUUpRoFU0GAWgWR0CkjWIOYplSdX2UKGgGaAloD0MIPdNLjGWJcECUhpRSlGgVS9doFkdApI2BCjUNKHV9lChoBmgJaA9DCEtywK7mY3JAlIaUUpRoFUv0aBZHQKSNsANoak11fZQoaAZoCWgPQwgykj1CzYpzQJSGlFKUaBVNFQFoFkdApI3RiLEUCnV9lChoBmgJaA9DCN3u5T65o3JAlIaUUpRoFUvVaBZHQKSN2ALiMpB1fZQoaAZoCWgPQwgB++jUFSpzQJSGlFKUaBVNIAFoFkdApI5IhdMTOHV9lChoBmgJaA9DCI0qw7gbUnFAlIaUUpRoFUvKaBZHQKSOSQ04zad1fZQoaAZoCWgPQwhfXKrSVsJwQJSGlFKUaBVL7GgWR0CkjlIOx0MgdX2UKGgGaAloD0MIYMd/gSC4cUCUhpRSlGgVS+BoFkdApI6CDsdDIHV9lChoBmgJaA9DCH6K48CrXXBAlIaUUpRoFUvYaBZHQKSOiYixFAp1fZQoaAZoCWgPQwhkd4GSQitzQJSGlFKUaBVL+mgWR0CkjpCFbmlqdX2UKGgGaAloD0MIInL6er7ASECUhpRSlGgVS8loFkdApI6ghW5panV9lChoBmgJaA9DCF2/YDds3XFAlIaUUpRoFU0aAWgWR0CkjtKREF4cdX2UKGgGaAloD0MIe6Lrwo+ZbkCUhpRSlGgVS/BoFkdApI8aDoQnQnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.22610-SP0 10.0.22610", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001FA4EA7B700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001FA4EA7B790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001FA4EA7B820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001FA4EA7B8B0>", "_build": "<function ActorCriticPolicy._build at 0x000001FA4EA7B940>", "forward": "<function ActorCriticPolicy.forward at 0x000001FA4EA7B9D0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001FA4EA7BA60>", "_predict": "<function ActorCriticPolicy._predict at 0x000001FA4EA7BAF0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001FA4EA7BB80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001FA4EA7BC10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001FA4EA7BCA0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000001FA4EA76840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651839408.8709972, "learning_rate": 0.0003, "tensorboard_log": "D:\\tmp\\tf", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo2vr1pkrY/ViUav4ApEL6C5lG9Gov6vQAAAAAAAAAApo3Gvc8bfz44G+09SVqEvlFMVzuiVUI8AAAAAAAAAADmori9vVYRP06vv7xcNKW+GMCGuxzUPz0AAAAAAAAAALMBEb0F3mo/XoiGvRm0sL4yrVG9mR0UvAAAAAAAAAAA5t+evcMpM7qWEDi5SZJLtGWfGznyFFo4AAAAAAAAgD+a9yU9DJGuP1Msiz5Wrpe+WJWQPWK7CD4AAAAAAAAAADNfezwKzUa7zGqku1v1SD2/0Ya8y+MDPgAAgD8AAIA/DRKFvRRYu7qycx60UcA3sGHx27hUEpwzAACAPwAAgD+jq3m+HqI7P6oN+T2B6G2+Tm8QvgiFaj0AAAAAAAAAAGZUbTzSpBg+9lG6vZn0Yb7Wcmm8Tab/PQAAAAAAAAAAACnvvCMisz9GCxG/rHUevuwzXzze49m8AAAAAAAAAADNeSm+maSZPygCKb8aAN++pHpNvtYHfb4AAAAAAAAAAM3RxbzSo6S7Hu0hPKC/Kz0Qqt47JBkKOgAAgD8AAIA/zRqVvEhzs7p22ii57c8ZtEsr37lpCUE4AACAPwAAgD9D1bs+8iyBP6YTj70+LbG+OWCWPkwoALwAAAAAAAAAAAAsAbylN+4+RZIKvaCHi77fngC9xsDivAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIck7sof3LcUCUhpRSlIwBbJRNFgGMAXSUR0CUVDATZg5SdX2UKGgGaAloD0MIwVWeQFgRbUCUhpRSlGgVTQwBaBZHQJRUgBV+7UZ1fZQoaAZoCWgPQwhTdY9srsduQJSGlFKUaBVNSAFoFkdAlFSwEt/WlXV9lChoBmgJaA9DCExSmWLONXFAlIaUUpRoFU0qAWgWR0CUVRAS39aVdX2UKGgGaAloD0MIKA8LtSa9bECUhpRSlGgVTRgBaBZHQJRVcBOpKjB1fZQoaAZoCWgPQwjqtG6DWpNuQJSGlFKUaBVNHwFoFkdAlFXAE6kqMHV9lChoBmgJaA9DCG5OJQPAbG9AlIaUUpRoFU1DAWgWR0CUVeATIvJzdX2UKGgGaAloD0MIU3WPbK41bUCUhpRSlGgVTQUBaBZHQJRWIBLf1pV1fZQoaAZoCWgPQwiP39v0Z1FxQJSGlFKUaBVNFAFoFkdAlFagEt/WlXV9lChoBmgJaA9DCCjxuRMs6XBAlIaUUpRoFU0OAWgWR0CUVyATIvJzdX2UKGgGaAloD0MICVBTy1Y8ckCUhpRSlGgVTQQBaBZHQJRXgBMi8nN1fZQoaAZoCWgPQwjPLAlQ0yNyQJSGlFKUaBVNSAFoFkdAlFhQEyLyc3V9lChoBmgJaA9DCEt319nQB3NAlIaUUpRoFU1IAWgWR0CUWLAT7EYPdX2UKGgGaAloD0MIyJbl63KecUCUhpRSlGgVTUcBaBZHQJRaMBT4tYl1fZQoaAZoCWgPQwg7Vb5npFluQJSGlFKUaBVNDgFoFkdAlFqQEyLyc3V9lChoBmgJaA9DCAkaM4k6Q3NAlIaUUpRoFU0/AWgWR0CUW0ATIvJzdX2UKGgGaAloD0MIsn+eBgxOc0CUhpRSlGgVTQsBaBZHQJRbYBMi8nN1fZQoaAZoCWgPQwjZJaq3xlFyQJSGlFKUaBVNLQFoFkdAlFuwE6kqMHV9lChoBmgJaA9DCI7KTdTSNHJAlIaUUpRoFUv+aBZHQJRb8BMi8nN1fZQoaAZoCWgPQwg0D2CRH95wQJSGlFKUaBVNCAFoFkdAlFwAE6kqMHV9lChoBmgJaA9DCJs3TgrzkXFAlIaUUpRoFU0iAWgWR0CUXGATZg5SdX2UKGgGaAloD0MIuLBuvDsfckCUhpRSlGgVTVsBaBZHQJRdABS1map1fZQoaAZoCWgPQwik4CnkSpVuQJSGlFKUaBVNIQFoFkdAlF0QEt/WlXV9lChoBmgJaA9DCEYm4NfIim5AlIaUUpRoFU0bAWgWR0CUXXAUL2HtdX2UKGgGaAloD0MIaY6s/LIBbkCUhpRSlGgVTT4BaBZHQJRe8BQvYe11fZQoaAZoCWgPQwhmv+50J8pxQJSGlFKUaBVNQAFoFkdAlGCQE2YOUnV9lChoBmgJaA9DCJerH5sk7XJAlIaUUpRoFU0jAWgWR0CUYjAUcn3MdX2UKGgGaAloD0MI5pDUQskfb0CUhpRSlGgVTR0BaBZHQJRicBOpKjB1fZQoaAZoCWgPQwg/VBoxs89wQJSGlFKUaBVNCwFoFkdAlGKwEyLyc3V9lChoBmgJaA9DCDscXaX7/3BAlIaUUpRoFU2zAWgWR0CUYwATIvJzdX2UKGgGaAloD0MIlPWbiekKckCUhpRSlGgVTR8BaBZHQJRjwBMi8nN1fZQoaAZoCWgPQwibyw2Gum9yQJSGlFKUaBVNNAFoFkdAlGQQFLWZqnV9lChoBmgJaA9DCK946pHG6XJAlIaUUpRoFU2mAWgWR0CUZDATZg5SdX2UKGgGaAloD0MIRE/KpEZDckCUhpRSlGgVTSgBaBZHQJRkYBNmDlJ1fZQoaAZoCWgPQwh/aVGfJEpwQJSGlFKUaBVNHgFoFkdAlGSAE2YOUnV9lChoBmgJaA9DCMqNImvNnXBAlIaUUpRoFU0EAWgWR0CUZIATZg5SdX2UKGgGaAloD0MI+daH9YaocUCUhpRSlGgVTUgBaBZHQJRmMBLf1pV1fZQoaAZoCWgPQwgdqinJeo5wQJSGlFKUaBVNeQFoFkdAlGZQEyLyc3V9lChoBmgJaA9DCI7LuKkBmHBAlIaUUpRoFU1bAWgWR0CUZxATIvJzdX2UKGgGaAloD0MIHomXp/P0b0CUhpRSlGgVTTEBaBZHQJRncBNmDlJ1fZQoaAZoCWgPQwjizK/mwJlxQJSGlFKUaBVNGgFoFkdAlGgwE6kqMHV9lChoBmgJaA9DCGBa1Cf5BXFAlIaUUpRoFUvuaBZHQJRpsBMi8nN1fZQoaAZoCWgPQwioqWVrvb1xQJSGlFKUaBVNFgFoFkdAlGogEyLyc3V9lChoBmgJaA9DCG8qUmFsL3NAlIaUUpRoFU0mAWgWR0CUakAUL2HtdX2UKGgGaAloD0MIGELO+3+CcECUhpRSlGgVTUMBaBZHQJRqoBMi8nN1fZQoaAZoCWgPQwhpG3+i8sRyQJSGlFKUaBVNPAFoFkdAlGqgEyLyc3V9lChoBmgJaA9DCG+8OzJWE3BAlIaUUpRoFU0eAWgWR0CUfHATIvJzdX2UKGgGaAloD0MIiBHCo422b0CUhpRSlGgVTRIBaBZHQJR8kBOpKjB1fZQoaAZoCWgPQwjeyafHNuNuQJSGlFKUaBVNUQFoFkdAlH3wEt/WlXV9lChoBmgJaA9DCAUabOp8D3FAlIaUUpRoFU1YAWgWR0CUffAS39aVdX2UKGgGaAloD0MIU8vW+iK1Y0CUhpRSlGgVTegDaBZHQJR+MBLf1pV1fZQoaAZoCWgPQwhDyeTUTr9xQJSGlFKUaBVNBwFoFkdAlH6wEyLyc3V9lChoBmgJaA9DCIxJfy9FuHJAlIaUUpRoFU0rAWgWR0CUftATIvJzdX2UKGgGaAloD0MIjq89s6SobkCUhpRSlGgVTYYBaBZHQJR/MBNmDlJ1fZQoaAZoCWgPQwh4CyQofpNvQJSGlFKUaBVNRAFoFkdAlH9AE+xGD3V9lChoBmgJaA9DCGDmO/iJQG9AlIaUUpRoFU0mAWgWR0CUf7AS39aVdX2UKGgGaAloD0MIN8E3TZ9VckCUhpRSlGgVTRABaBZHQJSBUBOpKjB1fZQoaAZoCWgPQwg50ENtWy1xQJSGlFKUaBVNTAFoFkdAlIFQE6kqMHV9lChoBmgJaA9DCC3Pg7szknBAlIaUUpRoFU0MAWgWR0CUgZATIvJzdX2UKGgGaAloD0MIYLGGixzCckCUhpRSlGgVTRIBaBZHQJSCIBOpKjB1fZQoaAZoCWgPQwgIHt/edQpxQJSGlFKUaBVL+2gWR0CUgkAS39aVdX2UKGgGaAloD0MIaqM6HchCcECUhpRSlGgVTS4BaBZHQJSCgBLf1pV1fZQoaAZoCWgPQwjyCG6kbB9uQJSGlFKUaBVNRgFoFkdAlINgE2YOUnV9lChoBmgJaA9DCHy5T46CaW9AlIaUUpRoFU0UAWgWR0CUhFATIvJzdX2UKGgGaAloD0MIBtfc0f/SbUCUhpRSlGgVTQQBaBZHQJSEwBLf1pV1fZQoaAZoCWgPQwg1BwjmaJJwQJSGlFKUaBVL/2gWR0CUhMAS39aVdX2UKGgGaAloD0MIOEiI8sUdcUCUhpRSlGgVTSsBaBZHQJSFIBMi8nN1fZQoaAZoCWgPQwiyf54GjCZvQJSGlFKUaBVNHgFoFkdAlIYQE6kqMHV9lChoBmgJaA9DCDZ39L/cpHBAlIaUUpRoFU0jAWgWR0CUhhATqSowdX2UKGgGaAloD0MIi+HqAEh/cECUhpRSlGgVTXQBaBZHQJSGsBMi8nN1fZQoaAZoCWgPQwj/lgD8U0RyQJSGlFKUaBVNLwFoFkdAlIcAEyLyc3V9lChoBmgJaA9DCPRwAtPpGHFAlIaUUpRoFUv6aBZHQJSHoBNmDlJ1fZQoaAZoCWgPQwjou1tZIr5tQJSGlFKUaBVNCgFoFkdAlIfQEt/WlXV9lChoBmgJaA9DCK2HLxMF4HBAlIaUUpRoFU0IAWgWR0CUiKATIvJzdX2UKGgGaAloD0MIAfvo1BXecECUhpRSlGgVTTwBaBZHQJSJEBMi8nN1fZQoaAZoCWgPQwgpsACmDL5wQJSGlFKUaBVNOwFoFkdAlIoQEyLyc3V9lChoBmgJaA9DCIQtdvtsIHJAlIaUUpRoFU0ZAWgWR0CUimATIvJzdX2UKGgGaAloD0MItvepKrTWcECUhpRSlGgVTQ8BaBZHQJSLEAtFrmB1fZQoaAZoCWgPQwg9fJkoAtpxQJSGlFKUaBVNBAFoFkdAlItAE2YOUnV9lChoBmgJaA9DCMaoa+19t3JAlIaUUpRoFU0dAWgWR0CUi9ATZg5SdX2UKGgGaAloD0MIb72mBwVFb0CUhpRSlGgVTR4BaBZHQJSMQBMi8nN1fZQoaAZoCWgPQwg/bypSYe5xQJSGlFKUaBVNBQFoFkdAlIyQEt/WlXV9lChoBmgJaA9DCFMJT+j1x3BAlIaUUpRoFU0iAWgWR0CUjeATIvJzdX2UKGgGaAloD0MISx3k9SAmckCUhpRSlGgVTQoBaBZHQJSOUBMi8nN1fZQoaAZoCWgPQwi9rIkFvltyQJSGlFKUaBVNUgFoFkdAlI6AE+xGD3V9lChoBmgJaA9DCIm0jT/RzHBAlIaUUpRoFU0WAWgWR0CUjsAU+LWJdX2UKGgGaAloD0MIzVzg8lgfcUCUhpRSlGgVTUABaBZHQJSO8BNmDlJ1fZQoaAZoCWgPQwi/1qVGqNlyQJSGlFKUaBVNFwFoFkdAlI+AEt/WlXV9lChoBmgJaA9DCILGTKJeL29AlIaUUpRoFU0OAWgWR0CUj8ATIvJzdX2UKGgGaAloD0MISS7/IX2zbkCUhpRSlGgVTQcBaBZHQJSQgBLf1pV1fZQoaAZoCWgPQwgnhA66hNNtQJSGlFKUaBVL/mgWR0CUkJATZg5SdX2UKGgGaAloD0MI5QzFHW8Wb0CUhpRSlGgVTRUBaBZHQJSR0BMi8nN1fZQoaAZoCWgPQwiDUN7HUctyQJSGlFKUaBVNFQFoFkdAlJKgEyLyc3V9lChoBmgJaA9DCGAF+G7zW21AlIaUUpRoFU1DAWgWR0CUk0AU+LWJdX2UKGgGaAloD0MIud+hKNAycECUhpRSlGgVTRsBaBZHQJSTQBT4tYl1fZQoaAZoCWgPQwjIef8fZyRzQJSGlFKUaBVNJQFoFkdAlJPQE2YOUnV9lChoBmgJaA9DCOyFAraDimVAlIaUUpRoFU3oA2gWR0CUlMATIvJzdX2UKGgGaAloD0MI3uNME3bZcECUhpRSlGgVTRsBaBZHQJSVABMi8nN1fZQoaAZoCWgPQwi6SQwCa6NwQJSGlFKUaBVNDQFoFkdAlJUAEyLyc3V9lChoBmgJaA9DCBx9zAeEbHBAlIaUUpRoFU0OAWgWR0CUlTAZbY9QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.22610-SP0 10.0.22610", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb18902c555e1d1f85ba9c9d24de631bf9f0eaf4bd23393432f2a6ddce677095
3
- size 143837
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d35b6bd35cbe7a99fa71c4f34e5977cd9dd1a9388df74f6eebb22311229fdb9a
3
+ size 143854
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x0000026528F1A700>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000026528F1A790>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000026528F1A820>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000026528F1A8B0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x0000026528F1A940>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x0000026528F1A9D0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000026528F1AA60>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x0000026528F1AAF0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000026528F1AB80>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000026528F1AC10>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000026528F1ACA0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x0000026528F15780>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651823266.9548378,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": "D:\\tmp\\tf",
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaDHr4fr2Y/RACHvX8g9b7CdDa+MriCPQAAAAAAAAAAc5ClPUOltD+N4aY+2RajvvtGmj0VDBc9AAAAAAAAAABmHaK8j94xutYV8DkVIek0RYKuOvKFDrkAAIA/AACAP8MjgL4d5DQ/wn4qPlOAyL6EaTu+4gMMPgAAAAAAAAAAAKMsvQX78T4VRHk9Q3mzvqeZTjyAEmw7AAAAAAAAAAAWDpI+gDcoP2O7Vr1hC9e+h9ZEPrYnlb0AAAAAAAAAAJoV2Tzfn1E+HXvbPf/4nb72oQU+I2BjPQAAAAAAAAAAZnjNvGyHi7uh7bs8akKlPLZu3rzhTIw9AACAPwAAgD/NgpY8brzDPhS9TL1msqe+Jrj3O1b65LwAAAAAAAAAAICCSD1cd166hdn8OTzhijSIxjC7usAUuQAAgD8AAIA/AESvO6m3IbwwuIc71Vq3POBGib07KpY9AACAPwAAgD8Av789K+ISP5JUJbtKvdW+LpdVPTb4070AAAAAAAAAAGbeZT4pgQ8/5ASyPDnfzb7RI2g+89FYvQAAAAAAAAAAZpy5PKbG0j4Kuui7NLO/vmY+pToFatI8AAAAAAAAAABmJYe9nxz0uyvkcT6gsnM9ES2tO97SSjwAAAAAAACAP5pgnbwbR4O8zCQbvrLPBz2hu+g9lprVvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +69,7 @@
69
  "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFMstrYYbbkCUhpRSlIwBbJRL/YwBdJRHQKRwhTcZccF1fZQoaAZoCWgPQwiw/s9hflJyQJSGlFKUaBVL3mgWR0CkcI029+PSdX2UKGgGaAloD0MIMxmO5/NfcUCUhpRSlGgVS9VoFkdApHDlNvfj0nV9lChoBmgJaA9DCNMXQs57cHFAlIaUUpRoFUvkaBZHQKRw5DVpbll1fZQoaAZoCWgPQwjxvb9BO6xxQJSGlFKUaBVNJwFoFkdApHDzrgOz6nV9lChoBmgJaA9DCMVXO4qzn3JAlIaUUpRoFU0zAWgWR0CkcWOx8lXzdX2UKGgGaAloD0MIOEpenSO8cUCUhpRSlGgVTRMBaBZHQKRxhDjzZpV1fZQoaAZoCWgPQwgwhJz3v7ByQJSGlFKUaBVLzmgWR0CkcaS08eS0dX2UKGgGaAloD0MIzEI7p1mucUCUhpRSlGgVS99oFkdApHHEOPNmlXV9lChoBmgJaA9DCMdim1R0dHNAlIaUUpRoFUvraBZHQKRyGyt3fQ91fZQoaAZoCWgPQwg1fuGVZHlwQJSGlFKUaBVL5GgWR0CkciQ1ivxIdX2UKGgGaAloD0MIU+i8xu7XcUCUhpRSlGgVS8xoFkdApHJdvS+g13V9lChoBmgJaA9DCO2BVmCIvHJAlIaUUpRoFU0QAWgWR0CkcrsvRJEqdX2UKGgGaAloD0MITu/i/fgmckCUhpRSlGgVTQUBaBZHQKRyxTqB3A51fZQoaAZoCWgPQwiQZiyazrpwQJSGlFKUaBVL5mgWR0Ckcsy1maphdX2UKGgGaAloD0MIggNauoJBbUCUhpRSlGgVS99oFkdApHLdOqNp/XV9lChoBmgJaA9DCL8PBwlRXnJAlIaUUpRoFUv4aBZHQKRy27GNrCZ1fZQoaAZoCWgPQwiQ9dTqa6JxQJSGlFKUaBVL72gWR0CkcvU6o2n9dX2UKGgGaAloD0MI4e6s3fZsc0CUhpRSlGgVS9doFkdApHMjsY2sJnV9lChoBmgJaA9DCOCFrdnKUnNAlIaUUpRoFUvraBZHQKRzVTqjaf11fZQoaAZoCWgPQwj9M4P4wKxzQJSGlFKUaBVNDQFoFkdApHOsOiFj/nV9lChoBmgJaA9DCNMwfESMYnFAlIaUUpRoFUvqaBZHQKRz5DkU9IR1fZQoaAZoCWgPQwjO3a6XpsluQJSGlFKUaBVNAwFoFkdApHQDsa86FXV9lChoBmgJaA9DCMeEmEvqv3FAlIaUUpRoFUvtaBZHQKR0DLTx5LR1fZQoaAZoCWgPQwhA+FCipfBtQJSGlFKUaBVL3WgWR0CkdGMvAXVLdX2UKGgGaAloD0MIPdLgtjaqcUCUhpRSlGgVTQcBaBZHQKR0dDkU9IR1fZQoaAZoCWgPQwjnGfuSzchxQJSGlFKUaBVNAgFoFkdApHT1vS+g13V9lChoBmgJaA9DCCtqMA3DuHFAlIaUUpRoFU0ZAWgWR0CkdPw5FPSEdX2UKGgGaAloD0MIByeiX1tuckCUhpRSlGgVS+BoFkdApHUDLwF1S3V9lChoBmgJaA9DCArYDkasqXFAlIaUUpRoFUvbaBZHQKR1DTuv2Xd1fZQoaAZoCWgPQwhIqBlSRctyQJSGlFKUaBVL52gWR0CkdSuxrzoVdX2UKGgGaAloD0MIBHEeTmA/ckCUhpRSlGgVTQYBaBZHQKR1ZTqjaf11fZQoaAZoCWgPQwiXjGMk+61xQJSGlFKUaBVL5GgWR0CkdXuxrzoVdX2UKGgGaAloD0MIn8w/+qbsckCUhpRSlGgVTQ4BaBZHQKR1hLTx5LR1fZQoaAZoCWgPQwhFLc2tUBRwQJSGlFKUaBVL/2gWR0CkdYU6o2n9dX2UKGgGaAloD0MI3soSneVucUCUhpRSlGgVS/poFkdApIX6DoQnQnV9lChoBmgJaA9DCOZ4BaInLm9AlIaUUpRoFUvqaBZHQKSGSQyylep1fZQoaAZoCWgPQwgVyVcCqfpyQJSGlFKUaBVNAAFoFkdApIZJDLKV6nV9lChoBmgJaA9DCKgBg6QPBnNAlIaUUpRoFUvcaBZHQKSGqQ0XP7h1fZQoaAZoCWgPQwiX5lYIq35xQJSGlFKUaBVNFwFoFkdApIbIhY/3WXV9lChoBmgJaA9DCNCbilSY+XFAlIaUUpRoFU0aAWgWR0CkhtmIsRQKdX2UKGgGaAloD0MIqaENwEYadECUhpRSlGgVS/toFkdApIbgAuIykHV9lChoBmgJaA9DCL5ojxdSsG5AlIaUUpRoFUvYaBZHQKSHGQ0XP7h1fZQoaAZoCWgPQwj+7bJfdy9zQJSGlFKUaBVL4GgWR0CkhzoPCl7/dX2UKGgGaAloD0MIqfV+o52Ab0CUhpRSlGgVS/BoFkdApIdKkRBeHHV9lChoBmgJaA9DCEbNV8nHOnFAlIaUUpRoFUv6aBZHQKSHkIWP91l1fZQoaAZoCWgPQwi0klZ8Ax9zQJSGlFKUaBVNDAFoFkdApIeYAsCkoHV9lChoBmgJaA9DCK67eapDzXFAlIaUUpRoFUvyaBZHQKSHug5imVJ1fZQoaAZoCWgPQwjex9EcmbZxQJSGlFKUaBVNBwFoFkdApIf4hW5panV9lChoBmgJaA9DCK1qSUf5dnNAlIaUUpRoFU0bAWgWR0CkiDGI9C/odX2UKGgGaAloD0MI1GGFW/5HckCUhpRSlGgVS9toFkdApIhJDPWxyHV9lChoBmgJaA9DCO9054kne3FAlIaUUpRoFU0lAWgWR0CkiEoOhCdCdX2UKGgGaAloD0MIz7pGy0Eac0CUhpRSlGgVTQcBaBZHQKSIUg6EJ0J1fZQoaAZoCWgPQwjAsz16A1txQJSGlFKUaBVL32gWR0CkiFEM9bHIdX2UKGgGaAloD0MIvJUlOguNcECUhpRSlGgVS99oFkdApIjhiLEUCnV9lChoBmgJaA9DCNnRONTvNXNAlIaUUpRoFUvTaBZHQKSJEQzUI9l1fZQoaAZoCWgPQwj6RJ4k3R5zQJSGlFKUaBVL+WgWR0CkiRiFbmlqdX2UKGgGaAloD0MIKNGSx9PXcUCUhpRSlGgVS/ZoFkdApIkf/xUedXV9lChoBmgJaA9DCPyqXKi81HFAlIaUUpRoFU0OAWgWR0CkiSkJBw+/dX2UKGgGaAloD0MIIxPwayQHcUCUhpRSlGgVS+xoFkdApImCkO7QLXV9lChoBmgJaA9DCGYtBaR99nBAlIaUUpRoFUvzaBZHQKSJ6AMlTm51fZQoaAZoCWgPQwjtYS8UcBRwQJSGlFKUaBVL5WgWR0CkifIK2KEWdX2UKGgGaAloD0MIhetRuB4EbUCUhpRSlGgVS/5oFkdApIoIgeRxLnV9lChoBmgJaA9DCCcz3lZ6MXFAlIaUUpRoFUvdaBZHQKSKIIHkcS51fZQoaAZoCWgPQwjoTNpUnRRxQJSGlFKUaBVNNwFoFkdApIoyCvovBnV9lChoBmgJaA9DCH2W58FdknBAlIaUUpRoFUvJaBZHQKSKOQlruYx1fZQoaAZoCWgPQwgDmDJwABtzQJSGlFKUaBVL52gWR0CkimmFSKm9dX2UKGgGaAloD0MI3UPC9364c0CUhpRSlGgVTQkBaBZHQKSK2g6ltTF1fZQoaAZoCWgPQwgj2o6pOzNxQJSGlFKUaBVNDwFoFkdApIryDujRD3V9lChoBmgJaA9DCCxEh8DRtnJAlIaUUpRoFU0aAWgWR0CkixEM9bHIdX2UKGgGaAloD0MIZAPpYlPCb0CUhpRSlGgVS9ZoFkdApIspDPWxyHV9lChoBmgJaA9DCNu+R/21t3FAlIaUUpRoFUvvaBZHQKSLOYkVvdd1fZQoaAZoCWgPQwhW0opvaOZxQJSGlFKUaBVL6WgWR0Cki2gDA8B/dX2UKGgGaAloD0MIVWmLa7yncECUhpRSlGgVS/FoFkdApIt5DTjNp3V9lChoBmgJaA9DCCNKe4Nvd3NAlIaUUpRoFU0BAWgWR0Cki5CFj/dZdX2UKGgGaAloD0MIXfxtT5CycECUhpRSlGgVS8xoFkdApIvQAwPAf3V9lChoBmgJaA9DCJa04hvKK3BAlIaUUpRoFUvlaBZHQKSMEg6EJ0J1fZQoaAZoCWgPQwhg5jv4yR5yQJSGlFKUaBVNFQFoFkdApIwqkO7QLXV9lChoBmgJaA9DCCl3n+PjWHFAlIaUUpRoFUvoaBZHQKSMOIWP91l1fZQoaAZoCWgPQwjgEoB/ilJzQJSGlFKUaBVL6GgWR0CkjGIOhCdCdX2UKGgGaAloD0MI2jnNAq2QcECUhpRSlGgVS+ZoFkdApIxhDNQj2XV9lChoBmgJaA9DCBrAWyABTnBAlIaUUpRoFUvZaBZHQKSMeYixFAp1fZQoaAZoCWgPQwh6ceKr3aJwQJSGlFKUaBVNFQFoFkdApIy4hW5panV9lChoBmgJaA9DCEmcFVGTd25AlIaUUpRoFUvVaBZHQKSM2g+yJKt1fZQoaAZoCWgPQwgYzjXMkE5xQJSGlFKUaBVL0mgWR0CkjRkM1CPZdX2UKGgGaAloD0MIvHmqQ658c0CUhpRSlGgVS/VoFkdApI1ZDTjNp3V9lChoBmgJaA9DCI9tGXAWe3FAlIaUUpRoFU0GAWgWR0CkjWIOYplSdX2UKGgGaAloD0MIPdNLjGWJcECUhpRSlGgVS9doFkdApI2BCjUNKHV9lChoBmgJaA9DCEtywK7mY3JAlIaUUpRoFUv0aBZHQKSNsANoak11fZQoaAZoCWgPQwgykj1CzYpzQJSGlFKUaBVNFQFoFkdApI3RiLEUCnV9lChoBmgJaA9DCN3u5T65o3JAlIaUUpRoFUvVaBZHQKSN2ALiMpB1fZQoaAZoCWgPQwgB++jUFSpzQJSGlFKUaBVNIAFoFkdApI5IhdMTOHV9lChoBmgJaA9DCI0qw7gbUnFAlIaUUpRoFUvKaBZHQKSOSQ04zad1fZQoaAZoCWgPQwhfXKrSVsJwQJSGlFKUaBVL7GgWR0CkjlIOx0MgdX2UKGgGaAloD0MIYMd/gSC4cUCUhpRSlGgVS+BoFkdApI6CDsdDIHV9lChoBmgJaA9DCH6K48CrXXBAlIaUUpRoFUvYaBZHQKSOiYixFAp1fZQoaAZoCWgPQwhkd4GSQitzQJSGlFKUaBVL+mgWR0CkjpCFbmlqdX2UKGgGaAloD0MIInL6er7ASECUhpRSlGgVS8loFkdApI6ghW5panV9lChoBmgJaA9DCF2/YDds3XFAlIaUUpRoFU0aAWgWR0CkjtKREF4cdX2UKGgGaAloD0MIe6Lrwo+ZbkCUhpRSlGgVS/BoFkdApI8aDoQnQnVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
@@ -78,11 +78,11 @@
78
  "_n_updates": 460,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 64,
86
  "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000001FA4EA7B700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001FA4EA7B790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001FA4EA7B820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001FA4EA7B8B0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000001FA4EA7B940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000001FA4EA7B9D0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001FA4EA7BA60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x000001FA4EA7BAF0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001FA4EA7BB80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001FA4EA7BC10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001FA4EA7BCA0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x000001FA4EA76840>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651839408.8709972,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": "D:\\tmp\\tf",
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo2vr1pkrY/ViUav4ApEL6C5lG9Gov6vQAAAAAAAAAApo3Gvc8bfz44G+09SVqEvlFMVzuiVUI8AAAAAAAAAADmori9vVYRP06vv7xcNKW+GMCGuxzUPz0AAAAAAAAAALMBEb0F3mo/XoiGvRm0sL4yrVG9mR0UvAAAAAAAAAAA5t+evcMpM7qWEDi5SZJLtGWfGznyFFo4AAAAAAAAgD+a9yU9DJGuP1Msiz5Wrpe+WJWQPWK7CD4AAAAAAAAAADNfezwKzUa7zGqku1v1SD2/0Ya8y+MDPgAAgD8AAIA/DRKFvRRYu7qycx60UcA3sGHx27hUEpwzAACAPwAAgD+jq3m+HqI7P6oN+T2B6G2+Tm8QvgiFaj0AAAAAAAAAAGZUbTzSpBg+9lG6vZn0Yb7Wcmm8Tab/PQAAAAAAAAAAACnvvCMisz9GCxG/rHUevuwzXzze49m8AAAAAAAAAADNeSm+maSZPygCKb8aAN++pHpNvtYHfb4AAAAAAAAAAM3RxbzSo6S7Hu0hPKC/Kz0Qqt47JBkKOgAAgD8AAIA/zRqVvEhzs7p22ii57c8ZtEsr37lpCUE4AACAPwAAgD9D1bs+8iyBP6YTj70+LbG+OWCWPkwoALwAAAAAAAAAAAAsAbylN+4+RZIKvaCHi77fngC9xsDivAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIck7sof3LcUCUhpRSlIwBbJRNFgGMAXSUR0CUVDATZg5SdX2UKGgGaAloD0MIwVWeQFgRbUCUhpRSlGgVTQwBaBZHQJRUgBV+7UZ1fZQoaAZoCWgPQwhTdY9srsduQJSGlFKUaBVNSAFoFkdAlFSwEt/WlXV9lChoBmgJaA9DCExSmWLONXFAlIaUUpRoFU0qAWgWR0CUVRAS39aVdX2UKGgGaAloD0MIKA8LtSa9bECUhpRSlGgVTRgBaBZHQJRVcBOpKjB1fZQoaAZoCWgPQwjqtG6DWpNuQJSGlFKUaBVNHwFoFkdAlFXAE6kqMHV9lChoBmgJaA9DCG5OJQPAbG9AlIaUUpRoFU1DAWgWR0CUVeATIvJzdX2UKGgGaAloD0MIU3WPbK41bUCUhpRSlGgVTQUBaBZHQJRWIBLf1pV1fZQoaAZoCWgPQwiP39v0Z1FxQJSGlFKUaBVNFAFoFkdAlFagEt/WlXV9lChoBmgJaA9DCCjxuRMs6XBAlIaUUpRoFU0OAWgWR0CUVyATIvJzdX2UKGgGaAloD0MICVBTy1Y8ckCUhpRSlGgVTQQBaBZHQJRXgBMi8nN1fZQoaAZoCWgPQwjPLAlQ0yNyQJSGlFKUaBVNSAFoFkdAlFhQEyLyc3V9lChoBmgJaA9DCEt319nQB3NAlIaUUpRoFU1IAWgWR0CUWLAT7EYPdX2UKGgGaAloD0MIyJbl63KecUCUhpRSlGgVTUcBaBZHQJRaMBT4tYl1fZQoaAZoCWgPQwg7Vb5npFluQJSGlFKUaBVNDgFoFkdAlFqQEyLyc3V9lChoBmgJaA9DCAkaM4k6Q3NAlIaUUpRoFU0/AWgWR0CUW0ATIvJzdX2UKGgGaAloD0MIsn+eBgxOc0CUhpRSlGgVTQsBaBZHQJRbYBMi8nN1fZQoaAZoCWgPQwjZJaq3xlFyQJSGlFKUaBVNLQFoFkdAlFuwE6kqMHV9lChoBmgJaA9DCI7KTdTSNHJAlIaUUpRoFUv+aBZHQJRb8BMi8nN1fZQoaAZoCWgPQwg0D2CRH95wQJSGlFKUaBVNCAFoFkdAlFwAE6kqMHV9lChoBmgJaA9DCJs3TgrzkXFAlIaUUpRoFU0iAWgWR0CUXGATZg5SdX2UKGgGaAloD0MIuLBuvDsfckCUhpRSlGgVTVsBaBZHQJRdABS1map1fZQoaAZoCWgPQwik4CnkSpVuQJSGlFKUaBVNIQFoFkdAlF0QEt/WlXV9lChoBmgJaA9DCEYm4NfIim5AlIaUUpRoFU0bAWgWR0CUXXAUL2HtdX2UKGgGaAloD0MIaY6s/LIBbkCUhpRSlGgVTT4BaBZHQJRe8BQvYe11fZQoaAZoCWgPQwhmv+50J8pxQJSGlFKUaBVNQAFoFkdAlGCQE2YOUnV9lChoBmgJaA9DCJerH5sk7XJAlIaUUpRoFU0jAWgWR0CUYjAUcn3MdX2UKGgGaAloD0MI5pDUQskfb0CUhpRSlGgVTR0BaBZHQJRicBOpKjB1fZQoaAZoCWgPQwg/VBoxs89wQJSGlFKUaBVNCwFoFkdAlGKwEyLyc3V9lChoBmgJaA9DCDscXaX7/3BAlIaUUpRoFU2zAWgWR0CUYwATIvJzdX2UKGgGaAloD0MIlPWbiekKckCUhpRSlGgVTR8BaBZHQJRjwBMi8nN1fZQoaAZoCWgPQwibyw2Gum9yQJSGlFKUaBVNNAFoFkdAlGQQFLWZqnV9lChoBmgJaA9DCK946pHG6XJAlIaUUpRoFU2mAWgWR0CUZDATZg5SdX2UKGgGaAloD0MIRE/KpEZDckCUhpRSlGgVTSgBaBZHQJRkYBNmDlJ1fZQoaAZoCWgPQwh/aVGfJEpwQJSGlFKUaBVNHgFoFkdAlGSAE2YOUnV9lChoBmgJaA9DCMqNImvNnXBAlIaUUpRoFU0EAWgWR0CUZIATZg5SdX2UKGgGaAloD0MI+daH9YaocUCUhpRSlGgVTUgBaBZHQJRmMBLf1pV1fZQoaAZoCWgPQwgdqinJeo5wQJSGlFKUaBVNeQFoFkdAlGZQEyLyc3V9lChoBmgJaA9DCI7LuKkBmHBAlIaUUpRoFU1bAWgWR0CUZxATIvJzdX2UKGgGaAloD0MIHomXp/P0b0CUhpRSlGgVTTEBaBZHQJRncBNmDlJ1fZQoaAZoCWgPQwjizK/mwJlxQJSGlFKUaBVNGgFoFkdAlGgwE6kqMHV9lChoBmgJaA9DCGBa1Cf5BXFAlIaUUpRoFUvuaBZHQJRpsBMi8nN1fZQoaAZoCWgPQwioqWVrvb1xQJSGlFKUaBVNFgFoFkdAlGogEyLyc3V9lChoBmgJaA9DCG8qUmFsL3NAlIaUUpRoFU0mAWgWR0CUakAUL2HtdX2UKGgGaAloD0MIGELO+3+CcECUhpRSlGgVTUMBaBZHQJRqoBMi8nN1fZQoaAZoCWgPQwhpG3+i8sRyQJSGlFKUaBVNPAFoFkdAlGqgEyLyc3V9lChoBmgJaA9DCG+8OzJWE3BAlIaUUpRoFU0eAWgWR0CUfHATIvJzdX2UKGgGaAloD0MIiBHCo422b0CUhpRSlGgVTRIBaBZHQJR8kBOpKjB1fZQoaAZoCWgPQwjeyafHNuNuQJSGlFKUaBVNUQFoFkdAlH3wEt/WlXV9lChoBmgJaA9DCAUabOp8D3FAlIaUUpRoFU1YAWgWR0CUffAS39aVdX2UKGgGaAloD0MIU8vW+iK1Y0CUhpRSlGgVTegDaBZHQJR+MBLf1pV1fZQoaAZoCWgPQwhDyeTUTr9xQJSGlFKUaBVNBwFoFkdAlH6wEyLyc3V9lChoBmgJaA9DCIxJfy9FuHJAlIaUUpRoFU0rAWgWR0CUftATIvJzdX2UKGgGaAloD0MIjq89s6SobkCUhpRSlGgVTYYBaBZHQJR/MBNmDlJ1fZQoaAZoCWgPQwh4CyQofpNvQJSGlFKUaBVNRAFoFkdAlH9AE+xGD3V9lChoBmgJaA9DCGDmO/iJQG9AlIaUUpRoFU0mAWgWR0CUf7AS39aVdX2UKGgGaAloD0MIN8E3TZ9VckCUhpRSlGgVTRABaBZHQJSBUBOpKjB1fZQoaAZoCWgPQwg50ENtWy1xQJSGlFKUaBVNTAFoFkdAlIFQE6kqMHV9lChoBmgJaA9DCC3Pg7szknBAlIaUUpRoFU0MAWgWR0CUgZATIvJzdX2UKGgGaAloD0MIYLGGixzCckCUhpRSlGgVTRIBaBZHQJSCIBOpKjB1fZQoaAZoCWgPQwgIHt/edQpxQJSGlFKUaBVL+2gWR0CUgkAS39aVdX2UKGgGaAloD0MIaqM6HchCcECUhpRSlGgVTS4BaBZHQJSCgBLf1pV1fZQoaAZoCWgPQwjyCG6kbB9uQJSGlFKUaBVNRgFoFkdAlINgE2YOUnV9lChoBmgJaA9DCHy5T46CaW9AlIaUUpRoFU0UAWgWR0CUhFATIvJzdX2UKGgGaAloD0MIBtfc0f/SbUCUhpRSlGgVTQQBaBZHQJSEwBLf1pV1fZQoaAZoCWgPQwg1BwjmaJJwQJSGlFKUaBVL/2gWR0CUhMAS39aVdX2UKGgGaAloD0MIOEiI8sUdcUCUhpRSlGgVTSsBaBZHQJSFIBMi8nN1fZQoaAZoCWgPQwiyf54GjCZvQJSGlFKUaBVNHgFoFkdAlIYQE6kqMHV9lChoBmgJaA9DCDZ39L/cpHBAlIaUUpRoFU0jAWgWR0CUhhATqSowdX2UKGgGaAloD0MIi+HqAEh/cECUhpRSlGgVTXQBaBZHQJSGsBMi8nN1fZQoaAZoCWgPQwj/lgD8U0RyQJSGlFKUaBVNLwFoFkdAlIcAEyLyc3V9lChoBmgJaA9DCPRwAtPpGHFAlIaUUpRoFUv6aBZHQJSHoBNmDlJ1fZQoaAZoCWgPQwjou1tZIr5tQJSGlFKUaBVNCgFoFkdAlIfQEt/WlXV9lChoBmgJaA9DCK2HLxMF4HBAlIaUUpRoFU0IAWgWR0CUiKATIvJzdX2UKGgGaAloD0MIAfvo1BXecECUhpRSlGgVTTwBaBZHQJSJEBMi8nN1fZQoaAZoCWgPQwgpsACmDL5wQJSGlFKUaBVNOwFoFkdAlIoQEyLyc3V9lChoBmgJaA9DCIQtdvtsIHJAlIaUUpRoFU0ZAWgWR0CUimATIvJzdX2UKGgGaAloD0MItvepKrTWcECUhpRSlGgVTQ8BaBZHQJSLEAtFrmB1fZQoaAZoCWgPQwg9fJkoAtpxQJSGlFKUaBVNBAFoFkdAlItAE2YOUnV9lChoBmgJaA9DCMaoa+19t3JAlIaUUpRoFU0dAWgWR0CUi9ATZg5SdX2UKGgGaAloD0MIb72mBwVFb0CUhpRSlGgVTR4BaBZHQJSMQBMi8nN1fZQoaAZoCWgPQwg/bypSYe5xQJSGlFKUaBVNBQFoFkdAlIyQEt/WlXV9lChoBmgJaA9DCFMJT+j1x3BAlIaUUpRoFU0iAWgWR0CUjeATIvJzdX2UKGgGaAloD0MISx3k9SAmckCUhpRSlGgVTQoBaBZHQJSOUBMi8nN1fZQoaAZoCWgPQwi9rIkFvltyQJSGlFKUaBVNUgFoFkdAlI6AE+xGD3V9lChoBmgJaA9DCIm0jT/RzHBAlIaUUpRoFU0WAWgWR0CUjsAU+LWJdX2UKGgGaAloD0MIzVzg8lgfcUCUhpRSlGgVTUABaBZHQJSO8BNmDlJ1fZQoaAZoCWgPQwi/1qVGqNlyQJSGlFKUaBVNFwFoFkdAlI+AEt/WlXV9lChoBmgJaA9DCILGTKJeL29AlIaUUpRoFU0OAWgWR0CUj8ATIvJzdX2UKGgGaAloD0MISS7/IX2zbkCUhpRSlGgVTQcBaBZHQJSQgBLf1pV1fZQoaAZoCWgPQwgnhA66hNNtQJSGlFKUaBVL/mgWR0CUkJATZg5SdX2UKGgGaAloD0MI5QzFHW8Wb0CUhpRSlGgVTRUBaBZHQJSR0BMi8nN1fZQoaAZoCWgPQwiDUN7HUctyQJSGlFKUaBVNFQFoFkdAlJKgEyLyc3V9lChoBmgJaA9DCGAF+G7zW21AlIaUUpRoFU1DAWgWR0CUk0AU+LWJdX2UKGgGaAloD0MIud+hKNAycECUhpRSlGgVTRsBaBZHQJSTQBT4tYl1fZQoaAZoCWgPQwjIef8fZyRzQJSGlFKUaBVNJQFoFkdAlJPQE2YOUnV9lChoBmgJaA9DCOyFAraDimVAlIaUUpRoFU3oA2gWR0CUlMATIvJzdX2UKGgGaAloD0MI3uNME3bZcECUhpRSlGgVTRsBaBZHQJSVABMi8nN1fZQoaAZoCWgPQwi6SQwCa6NwQJSGlFKUaBVNDQFoFkdAlJUAEyLyc3V9lChoBmgJaA9DCBx9zAeEbHBAlIaUUpRoFU0OAWgWR0CUlTAZbY9QdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
 
78
  "_n_updates": 460,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
+ "gae_lambda": 0.99,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
  "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5db454036781332c6091e844900a39b31414146f98b2adeff256a75cdb4237c5
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:695b352c98418520588924221059560f62cd4f7cb5f9edaf24cef16997a969fe
3
+ size 84829
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0e07974ab32c56a07580d1018648bd3eb71642fcc39a811a98a5bd3b72b2c5dc
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e0b3a94fec03e33b6dc852a9a4c4995d20dc11bd9aea7ec60f88b4dea5d2300
3
  size 43201
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 273.03485435027153, "std_reward": 17.983607577861253, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T09:18:28.122374"}
 
1
+ {"mean_reward": 275.4628910812638, "std_reward": 17.962249824167735, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T13:43:44.501596"}