gates04 commited on
Commit
8a5904d
·
verified ·
1 Parent(s): c16292e

End of training

Browse files
Files changed (4) hide show
  1. README.md +80 -0
  2. config.json +84 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: huawei-noah/TinyBERT_General_4L_312D
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: NF4-KD-NID
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # NF4-KD-NID
19
+
20
+ This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0419
23
+ - Accuracy: 0.9919
24
+ - Precision: 0.9744
25
+ - Recall: 0.9469
26
+ - F1 score: 0.9546
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 650
47
+ - eval_batch_size: 650
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:|
58
+ | 0.2112 | 1.0 | 1828 | 0.1824 | 0.9775 | 0.7759 | 0.7784 | 0.7742 |
59
+ | 0.1196 | 2.0 | 3656 | 0.1061 | 0.9850 | 0.9060 | 0.8522 | 0.8502 |
60
+ | 0.0956 | 3.0 | 5484 | 0.0855 | 0.9874 | 0.9140 | 0.8833 | 0.8858 |
61
+ | 0.0823 | 4.0 | 7312 | 0.0708 | 0.9891 | 0.9204 | 0.8982 | 0.9029 |
62
+ | 0.0653 | 5.0 | 9140 | 0.0628 | 0.9897 | 0.9313 | 0.8985 | 0.9070 |
63
+ | 0.066 | 6.0 | 10968 | 0.0572 | 0.9901 | 0.9206 | 0.9132 | 0.9106 |
64
+ | 0.0546 | 7.0 | 12796 | 0.0534 | 0.9907 | 0.9284 | 0.9156 | 0.9187 |
65
+ | 0.0486 | 8.0 | 14624 | 0.0511 | 0.9909 | 0.9287 | 0.9184 | 0.9199 |
66
+ | 0.0473 | 9.0 | 16452 | 0.0490 | 0.9911 | 0.9732 | 0.9284 | 0.9346 |
67
+ | 0.0483 | 10.0 | 18280 | 0.0469 | 0.9914 | 0.9788 | 0.9237 | 0.9344 |
68
+ | 0.0435 | 11.0 | 20108 | 0.0451 | 0.9915 | 0.9722 | 0.9323 | 0.9360 |
69
+ | 0.0388 | 12.0 | 21936 | 0.0429 | 0.9917 | 0.9757 | 0.9395 | 0.9477 |
70
+ | 0.039 | 13.0 | 23764 | 0.0426 | 0.9917 | 0.9758 | 0.9514 | 0.9597 |
71
+ | 0.0362 | 14.0 | 25592 | 0.0423 | 0.9918 | 0.9743 | 0.9467 | 0.9542 |
72
+ | 0.0357 | 15.0 | 27420 | 0.0419 | 0.9919 | 0.9744 | 0.9469 | 0.9546 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.49.0
78
+ - Pytorch 2.6.0+cu124
79
+ - Datasets 3.4.1
80
+ - Tokenizers 0.21.1
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "huawei-noah/TinyBERT_General_4L_312D",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "cell": {},
10
+ "dim": 312,
11
+ "dropout": 0.1,
12
+ "emb_size": 312,
13
+ "hidden_act": "gelu",
14
+ "hidden_dim": 3072,
15
+ "hidden_dropout_prob": 0.1,
16
+ "id2label": {
17
+ "0": "LABEL_0",
18
+ "1": "LABEL_1",
19
+ "2": "LABEL_2",
20
+ "3": "LABEL_3",
21
+ "4": "LABEL_4",
22
+ "5": "LABEL_5",
23
+ "6": "LABEL_6",
24
+ "7": "LABEL_7",
25
+ "8": "LABEL_8",
26
+ "9": "LABEL_9",
27
+ "10": "LABEL_10",
28
+ "11": "LABEL_11",
29
+ "12": "LABEL_12",
30
+ "13": "LABEL_13",
31
+ "14": "LABEL_14",
32
+ "15": "LABEL_15",
33
+ "16": "LABEL_16",
34
+ "17": "LABEL_17",
35
+ "18": "LABEL_18",
36
+ "19": "LABEL_19",
37
+ "20": "LABEL_20",
38
+ "21": "LABEL_21",
39
+ "22": "LABEL_22",
40
+ "23": "LABEL_23"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 1200,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1,
47
+ "LABEL_10": 10,
48
+ "LABEL_11": 11,
49
+ "LABEL_12": 12,
50
+ "LABEL_13": 13,
51
+ "LABEL_14": 14,
52
+ "LABEL_15": 15,
53
+ "LABEL_16": 16,
54
+ "LABEL_17": 17,
55
+ "LABEL_18": 18,
56
+ "LABEL_19": 19,
57
+ "LABEL_2": 2,
58
+ "LABEL_20": 20,
59
+ "LABEL_21": 21,
60
+ "LABEL_22": 22,
61
+ "LABEL_23": 23,
62
+ "LABEL_3": 3,
63
+ "LABEL_4": 4,
64
+ "LABEL_5": 5,
65
+ "LABEL_6": 6,
66
+ "LABEL_7": 7,
67
+ "LABEL_8": 8,
68
+ "LABEL_9": 9
69
+ },
70
+ "max_position_embeddings": 512,
71
+ "model_type": "distilbert",
72
+ "n_heads": 12,
73
+ "n_layers": 4,
74
+ "pad_token_id": 0,
75
+ "pre_trained": "",
76
+ "qa_dropout": 0.1,
77
+ "seq_classif_dropout": 0.2,
78
+ "sinusoidal_pos_embds": false,
79
+ "structure": [],
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.49.0",
82
+ "type_vocab_size": 2,
83
+ "vocab_size": 30522
84
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:897e94718e04d0edbb853e722d96f2bc87d8976e8812d4c694a35e8d714f0b83
3
+ size 76157040
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e905464fc356226721b3ef66addbe07ff42543c05197c987aa3184b9e515dfbc
3
+ size 5304