File size: 3,679 Bytes
211a1ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: ec-biogpt-noised-pubmed-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ec-biogpt-noised-pubmed-v2
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.1503 | 0.11 | 500 | 1.3369 |
| 1.3766 | 0.21 | 1000 | 1.2721 |
| 1.3523 | 0.32 | 1500 | 1.2516 |
| 1.3123 | 0.43 | 2000 | 1.2394 |
| 1.1954 | 0.54 | 2500 | 1.2265 |
| 1.226 | 0.64 | 3000 | 1.2182 |
| 1.1269 | 0.75 | 3500 | 1.2118 |
| 1.212 | 0.86 | 4000 | 1.2053 |
| 1.3253 | 0.96 | 4500 | 1.1984 |
| 1.0722 | 1.07 | 5000 | 1.2016 |
| 1.1208 | 1.18 | 5500 | 1.2009 |
| 1.132 | 1.28 | 6000 | 1.1992 |
| 1.1228 | 1.39 | 6500 | 1.1967 |
| 1.1529 | 1.5 | 7000 | 1.1918 |
| 1.0342 | 1.61 | 7500 | 1.1916 |
| 1.0881 | 1.71 | 8000 | 1.1889 |
| 1.084 | 1.82 | 8500 | 1.1852 |
| 1.1409 | 1.93 | 9000 | 1.1807 |
| 0.9794 | 2.03 | 9500 | 1.2098 |
| 0.9821 | 2.14 | 10000 | 1.2146 |
| 0.9695 | 2.25 | 10500 | 1.2096 |
| 0.9866 | 2.35 | 11000 | 1.2088 |
| 1.0305 | 2.46 | 11500 | 1.2059 |
| 0.9532 | 2.57 | 12000 | 1.2060 |
| 0.9978 | 2.68 | 12500 | 1.2041 |
| 1.0013 | 2.78 | 13000 | 1.2006 |
| 1.0401 | 2.89 | 13500 | 1.2023 |
| 1.0899 | 3.0 | 14000 | 1.1988 |
| 0.8229 | 3.1 | 14500 | 1.2410 |
| 0.8598 | 3.21 | 15000 | 1.2420 |
| 0.9295 | 3.32 | 15500 | 1.2414 |
| 0.8477 | 3.43 | 16000 | 1.2386 |
| 0.9302 | 3.53 | 16500 | 1.2382 |
| 0.8284 | 3.64 | 17000 | 1.2374 |
| 0.8242 | 3.75 | 17500 | 1.2410 |
| 0.8422 | 3.85 | 18000 | 1.2346 |
| 0.8742 | 3.96 | 18500 | 1.2362 |
| 0.798 | 4.07 | 19000 | 1.2667 |
| 0.7821 | 4.17 | 19500 | 1.2701 |
| 0.7788 | 4.28 | 20000 | 1.2714 |
| 0.7701 | 4.39 | 20500 | 1.2702 |
| 0.7348 | 4.5 | 21000 | 1.2722 |
| 0.762 | 4.6 | 21500 | 1.2705 |
| 0.7385 | 4.71 | 22000 | 1.2705 |
| 0.7837 | 4.82 | 22500 | 1.2695 |
| 0.8371 | 4.92 | 23000 | 1.2703 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|