--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-cased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6714801444043321 --- # bert-base-cased-finetuned-rte This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7260 - Accuracy: 0.6715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6915 | 1.0 | 156 | 0.6491 | 0.6606 | | 0.55 | 2.0 | 312 | 0.6737 | 0.6570 | | 0.3955 | 3.0 | 468 | 0.7260 | 0.6715 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3