--- license: apache-2.0 base_model: facebook/convnext-small-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnext-small-224-finetuned-piid results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: val args: default metrics: - name: Accuracy type: accuracy value: 0.7625570776255708 --- # convnext-small-224-finetuned-piid This model is a fine-tuned version of [facebook/convnext-small-224](https://huggingface.co/facebook/convnext-small-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5651 - Accuracy: 0.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3405 | 0.98 | 20 | 1.3201 | 0.4155 | | 1.1715 | 2.0 | 41 | 1.1362 | 0.5708 | | 0.9231 | 2.98 | 61 | 0.9255 | 0.6438 | | 0.7128 | 4.0 | 82 | 0.7558 | 0.6986 | | 0.6204 | 4.98 | 102 | 0.7056 | 0.7534 | | 0.5322 | 6.0 | 123 | 0.6610 | 0.7397 | | 0.4403 | 6.98 | 143 | 0.6639 | 0.7443 | | 0.4388 | 8.0 | 164 | 0.6472 | 0.7306 | | 0.3901 | 8.98 | 184 | 0.6684 | 0.7352 | | 0.4202 | 10.0 | 205 | 0.5934 | 0.7397 | | 0.3784 | 10.98 | 225 | 0.5651 | 0.7626 | | 0.2973 | 12.0 | 246 | 0.6439 | 0.7580 | | 0.3614 | 12.98 | 266 | 0.5844 | 0.7534 | | 0.2795 | 14.0 | 287 | 0.6015 | 0.7306 | | 0.2825 | 14.98 | 307 | 0.6031 | 0.7626 | | 0.2364 | 16.0 | 328 | 0.6249 | 0.7534 | | 0.2162 | 16.98 | 348 | 0.6248 | 0.7626 | | 0.2455 | 18.0 | 369 | 0.6153 | 0.7489 | | 0.2314 | 18.98 | 389 | 0.6113 | 0.7580 | | 0.248 | 19.51 | 400 | 0.6131 | 0.7580 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3