Training in progress, step 400, checkpoint
Browse files- checkpoint-300/config.json +31 -0
- checkpoint-300/generation_config.json +6 -0
- checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-300/global_step300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-300/global_step300/mp_rank_00_model_states.pt +3 -0
- checkpoint-300/latest +1 -0
- checkpoint-300/model.safetensors +3 -0
- checkpoint-300/rng_state_0.pth +3 -0
- checkpoint-300/rng_state_1.pth +3 -0
- checkpoint-300/trainer_state.json +2121 -0
- checkpoint-300/training_args.bin +3 -0
- checkpoint-300/zero_to_fp32.py +604 -0
- checkpoint-400/config.json +31 -0
- checkpoint-400/generation_config.json +6 -0
- checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-400/global_step400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-400/global_step400/mp_rank_00_model_states.pt +3 -0
- checkpoint-400/latest +1 -0
- checkpoint-400/model.safetensors +3 -0
- checkpoint-400/rng_state_0.pth +3 -0
- checkpoint-400/rng_state_1.pth +3 -0
- checkpoint-400/trainer_state.json +2821 -0
- checkpoint-400/training_args.bin +3 -0
- checkpoint-400/zero_to_fp32.py +604 -0
checkpoint-300/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "georgeyw/gpt-2-small-init-seed-5",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": true,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_dropout": 0.1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout": 0.0,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"layer_norm_epsilon": 1e-05,
|
18 |
+
"max_position_embeddings": 1024,
|
19 |
+
"model_type": "gpt_neox",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rotary_emb_base": 10000,
|
24 |
+
"rotary_pct": 0.25,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.38.2",
|
28 |
+
"use_cache": true,
|
29 |
+
"use_parallel_residual": true,
|
30 |
+
"vocab_size": 50304
|
31 |
+
}
|
checkpoint-300/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.38.2"
|
6 |
+
}
|
checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71c5be6373fb827d208e43746b2e985a638d20b096d1935fa0b92c3b73969e87
|
3 |
+
size 973946896
|
checkpoint-300/global_step300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:132bca4d07aadd3f56b2aef04a2d5892b4f02f0873f1d8b5f27d942fa900e224
|
3 |
+
size 973946832
|
checkpoint-300/global_step300/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e986775e89f677510fd5c4f357f85e9e46ce0ae4e92db51ebb800efc1a64486
|
3 |
+
size 324689964
|
checkpoint-300/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step300
|
checkpoint-300/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba8550b5d8f29acb5ae68f5f221f4f61f56e0eecb0a274c9047640dfea097117
|
3 |
+
size 324662984
|
checkpoint-300/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0bb7d2ecdd48fd7d0be1e75b0e3f29004064381052fa203ed926e88b90ef530
|
3 |
+
size 14512
|
checkpoint-300/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:177d534a379bd6b276474c2cb140e318dc65db4457b6c1b6f25a1a9dd563af82
|
3 |
+
size 14512
|
checkpoint-300/trainer_state.json
ADDED
@@ -0,0 +1,2121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.29985007496251875,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 300,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 3.3340563149001086,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 11.0,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 2.398812329952019,
|
21 |
+
"learning_rate": 5.9999999999999995e-05,
|
22 |
+
"loss": 10.125,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"grad_norm": 2.394322446895115,
|
28 |
+
"learning_rate": 0.00011999999999999999,
|
29 |
+
"loss": 10.1172,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0,
|
34 |
+
"grad_norm": 1.9958816684399585,
|
35 |
+
"learning_rate": 0.00017999999999999998,
|
36 |
+
"loss": 9.875,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0,
|
41 |
+
"grad_norm": 1.8270465897882062,
|
42 |
+
"learning_rate": 0.00023999999999999998,
|
43 |
+
"loss": 9.6641,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"grad_norm": 1.7854046471397795,
|
49 |
+
"learning_rate": 0.0003,
|
50 |
+
"loss": 9.4844,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"grad_norm": 1.719416749115252,
|
56 |
+
"learning_rate": 0.00035999999999999997,
|
57 |
+
"loss": 9.3281,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.01,
|
62 |
+
"grad_norm": 1.4637825746112274,
|
63 |
+
"learning_rate": 0.00041999999999999996,
|
64 |
+
"loss": 9.2109,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01,
|
69 |
+
"grad_norm": 1.4393631015406718,
|
70 |
+
"learning_rate": 0.00047999999999999996,
|
71 |
+
"loss": 8.9453,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01,
|
76 |
+
"grad_norm": 1.2936734586915988,
|
77 |
+
"learning_rate": 0.00054,
|
78 |
+
"loss": 8.7109,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01,
|
83 |
+
"grad_norm": 1.0756922378227356,
|
84 |
+
"learning_rate": 0.0005999986405514987,
|
85 |
+
"loss": 8.4609,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"grad_norm": 0.9277829127413892,
|
91 |
+
"learning_rate": 0.0005999945622196846,
|
92 |
+
"loss": 8.2344,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.01,
|
97 |
+
"grad_norm": 0.8084581786682467,
|
98 |
+
"learning_rate": 0.0005999877650456265,
|
99 |
+
"loss": 8.125,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.01,
|
104 |
+
"grad_norm": 0.7635084596900947,
|
105 |
+
"learning_rate": 0.000599978249097772,
|
106 |
+
"loss": 7.9766,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.01,
|
111 |
+
"grad_norm": 0.9186699644247788,
|
112 |
+
"learning_rate": 0.0005999660144719463,
|
113 |
+
"loss": 7.8555,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02,
|
118 |
+
"grad_norm": 0.6609504256551479,
|
119 |
+
"learning_rate": 0.0005999510612913519,
|
120 |
+
"loss": 7.7734,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.02,
|
125 |
+
"grad_norm": 0.7086232844782971,
|
126 |
+
"learning_rate": 0.0005999333897065673,
|
127 |
+
"loss": 7.7148,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.02,
|
132 |
+
"grad_norm": 16.38048851691348,
|
133 |
+
"learning_rate": 0.0005999129998955453,
|
134 |
+
"loss": 8.4844,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.02,
|
139 |
+
"grad_norm": 1.3057527590449889,
|
140 |
+
"learning_rate": 0.0005998898920636111,
|
141 |
+
"loss": 7.7539,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02,
|
146 |
+
"grad_norm": 0.6966048242948986,
|
147 |
+
"learning_rate": 0.00059986406644346,
|
148 |
+
"loss": 7.75,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.02,
|
153 |
+
"grad_norm": 0.6348089115348993,
|
154 |
+
"learning_rate": 0.0005998355232951559,
|
155 |
+
"loss": 7.7031,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02,
|
160 |
+
"grad_norm": 0.7829163518610293,
|
161 |
+
"learning_rate": 0.0005998042629061279,
|
162 |
+
"loss": 7.6992,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.02,
|
167 |
+
"grad_norm": 0.5900591778980369,
|
168 |
+
"learning_rate": 0.0005997702855911678,
|
169 |
+
"loss": 7.6016,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.02,
|
174 |
+
"grad_norm": 0.4655170213064256,
|
175 |
+
"learning_rate": 0.0005997335916924268,
|
176 |
+
"loss": 7.5977,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.02,
|
181 |
+
"grad_norm": 0.6287348258915756,
|
182 |
+
"learning_rate": 0.0005996941815794121,
|
183 |
+
"loss": 7.5586,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03,
|
188 |
+
"grad_norm": 0.6137321903884564,
|
189 |
+
"learning_rate": 0.0005996520556489831,
|
190 |
+
"loss": 7.5898,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03,
|
195 |
+
"grad_norm": 0.44962562710631065,
|
196 |
+
"learning_rate": 0.0005996072143253473,
|
197 |
+
"loss": 7.4336,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.03,
|
202 |
+
"grad_norm": 0.46130046454703316,
|
203 |
+
"learning_rate": 0.0005995596580600566,
|
204 |
+
"loss": 7.4023,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.03,
|
209 |
+
"grad_norm": 0.4686712675731326,
|
210 |
+
"learning_rate": 0.0005995093873320018,
|
211 |
+
"loss": 7.3789,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.03,
|
216 |
+
"grad_norm": 0.4672147564288997,
|
217 |
+
"learning_rate": 0.0005994564026474087,
|
218 |
+
"loss": 7.3711,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03,
|
223 |
+
"grad_norm": 0.40408354581233474,
|
224 |
+
"learning_rate": 0.0005994007045398324,
|
225 |
+
"loss": 7.3672,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03,
|
230 |
+
"grad_norm": 0.46032146732584733,
|
231 |
+
"learning_rate": 0.0005993422935701524,
|
232 |
+
"loss": 7.3477,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03,
|
237 |
+
"grad_norm": 0.4765534634593268,
|
238 |
+
"learning_rate": 0.0005992811703265664,
|
239 |
+
"loss": 7.3555,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03,
|
244 |
+
"grad_norm": 0.46208489386235113,
|
245 |
+
"learning_rate": 0.0005992173354245849,
|
246 |
+
"loss": 7.3047,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.03,
|
251 |
+
"grad_norm": 0.2956144524964961,
|
252 |
+
"learning_rate": 0.0005991507895070244,
|
253 |
+
"loss": 7.3125,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04,
|
258 |
+
"grad_norm": 0.4834645389868856,
|
259 |
+
"learning_rate": 0.0005990815332440017,
|
260 |
+
"loss": 7.207,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04,
|
265 |
+
"grad_norm": 0.4411831350968505,
|
266 |
+
"learning_rate": 0.0005990095673329266,
|
267 |
+
"loss": 7.1758,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.04,
|
272 |
+
"grad_norm": 0.24809297748968667,
|
273 |
+
"learning_rate": 0.0005989348924984951,
|
274 |
+
"loss": 7.2188,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.04,
|
279 |
+
"grad_norm": 0.39402988416840584,
|
280 |
+
"learning_rate": 0.0005988575094926817,
|
281 |
+
"loss": 7.1953,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.04,
|
286 |
+
"grad_norm": 0.3868345222189167,
|
287 |
+
"learning_rate": 0.0005987774190947328,
|
288 |
+
"loss": 7.1641,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04,
|
293 |
+
"grad_norm": 0.3777261230135448,
|
294 |
+
"learning_rate": 0.0005986946221111575,
|
295 |
+
"loss": 7.1328,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.04,
|
300 |
+
"grad_norm": 0.4687511444077827,
|
301 |
+
"learning_rate": 0.0005986091193757206,
|
302 |
+
"loss": 7.0898,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.04,
|
307 |
+
"grad_norm": 0.34935796211612463,
|
308 |
+
"learning_rate": 0.0005985209117494337,
|
309 |
+
"loss": 7.1367,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04,
|
314 |
+
"grad_norm": 0.38764476686849886,
|
315 |
+
"learning_rate": 0.0005984300001205466,
|
316 |
+
"loss": 7.125,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.04,
|
321 |
+
"grad_norm": 0.3956487898882936,
|
322 |
+
"learning_rate": 0.0005983363854045386,
|
323 |
+
"loss": 7.1094,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.05,
|
328 |
+
"grad_norm": 0.31140257544677513,
|
329 |
+
"learning_rate": 0.0005982400685441084,
|
330 |
+
"loss": 7.0898,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.05,
|
335 |
+
"grad_norm": 0.3664476570531787,
|
336 |
+
"learning_rate": 0.0005981410505091662,
|
337 |
+
"loss": 7.0664,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.05,
|
342 |
+
"grad_norm": 0.31891741142945207,
|
343 |
+
"learning_rate": 0.0005980393322968223,
|
344 |
+
"loss": 7.0273,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.05,
|
349 |
+
"grad_norm": 0.4533529037337155,
|
350 |
+
"learning_rate": 0.0005979349149313778,
|
351 |
+
"loss": 7.0586,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05,
|
356 |
+
"grad_norm": 0.30532331638835586,
|
357 |
+
"learning_rate": 0.0005978277994643147,
|
358 |
+
"loss": 7.0195,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05,
|
363 |
+
"grad_norm": 0.6501991746260075,
|
364 |
+
"learning_rate": 0.0005977179869742844,
|
365 |
+
"loss": 6.9648,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.05,
|
370 |
+
"grad_norm": 0.43904455901717926,
|
371 |
+
"learning_rate": 0.0005976054785670975,
|
372 |
+
"loss": 6.9805,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.05,
|
377 |
+
"grad_norm": 0.4826001598483571,
|
378 |
+
"learning_rate": 0.0005974902753757124,
|
379 |
+
"loss": 6.9297,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.05,
|
384 |
+
"grad_norm": 0.2924998027034648,
|
385 |
+
"learning_rate": 0.000597372378560224,
|
386 |
+
"loss": 6.8984,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.05,
|
391 |
+
"grad_norm": 0.4439033666380787,
|
392 |
+
"learning_rate": 0.0005972517893078517,
|
393 |
+
"loss": 6.8945,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.06,
|
398 |
+
"grad_norm": 0.6135914255073411,
|
399 |
+
"learning_rate": 0.0005971285088329284,
|
400 |
+
"loss": 6.9727,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.06,
|
405 |
+
"grad_norm": 0.5575686565598483,
|
406 |
+
"learning_rate": 0.0005970025383768866,
|
407 |
+
"loss": 6.9219,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.06,
|
412 |
+
"grad_norm": 0.4820951675994578,
|
413 |
+
"learning_rate": 0.0005968738792082478,
|
414 |
+
"loss": 6.8516,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.06,
|
419 |
+
"grad_norm": 0.40164190019465584,
|
420 |
+
"learning_rate": 0.0005967425326226082,
|
421 |
+
"loss": 6.7734,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.06,
|
426 |
+
"grad_norm": 0.46129863945181293,
|
427 |
+
"learning_rate": 0.0005966084999426265,
|
428 |
+
"loss": 6.8125,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.06,
|
433 |
+
"grad_norm": 0.33322355827118677,
|
434 |
+
"learning_rate": 0.0005964717825180101,
|
435 |
+
"loss": 6.7891,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.06,
|
440 |
+
"grad_norm": 0.3847525153855558,
|
441 |
+
"learning_rate": 0.0005963323817255024,
|
442 |
+
"loss": 6.8242,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.06,
|
447 |
+
"grad_norm": 0.3384433591375982,
|
448 |
+
"learning_rate": 0.0005961902989688674,
|
449 |
+
"loss": 6.707,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.06,
|
454 |
+
"grad_norm": 0.3937003195165685,
|
455 |
+
"learning_rate": 0.000596045535678877,
|
456 |
+
"loss": 6.8203,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.06,
|
461 |
+
"grad_norm": 0.35423488053528107,
|
462 |
+
"learning_rate": 0.0005958980933132962,
|
463 |
+
"loss": 6.7383,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.07,
|
468 |
+
"grad_norm": 0.36005939745315396,
|
469 |
+
"learning_rate": 0.0005957479733568675,
|
470 |
+
"loss": 6.7109,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.07,
|
475 |
+
"grad_norm": 0.3499278317706933,
|
476 |
+
"learning_rate": 0.0005955951773212976,
|
477 |
+
"loss": 6.7266,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.07,
|
482 |
+
"grad_norm": 0.3708385192137018,
|
483 |
+
"learning_rate": 0.0005954397067452407,
|
484 |
+
"loss": 6.7617,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.07,
|
489 |
+
"grad_norm": 0.3775657656205869,
|
490 |
+
"learning_rate": 0.0005952815631942839,
|
491 |
+
"loss": 6.7148,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.07,
|
496 |
+
"grad_norm": 0.3040083750375816,
|
497 |
+
"learning_rate": 0.0005951207482609307,
|
498 |
+
"loss": 6.5938,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.07,
|
503 |
+
"grad_norm": 0.3443020808841468,
|
504 |
+
"learning_rate": 0.0005949572635645861,
|
505 |
+
"loss": 6.6523,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.07,
|
510 |
+
"grad_norm": 0.3520066316939,
|
511 |
+
"learning_rate": 0.0005947911107515389,
|
512 |
+
"loss": 6.6211,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.07,
|
517 |
+
"grad_norm": 0.3739040572679613,
|
518 |
+
"learning_rate": 0.0005946222914949462,
|
519 |
+
"loss": 6.5547,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.07,
|
524 |
+
"grad_norm": 0.34890731989025553,
|
525 |
+
"learning_rate": 0.000594450807494816,
|
526 |
+
"loss": 6.5859,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.07,
|
531 |
+
"grad_norm": 0.40910932350136514,
|
532 |
+
"learning_rate": 0.0005942766604779903,
|
533 |
+
"loss": 6.5547,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.08,
|
538 |
+
"grad_norm": 0.5698342865852906,
|
539 |
+
"learning_rate": 0.0005940998521981274,
|
540 |
+
"loss": 6.457,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.08,
|
545 |
+
"grad_norm": 0.5179452709555474,
|
546 |
+
"learning_rate": 0.0005939203844356852,
|
547 |
+
"loss": 6.5547,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.08,
|
552 |
+
"grad_norm": 0.5222512938673792,
|
553 |
+
"learning_rate": 0.0005937382589979016,
|
554 |
+
"loss": 6.5039,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.08,
|
559 |
+
"grad_norm": 0.5682332793686307,
|
560 |
+
"learning_rate": 0.0005935534777187781,
|
561 |
+
"loss": 6.5547,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.08,
|
566 |
+
"grad_norm": 0.3869287710460676,
|
567 |
+
"learning_rate": 0.0005933660424590598,
|
568 |
+
"loss": 6.5156,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.08,
|
573 |
+
"grad_norm": 0.3078211032807607,
|
574 |
+
"learning_rate": 0.000593175955106218,
|
575 |
+
"loss": 6.4258,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.08,
|
580 |
+
"grad_norm": 0.3611357511872241,
|
581 |
+
"learning_rate": 0.00059298321757443,
|
582 |
+
"loss": 6.4727,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.08,
|
587 |
+
"grad_norm": 0.29633467844266953,
|
588 |
+
"learning_rate": 0.0005927878318045608,
|
589 |
+
"loss": 6.3281,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.08,
|
594 |
+
"grad_norm": 0.3257574200776832,
|
595 |
+
"learning_rate": 0.0005925897997641426,
|
596 |
+
"loss": 6.3203,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.08,
|
601 |
+
"grad_norm": 0.2824054533852328,
|
602 |
+
"learning_rate": 0.0005923891234473562,
|
603 |
+
"loss": 6.4062,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.09,
|
608 |
+
"grad_norm": 0.3056199770204573,
|
609 |
+
"learning_rate": 0.0005921858048750097,
|
610 |
+
"loss": 6.3984,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.09,
|
615 |
+
"grad_norm": 0.2966438824341908,
|
616 |
+
"learning_rate": 0.000591979846094519,
|
617 |
+
"loss": 6.3555,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.09,
|
622 |
+
"grad_norm": 0.32782438676663733,
|
623 |
+
"learning_rate": 0.0005917712491798866,
|
624 |
+
"loss": 6.4023,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.09,
|
629 |
+
"grad_norm": 0.3538316399620157,
|
630 |
+
"learning_rate": 0.0005915600162316811,
|
631 |
+
"loss": 6.2812,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.09,
|
636 |
+
"grad_norm": 0.375858298192913,
|
637 |
+
"learning_rate": 0.0005913461493770162,
|
638 |
+
"loss": 6.3086,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.09,
|
643 |
+
"grad_norm": 0.5189251339815161,
|
644 |
+
"learning_rate": 0.0005911296507695284,
|
645 |
+
"loss": 6.2812,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.09,
|
650 |
+
"grad_norm": 0.6304909542669104,
|
651 |
+
"learning_rate": 0.0005909105225893564,
|
652 |
+
"loss": 6.2969,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.09,
|
657 |
+
"grad_norm": 0.4655662819622591,
|
658 |
+
"learning_rate": 0.0005906887670431187,
|
659 |
+
"loss": 6.1953,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.09,
|
664 |
+
"grad_norm": 0.39035390983920965,
|
665 |
+
"learning_rate": 0.000590464386363891,
|
666 |
+
"loss": 6.2617,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.09,
|
671 |
+
"grad_norm": 0.4918417851770978,
|
672 |
+
"learning_rate": 0.0005902373828111843,
|
673 |
+
"loss": 6.2148,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.1,
|
678 |
+
"grad_norm": 0.35670770889552555,
|
679 |
+
"learning_rate": 0.0005900077586709219,
|
680 |
+
"loss": 6.2461,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.1,
|
685 |
+
"grad_norm": 0.4177985869939347,
|
686 |
+
"learning_rate": 0.0005897755162554163,
|
687 |
+
"loss": 6.1797,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.1,
|
692 |
+
"grad_norm": 0.3742471130708234,
|
693 |
+
"learning_rate": 0.000589540657903346,
|
694 |
+
"loss": 6.1406,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.1,
|
699 |
+
"grad_norm": 0.28627666723978284,
|
700 |
+
"learning_rate": 0.0005893031859797322,
|
701 |
+
"loss": 6.2031,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.1,
|
706 |
+
"grad_norm": 0.32238563846046103,
|
707 |
+
"learning_rate": 0.0005890631028759143,
|
708 |
+
"loss": 6.0625,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.1,
|
713 |
+
"grad_norm": 0.2556625657587849,
|
714 |
+
"learning_rate": 0.0005888204110095265,
|
715 |
+
"loss": 6.1797,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.1,
|
720 |
+
"grad_norm": 0.35463629701710253,
|
721 |
+
"learning_rate": 0.0005885751128244734,
|
722 |
+
"loss": 6.125,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1,
|
727 |
+
"grad_norm": 0.31975770214936095,
|
728 |
+
"learning_rate": 0.0005883272107909048,
|
729 |
+
"loss": 6.1836,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.1,
|
734 |
+
"grad_norm": 0.3464621815245048,
|
735 |
+
"learning_rate": 0.0005880767074051915,
|
736 |
+
"loss": 6.125,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.1,
|
741 |
+
"grad_norm": 0.3663428920796654,
|
742 |
+
"learning_rate": 0.0005878236051898998,
|
743 |
+
"loss": 6.0781,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.11,
|
748 |
+
"grad_norm": 0.31594460565215293,
|
749 |
+
"learning_rate": 0.0005875679066937664,
|
750 |
+
"loss": 6.082,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.11,
|
755 |
+
"grad_norm": 0.3552617109396582,
|
756 |
+
"learning_rate": 0.000587309614491672,
|
757 |
+
"loss": 6.1016,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.11,
|
762 |
+
"grad_norm": 0.307016409692456,
|
763 |
+
"learning_rate": 0.0005870487311846164,
|
764 |
+
"loss": 6.1406,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.11,
|
769 |
+
"grad_norm": 0.32188902148474213,
|
770 |
+
"learning_rate": 0.0005867852593996914,
|
771 |
+
"loss": 6.0039,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.11,
|
776 |
+
"grad_norm": 0.25501199715105083,
|
777 |
+
"learning_rate": 0.0005865192017900551,
|
778 |
+
"loss": 6.0938,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.11,
|
783 |
+
"grad_norm": 0.3416203070024056,
|
784 |
+
"learning_rate": 0.0005862505610349049,
|
785 |
+
"loss": 6.0234,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.11,
|
790 |
+
"grad_norm": 0.3562508875852537,
|
791 |
+
"learning_rate": 0.0005859793398394498,
|
792 |
+
"loss": 6.0469,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.11,
|
797 |
+
"grad_norm": 0.4443953757302568,
|
798 |
+
"learning_rate": 0.0005857055409348845,
|
799 |
+
"loss": 5.9766,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.11,
|
804 |
+
"grad_norm": 0.42023839332714596,
|
805 |
+
"learning_rate": 0.0005854291670783607,
|
806 |
+
"loss": 6.0781,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.11,
|
811 |
+
"grad_norm": 0.4618323255809241,
|
812 |
+
"learning_rate": 0.0005851502210529604,
|
813 |
+
"loss": 5.9727,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.12,
|
818 |
+
"grad_norm": 0.379195014798667,
|
819 |
+
"learning_rate": 0.0005848687056676668,
|
820 |
+
"loss": 5.9922,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.12,
|
825 |
+
"grad_norm": 0.3931552573296799,
|
826 |
+
"learning_rate": 0.0005845846237573366,
|
827 |
+
"loss": 5.9492,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.12,
|
832 |
+
"grad_norm": 0.2567080044949908,
|
833 |
+
"learning_rate": 0.0005842979781826717,
|
834 |
+
"loss": 6.0273,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.12,
|
839 |
+
"grad_norm": 0.4190305965377807,
|
840 |
+
"learning_rate": 0.0005840087718301895,
|
841 |
+
"loss": 6.0391,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.12,
|
846 |
+
"grad_norm": 0.3996803869430228,
|
847 |
+
"learning_rate": 0.0005837170076121951,
|
848 |
+
"loss": 5.9531,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.12,
|
853 |
+
"grad_norm": 0.478219248015785,
|
854 |
+
"learning_rate": 0.000583422688466751,
|
855 |
+
"loss": 6.0586,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.12,
|
860 |
+
"grad_norm": 0.40869844309811526,
|
861 |
+
"learning_rate": 0.0005831258173576474,
|
862 |
+
"loss": 6.0117,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.12,
|
867 |
+
"grad_norm": 0.3728598080697978,
|
868 |
+
"learning_rate": 0.0005828263972743733,
|
869 |
+
"loss": 5.9375,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.12,
|
874 |
+
"grad_norm": 0.3560055462882015,
|
875 |
+
"learning_rate": 0.0005825244312320856,
|
876 |
+
"loss": 5.9531,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.12,
|
881 |
+
"grad_norm": 0.40446932887864323,
|
882 |
+
"learning_rate": 0.0005822199222715787,
|
883 |
+
"loss": 5.9609,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.13,
|
888 |
+
"grad_norm": 0.38514065739946723,
|
889 |
+
"learning_rate": 0.000581912873459255,
|
890 |
+
"loss": 5.8594,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.13,
|
895 |
+
"grad_norm": 0.35367576386319416,
|
896 |
+
"learning_rate": 0.0005816032878870921,
|
897 |
+
"loss": 5.9023,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.13,
|
902 |
+
"grad_norm": 0.3341681995122829,
|
903 |
+
"learning_rate": 0.0005812911686726135,
|
904 |
+
"loss": 5.9062,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.13,
|
909 |
+
"grad_norm": 0.3387022688975784,
|
910 |
+
"learning_rate": 0.0005809765189588563,
|
911 |
+
"loss": 5.8945,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.13,
|
916 |
+
"grad_norm": 0.31638659898934757,
|
917 |
+
"learning_rate": 0.0005806593419143395,
|
918 |
+
"loss": 5.8242,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.13,
|
923 |
+
"grad_norm": 0.3229678508227436,
|
924 |
+
"learning_rate": 0.0005803396407330325,
|
925 |
+
"loss": 5.8516,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.13,
|
930 |
+
"grad_norm": 0.35499490868584455,
|
931 |
+
"learning_rate": 0.0005800174186343226,
|
932 |
+
"loss": 5.9258,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.13,
|
937 |
+
"grad_norm": 0.40753171542848754,
|
938 |
+
"learning_rate": 0.0005796926788629828,
|
939 |
+
"loss": 5.8242,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.13,
|
944 |
+
"grad_norm": 0.3625374018348824,
|
945 |
+
"learning_rate": 0.0005793654246891389,
|
946 |
+
"loss": 5.832,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.13,
|
951 |
+
"grad_norm": 0.3583489573569317,
|
952 |
+
"learning_rate": 0.000579035659408237,
|
953 |
+
"loss": 5.8398,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.14,
|
958 |
+
"grad_norm": 0.39657706318861896,
|
959 |
+
"learning_rate": 0.0005787033863410095,
|
960 |
+
"loss": 5.8633,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.14,
|
965 |
+
"grad_norm": 0.3965837889564036,
|
966 |
+
"learning_rate": 0.0005783686088334428,
|
967 |
+
"loss": 5.8633,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.14,
|
972 |
+
"grad_norm": 0.29496474301865566,
|
973 |
+
"learning_rate": 0.0005780313302567424,
|
974 |
+
"loss": 5.8203,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.14,
|
979 |
+
"grad_norm": 0.44637192639243695,
|
980 |
+
"learning_rate": 0.0005776915540073001,
|
981 |
+
"loss": 5.8477,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.14,
|
986 |
+
"grad_norm": 0.39605473508683114,
|
987 |
+
"learning_rate": 0.0005773492835066587,
|
988 |
+
"loss": 5.7383,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.14,
|
993 |
+
"grad_norm": 0.3008962634266945,
|
994 |
+
"learning_rate": 0.0005770045222014786,
|
995 |
+
"loss": 5.7617,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.14,
|
1000 |
+
"grad_norm": 0.36915495506607826,
|
1001 |
+
"learning_rate": 0.0005766572735635022,
|
1002 |
+
"loss": 5.7695,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.14,
|
1007 |
+
"grad_norm": 0.3282300349560706,
|
1008 |
+
"learning_rate": 0.0005763075410895193,
|
1009 |
+
"loss": 5.8281,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.14,
|
1014 |
+
"grad_norm": 0.2747449814083844,
|
1015 |
+
"learning_rate": 0.0005759553283013323,
|
1016 |
+
"loss": 5.7812,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.14,
|
1021 |
+
"grad_norm": 0.28905882704179764,
|
1022 |
+
"learning_rate": 0.00057560063874572,
|
1023 |
+
"loss": 5.7344,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.15,
|
1028 |
+
"grad_norm": 0.280625988867192,
|
1029 |
+
"learning_rate": 0.000575243475994402,
|
1030 |
+
"loss": 5.7773,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.15,
|
1035 |
+
"grad_norm": 0.41061863948012467,
|
1036 |
+
"learning_rate": 0.0005748838436440035,
|
1037 |
+
"loss": 5.7578,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.15,
|
1042 |
+
"grad_norm": 0.4920152483870267,
|
1043 |
+
"learning_rate": 0.0005745217453160183,
|
1044 |
+
"loss": 5.7305,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.15,
|
1049 |
+
"grad_norm": 0.5463207978955044,
|
1050 |
+
"learning_rate": 0.0005741571846567725,
|
1051 |
+
"loss": 5.7383,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.15,
|
1056 |
+
"grad_norm": 0.3986359831157306,
|
1057 |
+
"learning_rate": 0.0005737901653373878,
|
1058 |
+
"loss": 5.668,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.15,
|
1063 |
+
"grad_norm": 0.37908758170100293,
|
1064 |
+
"learning_rate": 0.0005734206910537447,
|
1065 |
+
"loss": 5.6875,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.15,
|
1070 |
+
"grad_norm": 0.35929793070492694,
|
1071 |
+
"learning_rate": 0.0005730487655264451,
|
1072 |
+
"loss": 5.7188,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.15,
|
1077 |
+
"grad_norm": 0.4217799574145456,
|
1078 |
+
"learning_rate": 0.0005726743925007751,
|
1079 |
+
"loss": 5.7305,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.15,
|
1084 |
+
"grad_norm": 0.4024411981587195,
|
1085 |
+
"learning_rate": 0.0005722975757466667,
|
1086 |
+
"loss": 5.6289,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.15,
|
1091 |
+
"grad_norm": 0.3472391905877033,
|
1092 |
+
"learning_rate": 0.0005719183190586606,
|
1093 |
+
"loss": 5.6523,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.16,
|
1098 |
+
"grad_norm": 0.31752956812138816,
|
1099 |
+
"learning_rate": 0.0005715366262558675,
|
1100 |
+
"loss": 5.6172,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.16,
|
1105 |
+
"grad_norm": 0.3170152384332457,
|
1106 |
+
"learning_rate": 0.0005711525011819294,
|
1107 |
+
"loss": 5.6172,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.16,
|
1112 |
+
"grad_norm": 0.40520629326601837,
|
1113 |
+
"learning_rate": 0.0005707659477049818,
|
1114 |
+
"loss": 5.625,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.16,
|
1119 |
+
"grad_norm": 0.3965976910198806,
|
1120 |
+
"learning_rate": 0.0005703769697176137,
|
1121 |
+
"loss": 5.6562,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.16,
|
1126 |
+
"grad_norm": 0.40422960541801994,
|
1127 |
+
"learning_rate": 0.0005699855711368293,
|
1128 |
+
"loss": 5.6836,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.16,
|
1133 |
+
"grad_norm": 0.3780813184050647,
|
1134 |
+
"learning_rate": 0.0005695917559040079,
|
1135 |
+
"loss": 5.5938,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.16,
|
1140 |
+
"grad_norm": 0.36917638857736573,
|
1141 |
+
"learning_rate": 0.0005691955279848645,
|
1142 |
+
"loss": 5.668,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.16,
|
1147 |
+
"grad_norm": 0.37769176081037814,
|
1148 |
+
"learning_rate": 0.0005687968913694098,
|
1149 |
+
"loss": 5.4961,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.16,
|
1154 |
+
"grad_norm": 0.3255116524991148,
|
1155 |
+
"learning_rate": 0.0005683958500719103,
|
1156 |
+
"loss": 5.5117,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.16,
|
1161 |
+
"grad_norm": 0.31897629016848805,
|
1162 |
+
"learning_rate": 0.0005679924081308471,
|
1163 |
+
"loss": 5.5664,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.17,
|
1168 |
+
"grad_norm": 0.2869064236553046,
|
1169 |
+
"learning_rate": 0.0005675865696088764,
|
1170 |
+
"loss": 5.5391,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.17,
|
1175 |
+
"grad_norm": 0.29226729022634845,
|
1176 |
+
"learning_rate": 0.0005671783385927873,
|
1177 |
+
"loss": 5.5586,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.17,
|
1182 |
+
"grad_norm": 0.2534117210955766,
|
1183 |
+
"learning_rate": 0.0005667677191934618,
|
1184 |
+
"loss": 5.5312,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.17,
|
1189 |
+
"grad_norm": 0.289828484125484,
|
1190 |
+
"learning_rate": 0.0005663547155458326,
|
1191 |
+
"loss": 5.6484,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.17,
|
1196 |
+
"grad_norm": 0.2717242930342115,
|
1197 |
+
"learning_rate": 0.0005659393318088419,
|
1198 |
+
"loss": 5.5352,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.17,
|
1203 |
+
"grad_norm": 0.3595538109137759,
|
1204 |
+
"learning_rate": 0.0005655215721653993,
|
1205 |
+
"loss": 5.5742,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.17,
|
1210 |
+
"grad_norm": 0.4255054350471108,
|
1211 |
+
"learning_rate": 0.0005651014408223398,
|
1212 |
+
"loss": 5.5469,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.17,
|
1217 |
+
"grad_norm": 0.3670561941219979,
|
1218 |
+
"learning_rate": 0.0005646789420103814,
|
1219 |
+
"loss": 5.5078,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.17,
|
1224 |
+
"grad_norm": 0.40280130904983164,
|
1225 |
+
"learning_rate": 0.0005642540799840822,
|
1226 |
+
"loss": 5.5,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.17,
|
1231 |
+
"grad_norm": 0.41159472035983025,
|
1232 |
+
"learning_rate": 0.0005638268590217984,
|
1233 |
+
"loss": 5.5039,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.18,
|
1238 |
+
"grad_norm": 0.4316778037513652,
|
1239 |
+
"learning_rate": 0.0005633972834256401,
|
1240 |
+
"loss": 5.5352,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.18,
|
1245 |
+
"grad_norm": 0.5674781128363939,
|
1246 |
+
"learning_rate": 0.000562965357521429,
|
1247 |
+
"loss": 5.4336,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.18,
|
1252 |
+
"grad_norm": 0.41654662151365446,
|
1253 |
+
"learning_rate": 0.0005625310856586541,
|
1254 |
+
"loss": 5.6211,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.18,
|
1259 |
+
"grad_norm": 0.5159976364107484,
|
1260 |
+
"learning_rate": 0.0005620944722104282,
|
1261 |
+
"loss": 5.4844,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.18,
|
1266 |
+
"grad_norm": 0.34364678177014185,
|
1267 |
+
"learning_rate": 0.0005616555215734438,
|
1268 |
+
"loss": 5.4922,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.18,
|
1273 |
+
"grad_norm": 0.3708077784459011,
|
1274 |
+
"learning_rate": 0.0005612142381679289,
|
1275 |
+
"loss": 5.5234,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.18,
|
1280 |
+
"grad_norm": 0.3620051253453866,
|
1281 |
+
"learning_rate": 0.0005607706264376028,
|
1282 |
+
"loss": 5.4961,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.18,
|
1287 |
+
"grad_norm": 0.34735585210929654,
|
1288 |
+
"learning_rate": 0.0005603246908496305,
|
1289 |
+
"loss": 5.4453,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.18,
|
1294 |
+
"grad_norm": 0.37719874705792217,
|
1295 |
+
"learning_rate": 0.0005598764358945783,
|
1296 |
+
"loss": 5.4844,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.18,
|
1301 |
+
"grad_norm": 0.3749130664831207,
|
1302 |
+
"learning_rate": 0.0005594258660863689,
|
1303 |
+
"loss": 5.4648,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.19,
|
1308 |
+
"grad_norm": 0.40951353306235827,
|
1309 |
+
"learning_rate": 0.0005589729859622351,
|
1310 |
+
"loss": 5.5039,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.19,
|
1315 |
+
"grad_norm": 0.40146882563949804,
|
1316 |
+
"learning_rate": 0.0005585178000826745,
|
1317 |
+
"loss": 5.3672,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.19,
|
1322 |
+
"grad_norm": 0.4062987628428303,
|
1323 |
+
"learning_rate": 0.0005580603130314043,
|
1324 |
+
"loss": 5.3984,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.19,
|
1329 |
+
"grad_norm": 0.35626322654799136,
|
1330 |
+
"learning_rate": 0.0005576005294153138,
|
1331 |
+
"loss": 5.3984,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.19,
|
1336 |
+
"grad_norm": 0.3140647930801716,
|
1337 |
+
"learning_rate": 0.0005571384538644188,
|
1338 |
+
"loss": 5.3906,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.19,
|
1343 |
+
"grad_norm": 0.2990060538353662,
|
1344 |
+
"learning_rate": 0.0005566740910318153,
|
1345 |
+
"loss": 5.3711,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.19,
|
1350 |
+
"grad_norm": 0.3337525907515936,
|
1351 |
+
"learning_rate": 0.0005562074455936315,
|
1352 |
+
"loss": 5.4023,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.19,
|
1357 |
+
"grad_norm": 0.3381587051014816,
|
1358 |
+
"learning_rate": 0.000555738522248982,
|
1359 |
+
"loss": 5.4414,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.19,
|
1364 |
+
"grad_norm": 0.2954008999469894,
|
1365 |
+
"learning_rate": 0.0005552673257199197,
|
1366 |
+
"loss": 5.418,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.19,
|
1371 |
+
"grad_norm": 0.3242310900810155,
|
1372 |
+
"learning_rate": 0.0005547938607513882,
|
1373 |
+
"loss": 5.418,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2,
|
1378 |
+
"grad_norm": 0.3149021804393678,
|
1379 |
+
"learning_rate": 0.0005543181321111747,
|
1380 |
+
"loss": 5.4375,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2,
|
1385 |
+
"grad_norm": 0.32859412218218814,
|
1386 |
+
"learning_rate": 0.0005538401445898612,
|
1387 |
+
"loss": 5.4492,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2,
|
1392 |
+
"grad_norm": 0.2960282598050701,
|
1393 |
+
"learning_rate": 0.0005533599030007768,
|
1394 |
+
"loss": 5.3867,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.2,
|
1399 |
+
"grad_norm": 0.2866762878199755,
|
1400 |
+
"learning_rate": 0.0005528774121799489,
|
1401 |
+
"loss": 5.3789,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.2,
|
1406 |
+
"grad_norm": 0.34865216327038784,
|
1407 |
+
"learning_rate": 0.0005523926769860549,
|
1408 |
+
"loss": 5.3711,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.2,
|
1413 |
+
"grad_norm": 0.4043023482242469,
|
1414 |
+
"learning_rate": 0.0005519057023003725,
|
1415 |
+
"loss": 5.3906,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2,
|
1420 |
+
"grad_norm": 0.4069960968887199,
|
1421 |
+
"learning_rate": 0.0005514164930267316,
|
1422 |
+
"loss": 5.2773,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2,
|
1427 |
+
"grad_norm": 0.4051152667506829,
|
1428 |
+
"learning_rate": 0.0005509250540914641,
|
1429 |
+
"loss": 5.3242,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2,
|
1434 |
+
"grad_norm": 0.375026562862574,
|
1435 |
+
"learning_rate": 0.0005504313904433546,
|
1436 |
+
"loss": 5.4258,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.2,
|
1441 |
+
"grad_norm": 0.3326184185943848,
|
1442 |
+
"learning_rate": 0.0005499355070535906,
|
1443 |
+
"loss": 5.375,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.21,
|
1448 |
+
"grad_norm": 0.3695014522224558,
|
1449 |
+
"learning_rate": 0.0005494374089157123,
|
1450 |
+
"loss": 5.3984,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.21,
|
1455 |
+
"grad_norm": 0.2793258171824813,
|
1456 |
+
"learning_rate": 0.0005489371010455625,
|
1457 |
+
"loss": 5.2891,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.21,
|
1462 |
+
"grad_norm": 0.2879966080096621,
|
1463 |
+
"learning_rate": 0.0005484345884812357,
|
1464 |
+
"loss": 5.3867,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.21,
|
1469 |
+
"grad_norm": 0.32599687735840654,
|
1470 |
+
"learning_rate": 0.0005479298762830281,
|
1471 |
+
"loss": 5.3203,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.21,
|
1476 |
+
"grad_norm": 0.31305226164510963,
|
1477 |
+
"learning_rate": 0.0005474229695333857,
|
1478 |
+
"loss": 5.3281,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.21,
|
1483 |
+
"grad_norm": 0.3514527997420013,
|
1484 |
+
"learning_rate": 0.000546913873336854,
|
1485 |
+
"loss": 5.3008,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.21,
|
1490 |
+
"grad_norm": 0.38188707638514424,
|
1491 |
+
"learning_rate": 0.0005464025928200261,
|
1492 |
+
"loss": 5.3086,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.21,
|
1497 |
+
"grad_norm": 0.3865148796842015,
|
1498 |
+
"learning_rate": 0.0005458891331314909,
|
1499 |
+
"loss": 5.2656,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.21,
|
1504 |
+
"grad_norm": 0.4304784604066023,
|
1505 |
+
"learning_rate": 0.0005453734994417819,
|
1506 |
+
"loss": 5.3125,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.21,
|
1511 |
+
"grad_norm": 0.40269356862192995,
|
1512 |
+
"learning_rate": 0.0005448556969433247,
|
1513 |
+
"loss": 5.2617,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.22,
|
1518 |
+
"grad_norm": 0.30541089575928587,
|
1519 |
+
"learning_rate": 0.0005443357308503845,
|
1520 |
+
"loss": 5.2422,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.22,
|
1525 |
+
"grad_norm": 0.29104576978792596,
|
1526 |
+
"learning_rate": 0.0005438136063990142,
|
1527 |
+
"loss": 5.2109,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.22,
|
1532 |
+
"grad_norm": 0.291891354913362,
|
1533 |
+
"learning_rate": 0.0005432893288470012,
|
1534 |
+
"loss": 5.2617,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.22,
|
1539 |
+
"grad_norm": 0.3301944866145271,
|
1540 |
+
"learning_rate": 0.0005427629034738149,
|
1541 |
+
"loss": 5.2188,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.22,
|
1546 |
+
"grad_norm": 0.33824328942983417,
|
1547 |
+
"learning_rate": 0.0005422343355805525,
|
1548 |
+
"loss": 5.293,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.22,
|
1553 |
+
"grad_norm": 0.3539026997032359,
|
1554 |
+
"learning_rate": 0.0005417036304898872,
|
1555 |
+
"loss": 5.2695,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.22,
|
1560 |
+
"grad_norm": 0.38720918633148693,
|
1561 |
+
"learning_rate": 0.0005411707935460132,
|
1562 |
+
"loss": 5.2227,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.22,
|
1567 |
+
"grad_norm": 0.4539797383631105,
|
1568 |
+
"learning_rate": 0.0005406358301145925,
|
1569 |
+
"loss": 5.2539,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.22,
|
1574 |
+
"grad_norm": 0.40620115793500733,
|
1575 |
+
"learning_rate": 0.0005400987455827012,
|
1576 |
+
"loss": 5.2852,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.22,
|
1581 |
+
"grad_norm": 0.3680272948713411,
|
1582 |
+
"learning_rate": 0.0005395595453587743,
|
1583 |
+
"loss": 5.2617,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.23,
|
1588 |
+
"grad_norm": 0.3919096232059878,
|
1589 |
+
"learning_rate": 0.0005390182348725522,
|
1590 |
+
"loss": 5.2305,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.23,
|
1595 |
+
"grad_norm": 0.3783288666206609,
|
1596 |
+
"learning_rate": 0.0005384748195750255,
|
1597 |
+
"loss": 5.2031,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.23,
|
1602 |
+
"grad_norm": 0.34519921770570766,
|
1603 |
+
"learning_rate": 0.0005379293049383802,
|
1604 |
+
"loss": 5.2227,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.23,
|
1609 |
+
"grad_norm": 0.3548414963147158,
|
1610 |
+
"learning_rate": 0.0005373816964559426,
|
1611 |
+
"loss": 5.2891,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.23,
|
1616 |
+
"grad_norm": 0.36291865229291537,
|
1617 |
+
"learning_rate": 0.000536831999642124,
|
1618 |
+
"loss": 5.2266,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.23,
|
1623 |
+
"grad_norm": 0.313916097271022,
|
1624 |
+
"learning_rate": 0.0005362802200323654,
|
1625 |
+
"loss": 5.1055,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.23,
|
1630 |
+
"grad_norm": 0.29232836352032804,
|
1631 |
+
"learning_rate": 0.0005357263631830811,
|
1632 |
+
"loss": 5.1406,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.23,
|
1637 |
+
"grad_norm": 0.34482143058503106,
|
1638 |
+
"learning_rate": 0.0005351704346716036,
|
1639 |
+
"loss": 5.2305,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.23,
|
1644 |
+
"grad_norm": 0.3079065808428287,
|
1645 |
+
"learning_rate": 0.0005346124400961267,
|
1646 |
+
"loss": 5.2031,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.23,
|
1651 |
+
"grad_norm": 0.2869436862887739,
|
1652 |
+
"learning_rate": 0.0005340523850756497,
|
1653 |
+
"loss": 5.2539,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.24,
|
1658 |
+
"grad_norm": 0.27208356804470046,
|
1659 |
+
"learning_rate": 0.0005334902752499204,
|
1660 |
+
"loss": 5.1484,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.24,
|
1665 |
+
"grad_norm": 0.27768753128858653,
|
1666 |
+
"learning_rate": 0.0005329261162793785,
|
1667 |
+
"loss": 5.1758,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.24,
|
1672 |
+
"grad_norm": 0.2701859056468535,
|
1673 |
+
"learning_rate": 0.0005323599138450985,
|
1674 |
+
"loss": 5.1562,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.24,
|
1679 |
+
"grad_norm": 0.2940215458662745,
|
1680 |
+
"learning_rate": 0.0005317916736487328,
|
1681 |
+
"loss": 5.1406,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.24,
|
1686 |
+
"grad_norm": 0.29636403080234647,
|
1687 |
+
"learning_rate": 0.0005312214014124536,
|
1688 |
+
"loss": 5.1719,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.24,
|
1693 |
+
"grad_norm": 0.3513688083715198,
|
1694 |
+
"learning_rate": 0.0005306491028788964,
|
1695 |
+
"loss": 5.0664,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.24,
|
1700 |
+
"grad_norm": 0.455104024911365,
|
1701 |
+
"learning_rate": 0.0005300747838111007,
|
1702 |
+
"loss": 5.1289,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.24,
|
1707 |
+
"grad_norm": 0.5257166308389952,
|
1708 |
+
"learning_rate": 0.0005294984499924532,
|
1709 |
+
"loss": 5.1523,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.24,
|
1714 |
+
"grad_norm": 0.440798061960299,
|
1715 |
+
"learning_rate": 0.0005289201072266293,
|
1716 |
+
"loss": 5.1289,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.24,
|
1721 |
+
"grad_norm": 0.4965659619997502,
|
1722 |
+
"learning_rate": 0.0005283397613375339,
|
1723 |
+
"loss": 5.1211,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.25,
|
1728 |
+
"grad_norm": 0.40267641703114215,
|
1729 |
+
"learning_rate": 0.0005277574181692438,
|
1730 |
+
"loss": 5.0586,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.25,
|
1735 |
+
"grad_norm": 0.4013007078780512,
|
1736 |
+
"learning_rate": 0.0005271730835859485,
|
1737 |
+
"loss": 5.0273,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.25,
|
1742 |
+
"grad_norm": 0.38447773033555227,
|
1743 |
+
"learning_rate": 0.0005265867634718903,
|
1744 |
+
"loss": 5.1367,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.25,
|
1749 |
+
"grad_norm": 0.37763602900633203,
|
1750 |
+
"learning_rate": 0.0005259984637313066,
|
1751 |
+
"loss": 5.1055,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.25,
|
1756 |
+
"grad_norm": 0.344024017964152,
|
1757 |
+
"learning_rate": 0.0005254081902883689,
|
1758 |
+
"loss": 5.0898,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.25,
|
1763 |
+
"grad_norm": 0.35441912273779097,
|
1764 |
+
"learning_rate": 0.0005248159490871245,
|
1765 |
+
"loss": 5.1016,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.25,
|
1770 |
+
"grad_norm": 0.2877284013478678,
|
1771 |
+
"learning_rate": 0.0005242217460914358,
|
1772 |
+
"loss": 5.0664,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.25,
|
1777 |
+
"grad_norm": 0.3143093064571279,
|
1778 |
+
"learning_rate": 0.0005236255872849201,
|
1779 |
+
"loss": 5.1484,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.25,
|
1784 |
+
"grad_norm": 0.31206187291371684,
|
1785 |
+
"learning_rate": 0.00052302747867089,
|
1786 |
+
"loss": 5.1328,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.25,
|
1791 |
+
"grad_norm": 0.3150920418962865,
|
1792 |
+
"learning_rate": 0.000522427426272293,
|
1793 |
+
"loss": 5.1289,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.26,
|
1798 |
+
"grad_norm": 0.3195539774191906,
|
1799 |
+
"learning_rate": 0.0005218254361316495,
|
1800 |
+
"loss": 5.0898,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.26,
|
1805 |
+
"grad_norm": 0.24548404338795576,
|
1806 |
+
"learning_rate": 0.000521221514310994,
|
1807 |
+
"loss": 5.1016,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.26,
|
1812 |
+
"grad_norm": 0.25649802021467205,
|
1813 |
+
"learning_rate": 0.0005206156668918122,
|
1814 |
+
"loss": 5.1289,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.26,
|
1819 |
+
"grad_norm": 0.25018114739252273,
|
1820 |
+
"learning_rate": 0.0005200078999749811,
|
1821 |
+
"loss": 5.0508,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.26,
|
1826 |
+
"grad_norm": 0.2740344343745378,
|
1827 |
+
"learning_rate": 0.0005193982196807067,
|
1828 |
+
"loss": 5.082,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.26,
|
1833 |
+
"grad_norm": 0.30807201125247574,
|
1834 |
+
"learning_rate": 0.0005187866321484628,
|
1835 |
+
"loss": 5.0078,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.26,
|
1840 |
+
"grad_norm": 0.32367849723934244,
|
1841 |
+
"learning_rate": 0.0005181731435369292,
|
1842 |
+
"loss": 5.0625,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.26,
|
1847 |
+
"grad_norm": 0.3465653029312147,
|
1848 |
+
"learning_rate": 0.0005175577600239292,
|
1849 |
+
"loss": 5.0078,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.26,
|
1854 |
+
"grad_norm": 0.3716869632171198,
|
1855 |
+
"learning_rate": 0.0005169404878063681,
|
1856 |
+
"loss": 5.0977,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.26,
|
1861 |
+
"grad_norm": 0.37681584996379275,
|
1862 |
+
"learning_rate": 0.0005163213331001702,
|
1863 |
+
"loss": 5.082,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.27,
|
1868 |
+
"grad_norm": 0.34462519335888353,
|
1869 |
+
"learning_rate": 0.0005157003021402166,
|
1870 |
+
"loss": 4.9844,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.27,
|
1875 |
+
"grad_norm": 0.39514090390949574,
|
1876 |
+
"learning_rate": 0.000515077401180282,
|
1877 |
+
"loss": 5.0312,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.27,
|
1882 |
+
"grad_norm": 0.46469822376758096,
|
1883 |
+
"learning_rate": 0.0005144526364929722,
|
1884 |
+
"loss": 5.0234,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.27,
|
1889 |
+
"grad_norm": 0.34570371767844565,
|
1890 |
+
"learning_rate": 0.0005138260143696608,
|
1891 |
+
"loss": 5.0352,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.27,
|
1896 |
+
"grad_norm": 0.2920012584285204,
|
1897 |
+
"learning_rate": 0.0005131975411204257,
|
1898 |
+
"loss": 4.9805,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.27,
|
1903 |
+
"grad_norm": 0.34109638913820345,
|
1904 |
+
"learning_rate": 0.0005125672230739852,
|
1905 |
+
"loss": 4.9844,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.27,
|
1910 |
+
"grad_norm": 0.2976316922487618,
|
1911 |
+
"learning_rate": 0.0005119350665776353,
|
1912 |
+
"loss": 4.9727,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.27,
|
1917 |
+
"grad_norm": 0.38160864657971466,
|
1918 |
+
"learning_rate": 0.0005113010779971848,
|
1919 |
+
"loss": 5.0312,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.27,
|
1924 |
+
"grad_norm": 0.40407725833100544,
|
1925 |
+
"learning_rate": 0.0005106652637168917,
|
1926 |
+
"loss": 5.0312,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.27,
|
1931 |
+
"grad_norm": 0.36275741793161437,
|
1932 |
+
"learning_rate": 0.0005100276301393987,
|
1933 |
+
"loss": 5.0391,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.28,
|
1938 |
+
"grad_norm": 0.35097531980231905,
|
1939 |
+
"learning_rate": 0.0005093881836856688,
|
1940 |
+
"loss": 4.9844,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.28,
|
1945 |
+
"grad_norm": 0.3615382021996322,
|
1946 |
+
"learning_rate": 0.000508746930794921,
|
1947 |
+
"loss": 4.9453,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.28,
|
1952 |
+
"grad_norm": 0.3260265986197515,
|
1953 |
+
"learning_rate": 0.0005081038779245643,
|
1954 |
+
"loss": 5.0078,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.28,
|
1959 |
+
"grad_norm": 0.3230813193726234,
|
1960 |
+
"learning_rate": 0.0005074590315501345,
|
1961 |
+
"loss": 5.0,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.28,
|
1966 |
+
"grad_norm": 0.43011368510100667,
|
1967 |
+
"learning_rate": 0.000506812398165227,
|
1968 |
+
"loss": 4.9961,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.28,
|
1973 |
+
"grad_norm": 0.4688261606016039,
|
1974 |
+
"learning_rate": 0.0005061639842814328,
|
1975 |
+
"loss": 4.9883,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.28,
|
1980 |
+
"grad_norm": 0.4082387881237382,
|
1981 |
+
"learning_rate": 0.0005055137964282728,
|
1982 |
+
"loss": 4.9492,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.28,
|
1987 |
+
"grad_norm": 0.4102411273145604,
|
1988 |
+
"learning_rate": 0.0005048618411531315,
|
1989 |
+
"loss": 4.9492,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.28,
|
1994 |
+
"grad_norm": 0.3333699558922032,
|
1995 |
+
"learning_rate": 0.000504208125021191,
|
1996 |
+
"loss": 4.9492,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.28,
|
2001 |
+
"grad_norm": 0.3014113897515229,
|
2002 |
+
"learning_rate": 0.0005035526546153656,
|
2003 |
+
"loss": 4.9922,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.29,
|
2008 |
+
"grad_norm": 0.33242045759712463,
|
2009 |
+
"learning_rate": 0.000502895436536235,
|
2010 |
+
"loss": 4.8906,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.29,
|
2015 |
+
"grad_norm": 0.27804952465315824,
|
2016 |
+
"learning_rate": 0.000502236477401978,
|
2017 |
+
"loss": 4.8828,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.29,
|
2022 |
+
"grad_norm": 0.346783453227663,
|
2023 |
+
"learning_rate": 0.0005015757838483058,
|
2024 |
+
"loss": 4.9453,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.29,
|
2029 |
+
"grad_norm": 0.33206265244928296,
|
2030 |
+
"learning_rate": 0.000500913362528395,
|
2031 |
+
"loss": 4.9102,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.29,
|
2036 |
+
"grad_norm": 0.31507543033475727,
|
2037 |
+
"learning_rate": 0.000500249220112821,
|
2038 |
+
"loss": 4.9336,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.29,
|
2043 |
+
"grad_norm": 0.34558992633865376,
|
2044 |
+
"learning_rate": 0.0004995833632894907,
|
2045 |
+
"loss": 4.8867,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.29,
|
2050 |
+
"grad_norm": 0.3596650694441014,
|
2051 |
+
"learning_rate": 0.0004989157987635748,
|
2052 |
+
"loss": 4.9141,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.29,
|
2057 |
+
"grad_norm": 0.26520540250540703,
|
2058 |
+
"learning_rate": 0.0004982465332574405,
|
2059 |
+
"loss": 4.9648,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.29,
|
2064 |
+
"grad_norm": 0.2957335916241638,
|
2065 |
+
"learning_rate": 0.0004975755735105844,
|
2066 |
+
"loss": 4.9297,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.29,
|
2071 |
+
"grad_norm": 0.33075169113632213,
|
2072 |
+
"learning_rate": 0.0004969029262795634,
|
2073 |
+
"loss": 4.9102,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.3,
|
2078 |
+
"grad_norm": 0.3588819230985392,
|
2079 |
+
"learning_rate": 0.0004962285983379276,
|
2080 |
+
"loss": 4.8672,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3,
|
2085 |
+
"grad_norm": 0.3441202272395266,
|
2086 |
+
"learning_rate": 0.0004955525964761522,
|
2087 |
+
"loss": 4.8203,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3,
|
2092 |
+
"grad_norm": 0.3150553179412103,
|
2093 |
+
"learning_rate": 0.0004948749275015682,
|
2094 |
+
"loss": 4.8945,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.3,
|
2099 |
+
"grad_norm": 0.31033579532429983,
|
2100 |
+
"learning_rate": 0.0004941955982382948,
|
2101 |
+
"loss": 4.9336,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.3,
|
2106 |
+
"grad_norm": 0.3118267914201189,
|
2107 |
+
"learning_rate": 0.0004935146155271699,
|
2108 |
+
"loss": 4.8125,
|
2109 |
+
"step": 300
|
2110 |
+
}
|
2111 |
+
],
|
2112 |
+
"logging_steps": 1,
|
2113 |
+
"max_steps": 1000,
|
2114 |
+
"num_input_tokens_seen": 0,
|
2115 |
+
"num_train_epochs": 1,
|
2116 |
+
"save_steps": 100,
|
2117 |
+
"total_flos": 0.0,
|
2118 |
+
"train_batch_size": 32,
|
2119 |
+
"trial_name": null,
|
2120 |
+
"trial_params": null
|
2121 |
+
}
|
checkpoint-300/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbd9a6067cf818494e2505097746a1cad30533fc72eb13916de34f7671e3e456
|
3 |
+
size 6520
|
checkpoint-300/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-400/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "georgeyw/gpt-2-small-init-seed-5",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": true,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_dropout": 0.1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout": 0.0,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"layer_norm_epsilon": 1e-05,
|
18 |
+
"max_position_embeddings": 1024,
|
19 |
+
"model_type": "gpt_neox",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rotary_emb_base": 10000,
|
24 |
+
"rotary_pct": 0.25,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.38.2",
|
28 |
+
"use_cache": true,
|
29 |
+
"use_parallel_residual": true,
|
30 |
+
"vocab_size": 50304
|
31 |
+
}
|
checkpoint-400/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.38.2"
|
6 |
+
}
|
checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a79a645fbfebd19d0c0bc738afcb5a06400eb6af3b5a9a758726a7ae9188b688
|
3 |
+
size 973946896
|
checkpoint-400/global_step400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37810609d31b6e7e0ddbc5d8142074e8d5cace38a773d8c0c79857976b7f3452
|
3 |
+
size 973946832
|
checkpoint-400/global_step400/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbf23858dde2df1331a7e83cb65d6a167f69174c52c8bdde00c501d631e091d8
|
3 |
+
size 324689964
|
checkpoint-400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step400
|
checkpoint-400/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66ed36c4dcc6ceec22851060da063587ce67e78fc89cf6d774ac3f1218f9ac5d
|
3 |
+
size 324662984
|
checkpoint-400/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0bb7d2ecdd48fd7d0be1e75b0e3f29004064381052fa203ed926e88b90ef530
|
3 |
+
size 14512
|
checkpoint-400/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:177d534a379bd6b276474c2cb140e318dc65db4457b6c1b6f25a1a9dd563af82
|
3 |
+
size 14512
|
checkpoint-400/trainer_state.json
ADDED
@@ -0,0 +1,2821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.39980009995002497,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 3.3340563149001086,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 11.0,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 2.398812329952019,
|
21 |
+
"learning_rate": 5.9999999999999995e-05,
|
22 |
+
"loss": 10.125,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"grad_norm": 2.394322446895115,
|
28 |
+
"learning_rate": 0.00011999999999999999,
|
29 |
+
"loss": 10.1172,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0,
|
34 |
+
"grad_norm": 1.9958816684399585,
|
35 |
+
"learning_rate": 0.00017999999999999998,
|
36 |
+
"loss": 9.875,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0,
|
41 |
+
"grad_norm": 1.8270465897882062,
|
42 |
+
"learning_rate": 0.00023999999999999998,
|
43 |
+
"loss": 9.6641,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"grad_norm": 1.7854046471397795,
|
49 |
+
"learning_rate": 0.0003,
|
50 |
+
"loss": 9.4844,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"grad_norm": 1.719416749115252,
|
56 |
+
"learning_rate": 0.00035999999999999997,
|
57 |
+
"loss": 9.3281,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.01,
|
62 |
+
"grad_norm": 1.4637825746112274,
|
63 |
+
"learning_rate": 0.00041999999999999996,
|
64 |
+
"loss": 9.2109,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01,
|
69 |
+
"grad_norm": 1.4393631015406718,
|
70 |
+
"learning_rate": 0.00047999999999999996,
|
71 |
+
"loss": 8.9453,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01,
|
76 |
+
"grad_norm": 1.2936734586915988,
|
77 |
+
"learning_rate": 0.00054,
|
78 |
+
"loss": 8.7109,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01,
|
83 |
+
"grad_norm": 1.0756922378227356,
|
84 |
+
"learning_rate": 0.0005999986405514987,
|
85 |
+
"loss": 8.4609,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"grad_norm": 0.9277829127413892,
|
91 |
+
"learning_rate": 0.0005999945622196846,
|
92 |
+
"loss": 8.2344,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.01,
|
97 |
+
"grad_norm": 0.8084581786682467,
|
98 |
+
"learning_rate": 0.0005999877650456265,
|
99 |
+
"loss": 8.125,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.01,
|
104 |
+
"grad_norm": 0.7635084596900947,
|
105 |
+
"learning_rate": 0.000599978249097772,
|
106 |
+
"loss": 7.9766,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.01,
|
111 |
+
"grad_norm": 0.9186699644247788,
|
112 |
+
"learning_rate": 0.0005999660144719463,
|
113 |
+
"loss": 7.8555,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02,
|
118 |
+
"grad_norm": 0.6609504256551479,
|
119 |
+
"learning_rate": 0.0005999510612913519,
|
120 |
+
"loss": 7.7734,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.02,
|
125 |
+
"grad_norm": 0.7086232844782971,
|
126 |
+
"learning_rate": 0.0005999333897065673,
|
127 |
+
"loss": 7.7148,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.02,
|
132 |
+
"grad_norm": 16.38048851691348,
|
133 |
+
"learning_rate": 0.0005999129998955453,
|
134 |
+
"loss": 8.4844,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.02,
|
139 |
+
"grad_norm": 1.3057527590449889,
|
140 |
+
"learning_rate": 0.0005998898920636111,
|
141 |
+
"loss": 7.7539,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02,
|
146 |
+
"grad_norm": 0.6966048242948986,
|
147 |
+
"learning_rate": 0.00059986406644346,
|
148 |
+
"loss": 7.75,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.02,
|
153 |
+
"grad_norm": 0.6348089115348993,
|
154 |
+
"learning_rate": 0.0005998355232951559,
|
155 |
+
"loss": 7.7031,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02,
|
160 |
+
"grad_norm": 0.7829163518610293,
|
161 |
+
"learning_rate": 0.0005998042629061279,
|
162 |
+
"loss": 7.6992,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.02,
|
167 |
+
"grad_norm": 0.5900591778980369,
|
168 |
+
"learning_rate": 0.0005997702855911678,
|
169 |
+
"loss": 7.6016,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.02,
|
174 |
+
"grad_norm": 0.4655170213064256,
|
175 |
+
"learning_rate": 0.0005997335916924268,
|
176 |
+
"loss": 7.5977,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.02,
|
181 |
+
"grad_norm": 0.6287348258915756,
|
182 |
+
"learning_rate": 0.0005996941815794121,
|
183 |
+
"loss": 7.5586,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03,
|
188 |
+
"grad_norm": 0.6137321903884564,
|
189 |
+
"learning_rate": 0.0005996520556489831,
|
190 |
+
"loss": 7.5898,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03,
|
195 |
+
"grad_norm": 0.44962562710631065,
|
196 |
+
"learning_rate": 0.0005996072143253473,
|
197 |
+
"loss": 7.4336,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.03,
|
202 |
+
"grad_norm": 0.46130046454703316,
|
203 |
+
"learning_rate": 0.0005995596580600566,
|
204 |
+
"loss": 7.4023,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.03,
|
209 |
+
"grad_norm": 0.4686712675731326,
|
210 |
+
"learning_rate": 0.0005995093873320018,
|
211 |
+
"loss": 7.3789,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.03,
|
216 |
+
"grad_norm": 0.4672147564288997,
|
217 |
+
"learning_rate": 0.0005994564026474087,
|
218 |
+
"loss": 7.3711,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03,
|
223 |
+
"grad_norm": 0.40408354581233474,
|
224 |
+
"learning_rate": 0.0005994007045398324,
|
225 |
+
"loss": 7.3672,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03,
|
230 |
+
"grad_norm": 0.46032146732584733,
|
231 |
+
"learning_rate": 0.0005993422935701524,
|
232 |
+
"loss": 7.3477,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03,
|
237 |
+
"grad_norm": 0.4765534634593268,
|
238 |
+
"learning_rate": 0.0005992811703265664,
|
239 |
+
"loss": 7.3555,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03,
|
244 |
+
"grad_norm": 0.46208489386235113,
|
245 |
+
"learning_rate": 0.0005992173354245849,
|
246 |
+
"loss": 7.3047,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.03,
|
251 |
+
"grad_norm": 0.2956144524964961,
|
252 |
+
"learning_rate": 0.0005991507895070244,
|
253 |
+
"loss": 7.3125,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04,
|
258 |
+
"grad_norm": 0.4834645389868856,
|
259 |
+
"learning_rate": 0.0005990815332440017,
|
260 |
+
"loss": 7.207,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04,
|
265 |
+
"grad_norm": 0.4411831350968505,
|
266 |
+
"learning_rate": 0.0005990095673329266,
|
267 |
+
"loss": 7.1758,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.04,
|
272 |
+
"grad_norm": 0.24809297748968667,
|
273 |
+
"learning_rate": 0.0005989348924984951,
|
274 |
+
"loss": 7.2188,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.04,
|
279 |
+
"grad_norm": 0.39402988416840584,
|
280 |
+
"learning_rate": 0.0005988575094926817,
|
281 |
+
"loss": 7.1953,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.04,
|
286 |
+
"grad_norm": 0.3868345222189167,
|
287 |
+
"learning_rate": 0.0005987774190947328,
|
288 |
+
"loss": 7.1641,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04,
|
293 |
+
"grad_norm": 0.3777261230135448,
|
294 |
+
"learning_rate": 0.0005986946221111575,
|
295 |
+
"loss": 7.1328,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.04,
|
300 |
+
"grad_norm": 0.4687511444077827,
|
301 |
+
"learning_rate": 0.0005986091193757206,
|
302 |
+
"loss": 7.0898,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.04,
|
307 |
+
"grad_norm": 0.34935796211612463,
|
308 |
+
"learning_rate": 0.0005985209117494337,
|
309 |
+
"loss": 7.1367,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04,
|
314 |
+
"grad_norm": 0.38764476686849886,
|
315 |
+
"learning_rate": 0.0005984300001205466,
|
316 |
+
"loss": 7.125,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.04,
|
321 |
+
"grad_norm": 0.3956487898882936,
|
322 |
+
"learning_rate": 0.0005983363854045386,
|
323 |
+
"loss": 7.1094,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.05,
|
328 |
+
"grad_norm": 0.31140257544677513,
|
329 |
+
"learning_rate": 0.0005982400685441084,
|
330 |
+
"loss": 7.0898,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.05,
|
335 |
+
"grad_norm": 0.3664476570531787,
|
336 |
+
"learning_rate": 0.0005981410505091662,
|
337 |
+
"loss": 7.0664,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.05,
|
342 |
+
"grad_norm": 0.31891741142945207,
|
343 |
+
"learning_rate": 0.0005980393322968223,
|
344 |
+
"loss": 7.0273,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.05,
|
349 |
+
"grad_norm": 0.4533529037337155,
|
350 |
+
"learning_rate": 0.0005979349149313778,
|
351 |
+
"loss": 7.0586,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05,
|
356 |
+
"grad_norm": 0.30532331638835586,
|
357 |
+
"learning_rate": 0.0005978277994643147,
|
358 |
+
"loss": 7.0195,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05,
|
363 |
+
"grad_norm": 0.6501991746260075,
|
364 |
+
"learning_rate": 0.0005977179869742844,
|
365 |
+
"loss": 6.9648,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.05,
|
370 |
+
"grad_norm": 0.43904455901717926,
|
371 |
+
"learning_rate": 0.0005976054785670975,
|
372 |
+
"loss": 6.9805,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.05,
|
377 |
+
"grad_norm": 0.4826001598483571,
|
378 |
+
"learning_rate": 0.0005974902753757124,
|
379 |
+
"loss": 6.9297,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.05,
|
384 |
+
"grad_norm": 0.2924998027034648,
|
385 |
+
"learning_rate": 0.000597372378560224,
|
386 |
+
"loss": 6.8984,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.05,
|
391 |
+
"grad_norm": 0.4439033666380787,
|
392 |
+
"learning_rate": 0.0005972517893078517,
|
393 |
+
"loss": 6.8945,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.06,
|
398 |
+
"grad_norm": 0.6135914255073411,
|
399 |
+
"learning_rate": 0.0005971285088329284,
|
400 |
+
"loss": 6.9727,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.06,
|
405 |
+
"grad_norm": 0.5575686565598483,
|
406 |
+
"learning_rate": 0.0005970025383768866,
|
407 |
+
"loss": 6.9219,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.06,
|
412 |
+
"grad_norm": 0.4820951675994578,
|
413 |
+
"learning_rate": 0.0005968738792082478,
|
414 |
+
"loss": 6.8516,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.06,
|
419 |
+
"grad_norm": 0.40164190019465584,
|
420 |
+
"learning_rate": 0.0005967425326226082,
|
421 |
+
"loss": 6.7734,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.06,
|
426 |
+
"grad_norm": 0.46129863945181293,
|
427 |
+
"learning_rate": 0.0005966084999426265,
|
428 |
+
"loss": 6.8125,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.06,
|
433 |
+
"grad_norm": 0.33322355827118677,
|
434 |
+
"learning_rate": 0.0005964717825180101,
|
435 |
+
"loss": 6.7891,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.06,
|
440 |
+
"grad_norm": 0.3847525153855558,
|
441 |
+
"learning_rate": 0.0005963323817255024,
|
442 |
+
"loss": 6.8242,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.06,
|
447 |
+
"grad_norm": 0.3384433591375982,
|
448 |
+
"learning_rate": 0.0005961902989688674,
|
449 |
+
"loss": 6.707,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.06,
|
454 |
+
"grad_norm": 0.3937003195165685,
|
455 |
+
"learning_rate": 0.000596045535678877,
|
456 |
+
"loss": 6.8203,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.06,
|
461 |
+
"grad_norm": 0.35423488053528107,
|
462 |
+
"learning_rate": 0.0005958980933132962,
|
463 |
+
"loss": 6.7383,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.07,
|
468 |
+
"grad_norm": 0.36005939745315396,
|
469 |
+
"learning_rate": 0.0005957479733568675,
|
470 |
+
"loss": 6.7109,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.07,
|
475 |
+
"grad_norm": 0.3499278317706933,
|
476 |
+
"learning_rate": 0.0005955951773212976,
|
477 |
+
"loss": 6.7266,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.07,
|
482 |
+
"grad_norm": 0.3708385192137018,
|
483 |
+
"learning_rate": 0.0005954397067452407,
|
484 |
+
"loss": 6.7617,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.07,
|
489 |
+
"grad_norm": 0.3775657656205869,
|
490 |
+
"learning_rate": 0.0005952815631942839,
|
491 |
+
"loss": 6.7148,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.07,
|
496 |
+
"grad_norm": 0.3040083750375816,
|
497 |
+
"learning_rate": 0.0005951207482609307,
|
498 |
+
"loss": 6.5938,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.07,
|
503 |
+
"grad_norm": 0.3443020808841468,
|
504 |
+
"learning_rate": 0.0005949572635645861,
|
505 |
+
"loss": 6.6523,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.07,
|
510 |
+
"grad_norm": 0.3520066316939,
|
511 |
+
"learning_rate": 0.0005947911107515389,
|
512 |
+
"loss": 6.6211,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.07,
|
517 |
+
"grad_norm": 0.3739040572679613,
|
518 |
+
"learning_rate": 0.0005946222914949462,
|
519 |
+
"loss": 6.5547,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.07,
|
524 |
+
"grad_norm": 0.34890731989025553,
|
525 |
+
"learning_rate": 0.000594450807494816,
|
526 |
+
"loss": 6.5859,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.07,
|
531 |
+
"grad_norm": 0.40910932350136514,
|
532 |
+
"learning_rate": 0.0005942766604779903,
|
533 |
+
"loss": 6.5547,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.08,
|
538 |
+
"grad_norm": 0.5698342865852906,
|
539 |
+
"learning_rate": 0.0005940998521981274,
|
540 |
+
"loss": 6.457,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.08,
|
545 |
+
"grad_norm": 0.5179452709555474,
|
546 |
+
"learning_rate": 0.0005939203844356852,
|
547 |
+
"loss": 6.5547,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.08,
|
552 |
+
"grad_norm": 0.5222512938673792,
|
553 |
+
"learning_rate": 0.0005937382589979016,
|
554 |
+
"loss": 6.5039,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.08,
|
559 |
+
"grad_norm": 0.5682332793686307,
|
560 |
+
"learning_rate": 0.0005935534777187781,
|
561 |
+
"loss": 6.5547,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.08,
|
566 |
+
"grad_norm": 0.3869287710460676,
|
567 |
+
"learning_rate": 0.0005933660424590598,
|
568 |
+
"loss": 6.5156,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.08,
|
573 |
+
"grad_norm": 0.3078211032807607,
|
574 |
+
"learning_rate": 0.000593175955106218,
|
575 |
+
"loss": 6.4258,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.08,
|
580 |
+
"grad_norm": 0.3611357511872241,
|
581 |
+
"learning_rate": 0.00059298321757443,
|
582 |
+
"loss": 6.4727,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.08,
|
587 |
+
"grad_norm": 0.29633467844266953,
|
588 |
+
"learning_rate": 0.0005927878318045608,
|
589 |
+
"loss": 6.3281,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.08,
|
594 |
+
"grad_norm": 0.3257574200776832,
|
595 |
+
"learning_rate": 0.0005925897997641426,
|
596 |
+
"loss": 6.3203,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.08,
|
601 |
+
"grad_norm": 0.2824054533852328,
|
602 |
+
"learning_rate": 0.0005923891234473562,
|
603 |
+
"loss": 6.4062,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.09,
|
608 |
+
"grad_norm": 0.3056199770204573,
|
609 |
+
"learning_rate": 0.0005921858048750097,
|
610 |
+
"loss": 6.3984,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.09,
|
615 |
+
"grad_norm": 0.2966438824341908,
|
616 |
+
"learning_rate": 0.000591979846094519,
|
617 |
+
"loss": 6.3555,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.09,
|
622 |
+
"grad_norm": 0.32782438676663733,
|
623 |
+
"learning_rate": 0.0005917712491798866,
|
624 |
+
"loss": 6.4023,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.09,
|
629 |
+
"grad_norm": 0.3538316399620157,
|
630 |
+
"learning_rate": 0.0005915600162316811,
|
631 |
+
"loss": 6.2812,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.09,
|
636 |
+
"grad_norm": 0.375858298192913,
|
637 |
+
"learning_rate": 0.0005913461493770162,
|
638 |
+
"loss": 6.3086,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.09,
|
643 |
+
"grad_norm": 0.5189251339815161,
|
644 |
+
"learning_rate": 0.0005911296507695284,
|
645 |
+
"loss": 6.2812,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.09,
|
650 |
+
"grad_norm": 0.6304909542669104,
|
651 |
+
"learning_rate": 0.0005909105225893564,
|
652 |
+
"loss": 6.2969,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.09,
|
657 |
+
"grad_norm": 0.4655662819622591,
|
658 |
+
"learning_rate": 0.0005906887670431187,
|
659 |
+
"loss": 6.1953,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.09,
|
664 |
+
"grad_norm": 0.39035390983920965,
|
665 |
+
"learning_rate": 0.000590464386363891,
|
666 |
+
"loss": 6.2617,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.09,
|
671 |
+
"grad_norm": 0.4918417851770978,
|
672 |
+
"learning_rate": 0.0005902373828111843,
|
673 |
+
"loss": 6.2148,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.1,
|
678 |
+
"grad_norm": 0.35670770889552555,
|
679 |
+
"learning_rate": 0.0005900077586709219,
|
680 |
+
"loss": 6.2461,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.1,
|
685 |
+
"grad_norm": 0.4177985869939347,
|
686 |
+
"learning_rate": 0.0005897755162554163,
|
687 |
+
"loss": 6.1797,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.1,
|
692 |
+
"grad_norm": 0.3742471130708234,
|
693 |
+
"learning_rate": 0.000589540657903346,
|
694 |
+
"loss": 6.1406,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.1,
|
699 |
+
"grad_norm": 0.28627666723978284,
|
700 |
+
"learning_rate": 0.0005893031859797322,
|
701 |
+
"loss": 6.2031,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.1,
|
706 |
+
"grad_norm": 0.32238563846046103,
|
707 |
+
"learning_rate": 0.0005890631028759143,
|
708 |
+
"loss": 6.0625,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.1,
|
713 |
+
"grad_norm": 0.2556625657587849,
|
714 |
+
"learning_rate": 0.0005888204110095265,
|
715 |
+
"loss": 6.1797,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.1,
|
720 |
+
"grad_norm": 0.35463629701710253,
|
721 |
+
"learning_rate": 0.0005885751128244734,
|
722 |
+
"loss": 6.125,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1,
|
727 |
+
"grad_norm": 0.31975770214936095,
|
728 |
+
"learning_rate": 0.0005883272107909048,
|
729 |
+
"loss": 6.1836,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.1,
|
734 |
+
"grad_norm": 0.3464621815245048,
|
735 |
+
"learning_rate": 0.0005880767074051915,
|
736 |
+
"loss": 6.125,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.1,
|
741 |
+
"grad_norm": 0.3663428920796654,
|
742 |
+
"learning_rate": 0.0005878236051898998,
|
743 |
+
"loss": 6.0781,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.11,
|
748 |
+
"grad_norm": 0.31594460565215293,
|
749 |
+
"learning_rate": 0.0005875679066937664,
|
750 |
+
"loss": 6.082,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.11,
|
755 |
+
"grad_norm": 0.3552617109396582,
|
756 |
+
"learning_rate": 0.000587309614491672,
|
757 |
+
"loss": 6.1016,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.11,
|
762 |
+
"grad_norm": 0.307016409692456,
|
763 |
+
"learning_rate": 0.0005870487311846164,
|
764 |
+
"loss": 6.1406,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.11,
|
769 |
+
"grad_norm": 0.32188902148474213,
|
770 |
+
"learning_rate": 0.0005867852593996914,
|
771 |
+
"loss": 6.0039,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.11,
|
776 |
+
"grad_norm": 0.25501199715105083,
|
777 |
+
"learning_rate": 0.0005865192017900551,
|
778 |
+
"loss": 6.0938,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.11,
|
783 |
+
"grad_norm": 0.3416203070024056,
|
784 |
+
"learning_rate": 0.0005862505610349049,
|
785 |
+
"loss": 6.0234,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.11,
|
790 |
+
"grad_norm": 0.3562508875852537,
|
791 |
+
"learning_rate": 0.0005859793398394498,
|
792 |
+
"loss": 6.0469,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.11,
|
797 |
+
"grad_norm": 0.4443953757302568,
|
798 |
+
"learning_rate": 0.0005857055409348845,
|
799 |
+
"loss": 5.9766,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.11,
|
804 |
+
"grad_norm": 0.42023839332714596,
|
805 |
+
"learning_rate": 0.0005854291670783607,
|
806 |
+
"loss": 6.0781,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.11,
|
811 |
+
"grad_norm": 0.4618323255809241,
|
812 |
+
"learning_rate": 0.0005851502210529604,
|
813 |
+
"loss": 5.9727,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.12,
|
818 |
+
"grad_norm": 0.379195014798667,
|
819 |
+
"learning_rate": 0.0005848687056676668,
|
820 |
+
"loss": 5.9922,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.12,
|
825 |
+
"grad_norm": 0.3931552573296799,
|
826 |
+
"learning_rate": 0.0005845846237573366,
|
827 |
+
"loss": 5.9492,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.12,
|
832 |
+
"grad_norm": 0.2567080044949908,
|
833 |
+
"learning_rate": 0.0005842979781826717,
|
834 |
+
"loss": 6.0273,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.12,
|
839 |
+
"grad_norm": 0.4190305965377807,
|
840 |
+
"learning_rate": 0.0005840087718301895,
|
841 |
+
"loss": 6.0391,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.12,
|
846 |
+
"grad_norm": 0.3996803869430228,
|
847 |
+
"learning_rate": 0.0005837170076121951,
|
848 |
+
"loss": 5.9531,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.12,
|
853 |
+
"grad_norm": 0.478219248015785,
|
854 |
+
"learning_rate": 0.000583422688466751,
|
855 |
+
"loss": 6.0586,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.12,
|
860 |
+
"grad_norm": 0.40869844309811526,
|
861 |
+
"learning_rate": 0.0005831258173576474,
|
862 |
+
"loss": 6.0117,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.12,
|
867 |
+
"grad_norm": 0.3728598080697978,
|
868 |
+
"learning_rate": 0.0005828263972743733,
|
869 |
+
"loss": 5.9375,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.12,
|
874 |
+
"grad_norm": 0.3560055462882015,
|
875 |
+
"learning_rate": 0.0005825244312320856,
|
876 |
+
"loss": 5.9531,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.12,
|
881 |
+
"grad_norm": 0.40446932887864323,
|
882 |
+
"learning_rate": 0.0005822199222715787,
|
883 |
+
"loss": 5.9609,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.13,
|
888 |
+
"grad_norm": 0.38514065739946723,
|
889 |
+
"learning_rate": 0.000581912873459255,
|
890 |
+
"loss": 5.8594,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.13,
|
895 |
+
"grad_norm": 0.35367576386319416,
|
896 |
+
"learning_rate": 0.0005816032878870921,
|
897 |
+
"loss": 5.9023,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.13,
|
902 |
+
"grad_norm": 0.3341681995122829,
|
903 |
+
"learning_rate": 0.0005812911686726135,
|
904 |
+
"loss": 5.9062,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.13,
|
909 |
+
"grad_norm": 0.3387022688975784,
|
910 |
+
"learning_rate": 0.0005809765189588563,
|
911 |
+
"loss": 5.8945,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.13,
|
916 |
+
"grad_norm": 0.31638659898934757,
|
917 |
+
"learning_rate": 0.0005806593419143395,
|
918 |
+
"loss": 5.8242,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.13,
|
923 |
+
"grad_norm": 0.3229678508227436,
|
924 |
+
"learning_rate": 0.0005803396407330325,
|
925 |
+
"loss": 5.8516,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.13,
|
930 |
+
"grad_norm": 0.35499490868584455,
|
931 |
+
"learning_rate": 0.0005800174186343226,
|
932 |
+
"loss": 5.9258,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.13,
|
937 |
+
"grad_norm": 0.40753171542848754,
|
938 |
+
"learning_rate": 0.0005796926788629828,
|
939 |
+
"loss": 5.8242,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.13,
|
944 |
+
"grad_norm": 0.3625374018348824,
|
945 |
+
"learning_rate": 0.0005793654246891389,
|
946 |
+
"loss": 5.832,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.13,
|
951 |
+
"grad_norm": 0.3583489573569317,
|
952 |
+
"learning_rate": 0.000579035659408237,
|
953 |
+
"loss": 5.8398,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.14,
|
958 |
+
"grad_norm": 0.39657706318861896,
|
959 |
+
"learning_rate": 0.0005787033863410095,
|
960 |
+
"loss": 5.8633,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.14,
|
965 |
+
"grad_norm": 0.3965837889564036,
|
966 |
+
"learning_rate": 0.0005783686088334428,
|
967 |
+
"loss": 5.8633,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.14,
|
972 |
+
"grad_norm": 0.29496474301865566,
|
973 |
+
"learning_rate": 0.0005780313302567424,
|
974 |
+
"loss": 5.8203,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.14,
|
979 |
+
"grad_norm": 0.44637192639243695,
|
980 |
+
"learning_rate": 0.0005776915540073001,
|
981 |
+
"loss": 5.8477,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.14,
|
986 |
+
"grad_norm": 0.39605473508683114,
|
987 |
+
"learning_rate": 0.0005773492835066587,
|
988 |
+
"loss": 5.7383,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.14,
|
993 |
+
"grad_norm": 0.3008962634266945,
|
994 |
+
"learning_rate": 0.0005770045222014786,
|
995 |
+
"loss": 5.7617,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.14,
|
1000 |
+
"grad_norm": 0.36915495506607826,
|
1001 |
+
"learning_rate": 0.0005766572735635022,
|
1002 |
+
"loss": 5.7695,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.14,
|
1007 |
+
"grad_norm": 0.3282300349560706,
|
1008 |
+
"learning_rate": 0.0005763075410895193,
|
1009 |
+
"loss": 5.8281,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.14,
|
1014 |
+
"grad_norm": 0.2747449814083844,
|
1015 |
+
"learning_rate": 0.0005759553283013323,
|
1016 |
+
"loss": 5.7812,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.14,
|
1021 |
+
"grad_norm": 0.28905882704179764,
|
1022 |
+
"learning_rate": 0.00057560063874572,
|
1023 |
+
"loss": 5.7344,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.15,
|
1028 |
+
"grad_norm": 0.280625988867192,
|
1029 |
+
"learning_rate": 0.000575243475994402,
|
1030 |
+
"loss": 5.7773,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.15,
|
1035 |
+
"grad_norm": 0.41061863948012467,
|
1036 |
+
"learning_rate": 0.0005748838436440035,
|
1037 |
+
"loss": 5.7578,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.15,
|
1042 |
+
"grad_norm": 0.4920152483870267,
|
1043 |
+
"learning_rate": 0.0005745217453160183,
|
1044 |
+
"loss": 5.7305,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.15,
|
1049 |
+
"grad_norm": 0.5463207978955044,
|
1050 |
+
"learning_rate": 0.0005741571846567725,
|
1051 |
+
"loss": 5.7383,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.15,
|
1056 |
+
"grad_norm": 0.3986359831157306,
|
1057 |
+
"learning_rate": 0.0005737901653373878,
|
1058 |
+
"loss": 5.668,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.15,
|
1063 |
+
"grad_norm": 0.37908758170100293,
|
1064 |
+
"learning_rate": 0.0005734206910537447,
|
1065 |
+
"loss": 5.6875,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.15,
|
1070 |
+
"grad_norm": 0.35929793070492694,
|
1071 |
+
"learning_rate": 0.0005730487655264451,
|
1072 |
+
"loss": 5.7188,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.15,
|
1077 |
+
"grad_norm": 0.4217799574145456,
|
1078 |
+
"learning_rate": 0.0005726743925007751,
|
1079 |
+
"loss": 5.7305,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.15,
|
1084 |
+
"grad_norm": 0.4024411981587195,
|
1085 |
+
"learning_rate": 0.0005722975757466667,
|
1086 |
+
"loss": 5.6289,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.15,
|
1091 |
+
"grad_norm": 0.3472391905877033,
|
1092 |
+
"learning_rate": 0.0005719183190586606,
|
1093 |
+
"loss": 5.6523,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.16,
|
1098 |
+
"grad_norm": 0.31752956812138816,
|
1099 |
+
"learning_rate": 0.0005715366262558675,
|
1100 |
+
"loss": 5.6172,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.16,
|
1105 |
+
"grad_norm": 0.3170152384332457,
|
1106 |
+
"learning_rate": 0.0005711525011819294,
|
1107 |
+
"loss": 5.6172,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.16,
|
1112 |
+
"grad_norm": 0.40520629326601837,
|
1113 |
+
"learning_rate": 0.0005707659477049818,
|
1114 |
+
"loss": 5.625,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.16,
|
1119 |
+
"grad_norm": 0.3965976910198806,
|
1120 |
+
"learning_rate": 0.0005703769697176137,
|
1121 |
+
"loss": 5.6562,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.16,
|
1126 |
+
"grad_norm": 0.40422960541801994,
|
1127 |
+
"learning_rate": 0.0005699855711368293,
|
1128 |
+
"loss": 5.6836,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.16,
|
1133 |
+
"grad_norm": 0.3780813184050647,
|
1134 |
+
"learning_rate": 0.0005695917559040079,
|
1135 |
+
"loss": 5.5938,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.16,
|
1140 |
+
"grad_norm": 0.36917638857736573,
|
1141 |
+
"learning_rate": 0.0005691955279848645,
|
1142 |
+
"loss": 5.668,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.16,
|
1147 |
+
"grad_norm": 0.37769176081037814,
|
1148 |
+
"learning_rate": 0.0005687968913694098,
|
1149 |
+
"loss": 5.4961,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.16,
|
1154 |
+
"grad_norm": 0.3255116524991148,
|
1155 |
+
"learning_rate": 0.0005683958500719103,
|
1156 |
+
"loss": 5.5117,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.16,
|
1161 |
+
"grad_norm": 0.31897629016848805,
|
1162 |
+
"learning_rate": 0.0005679924081308471,
|
1163 |
+
"loss": 5.5664,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.17,
|
1168 |
+
"grad_norm": 0.2869064236553046,
|
1169 |
+
"learning_rate": 0.0005675865696088764,
|
1170 |
+
"loss": 5.5391,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.17,
|
1175 |
+
"grad_norm": 0.29226729022634845,
|
1176 |
+
"learning_rate": 0.0005671783385927873,
|
1177 |
+
"loss": 5.5586,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.17,
|
1182 |
+
"grad_norm": 0.2534117210955766,
|
1183 |
+
"learning_rate": 0.0005667677191934618,
|
1184 |
+
"loss": 5.5312,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.17,
|
1189 |
+
"grad_norm": 0.289828484125484,
|
1190 |
+
"learning_rate": 0.0005663547155458326,
|
1191 |
+
"loss": 5.6484,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.17,
|
1196 |
+
"grad_norm": 0.2717242930342115,
|
1197 |
+
"learning_rate": 0.0005659393318088419,
|
1198 |
+
"loss": 5.5352,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.17,
|
1203 |
+
"grad_norm": 0.3595538109137759,
|
1204 |
+
"learning_rate": 0.0005655215721653993,
|
1205 |
+
"loss": 5.5742,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.17,
|
1210 |
+
"grad_norm": 0.4255054350471108,
|
1211 |
+
"learning_rate": 0.0005651014408223398,
|
1212 |
+
"loss": 5.5469,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.17,
|
1217 |
+
"grad_norm": 0.3670561941219979,
|
1218 |
+
"learning_rate": 0.0005646789420103814,
|
1219 |
+
"loss": 5.5078,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.17,
|
1224 |
+
"grad_norm": 0.40280130904983164,
|
1225 |
+
"learning_rate": 0.0005642540799840822,
|
1226 |
+
"loss": 5.5,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.17,
|
1231 |
+
"grad_norm": 0.41159472035983025,
|
1232 |
+
"learning_rate": 0.0005638268590217984,
|
1233 |
+
"loss": 5.5039,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.18,
|
1238 |
+
"grad_norm": 0.4316778037513652,
|
1239 |
+
"learning_rate": 0.0005633972834256401,
|
1240 |
+
"loss": 5.5352,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.18,
|
1245 |
+
"grad_norm": 0.5674781128363939,
|
1246 |
+
"learning_rate": 0.000562965357521429,
|
1247 |
+
"loss": 5.4336,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.18,
|
1252 |
+
"grad_norm": 0.41654662151365446,
|
1253 |
+
"learning_rate": 0.0005625310856586541,
|
1254 |
+
"loss": 5.6211,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.18,
|
1259 |
+
"grad_norm": 0.5159976364107484,
|
1260 |
+
"learning_rate": 0.0005620944722104282,
|
1261 |
+
"loss": 5.4844,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.18,
|
1266 |
+
"grad_norm": 0.34364678177014185,
|
1267 |
+
"learning_rate": 0.0005616555215734438,
|
1268 |
+
"loss": 5.4922,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.18,
|
1273 |
+
"grad_norm": 0.3708077784459011,
|
1274 |
+
"learning_rate": 0.0005612142381679289,
|
1275 |
+
"loss": 5.5234,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.18,
|
1280 |
+
"grad_norm": 0.3620051253453866,
|
1281 |
+
"learning_rate": 0.0005607706264376028,
|
1282 |
+
"loss": 5.4961,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.18,
|
1287 |
+
"grad_norm": 0.34735585210929654,
|
1288 |
+
"learning_rate": 0.0005603246908496305,
|
1289 |
+
"loss": 5.4453,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.18,
|
1294 |
+
"grad_norm": 0.37719874705792217,
|
1295 |
+
"learning_rate": 0.0005598764358945783,
|
1296 |
+
"loss": 5.4844,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.18,
|
1301 |
+
"grad_norm": 0.3749130664831207,
|
1302 |
+
"learning_rate": 0.0005594258660863689,
|
1303 |
+
"loss": 5.4648,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.19,
|
1308 |
+
"grad_norm": 0.40951353306235827,
|
1309 |
+
"learning_rate": 0.0005589729859622351,
|
1310 |
+
"loss": 5.5039,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.19,
|
1315 |
+
"grad_norm": 0.40146882563949804,
|
1316 |
+
"learning_rate": 0.0005585178000826745,
|
1317 |
+
"loss": 5.3672,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.19,
|
1322 |
+
"grad_norm": 0.4062987628428303,
|
1323 |
+
"learning_rate": 0.0005580603130314043,
|
1324 |
+
"loss": 5.3984,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.19,
|
1329 |
+
"grad_norm": 0.35626322654799136,
|
1330 |
+
"learning_rate": 0.0005576005294153138,
|
1331 |
+
"loss": 5.3984,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.19,
|
1336 |
+
"grad_norm": 0.3140647930801716,
|
1337 |
+
"learning_rate": 0.0005571384538644188,
|
1338 |
+
"loss": 5.3906,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.19,
|
1343 |
+
"grad_norm": 0.2990060538353662,
|
1344 |
+
"learning_rate": 0.0005566740910318153,
|
1345 |
+
"loss": 5.3711,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.19,
|
1350 |
+
"grad_norm": 0.3337525907515936,
|
1351 |
+
"learning_rate": 0.0005562074455936315,
|
1352 |
+
"loss": 5.4023,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.19,
|
1357 |
+
"grad_norm": 0.3381587051014816,
|
1358 |
+
"learning_rate": 0.000555738522248982,
|
1359 |
+
"loss": 5.4414,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.19,
|
1364 |
+
"grad_norm": 0.2954008999469894,
|
1365 |
+
"learning_rate": 0.0005552673257199197,
|
1366 |
+
"loss": 5.418,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.19,
|
1371 |
+
"grad_norm": 0.3242310900810155,
|
1372 |
+
"learning_rate": 0.0005547938607513882,
|
1373 |
+
"loss": 5.418,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2,
|
1378 |
+
"grad_norm": 0.3149021804393678,
|
1379 |
+
"learning_rate": 0.0005543181321111747,
|
1380 |
+
"loss": 5.4375,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2,
|
1385 |
+
"grad_norm": 0.32859412218218814,
|
1386 |
+
"learning_rate": 0.0005538401445898612,
|
1387 |
+
"loss": 5.4492,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2,
|
1392 |
+
"grad_norm": 0.2960282598050701,
|
1393 |
+
"learning_rate": 0.0005533599030007768,
|
1394 |
+
"loss": 5.3867,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.2,
|
1399 |
+
"grad_norm": 0.2866762878199755,
|
1400 |
+
"learning_rate": 0.0005528774121799489,
|
1401 |
+
"loss": 5.3789,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.2,
|
1406 |
+
"grad_norm": 0.34865216327038784,
|
1407 |
+
"learning_rate": 0.0005523926769860549,
|
1408 |
+
"loss": 5.3711,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.2,
|
1413 |
+
"grad_norm": 0.4043023482242469,
|
1414 |
+
"learning_rate": 0.0005519057023003725,
|
1415 |
+
"loss": 5.3906,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2,
|
1420 |
+
"grad_norm": 0.4069960968887199,
|
1421 |
+
"learning_rate": 0.0005514164930267316,
|
1422 |
+
"loss": 5.2773,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2,
|
1427 |
+
"grad_norm": 0.4051152667506829,
|
1428 |
+
"learning_rate": 0.0005509250540914641,
|
1429 |
+
"loss": 5.3242,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2,
|
1434 |
+
"grad_norm": 0.375026562862574,
|
1435 |
+
"learning_rate": 0.0005504313904433546,
|
1436 |
+
"loss": 5.4258,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.2,
|
1441 |
+
"grad_norm": 0.3326184185943848,
|
1442 |
+
"learning_rate": 0.0005499355070535906,
|
1443 |
+
"loss": 5.375,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.21,
|
1448 |
+
"grad_norm": 0.3695014522224558,
|
1449 |
+
"learning_rate": 0.0005494374089157123,
|
1450 |
+
"loss": 5.3984,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.21,
|
1455 |
+
"grad_norm": 0.2793258171824813,
|
1456 |
+
"learning_rate": 0.0005489371010455625,
|
1457 |
+
"loss": 5.2891,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.21,
|
1462 |
+
"grad_norm": 0.2879966080096621,
|
1463 |
+
"learning_rate": 0.0005484345884812357,
|
1464 |
+
"loss": 5.3867,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.21,
|
1469 |
+
"grad_norm": 0.32599687735840654,
|
1470 |
+
"learning_rate": 0.0005479298762830281,
|
1471 |
+
"loss": 5.3203,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.21,
|
1476 |
+
"grad_norm": 0.31305226164510963,
|
1477 |
+
"learning_rate": 0.0005474229695333857,
|
1478 |
+
"loss": 5.3281,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.21,
|
1483 |
+
"grad_norm": 0.3514527997420013,
|
1484 |
+
"learning_rate": 0.000546913873336854,
|
1485 |
+
"loss": 5.3008,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.21,
|
1490 |
+
"grad_norm": 0.38188707638514424,
|
1491 |
+
"learning_rate": 0.0005464025928200261,
|
1492 |
+
"loss": 5.3086,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.21,
|
1497 |
+
"grad_norm": 0.3865148796842015,
|
1498 |
+
"learning_rate": 0.0005458891331314909,
|
1499 |
+
"loss": 5.2656,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.21,
|
1504 |
+
"grad_norm": 0.4304784604066023,
|
1505 |
+
"learning_rate": 0.0005453734994417819,
|
1506 |
+
"loss": 5.3125,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.21,
|
1511 |
+
"grad_norm": 0.40269356862192995,
|
1512 |
+
"learning_rate": 0.0005448556969433247,
|
1513 |
+
"loss": 5.2617,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.22,
|
1518 |
+
"grad_norm": 0.30541089575928587,
|
1519 |
+
"learning_rate": 0.0005443357308503845,
|
1520 |
+
"loss": 5.2422,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.22,
|
1525 |
+
"grad_norm": 0.29104576978792596,
|
1526 |
+
"learning_rate": 0.0005438136063990142,
|
1527 |
+
"loss": 5.2109,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.22,
|
1532 |
+
"grad_norm": 0.291891354913362,
|
1533 |
+
"learning_rate": 0.0005432893288470012,
|
1534 |
+
"loss": 5.2617,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.22,
|
1539 |
+
"grad_norm": 0.3301944866145271,
|
1540 |
+
"learning_rate": 0.0005427629034738149,
|
1541 |
+
"loss": 5.2188,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.22,
|
1546 |
+
"grad_norm": 0.33824328942983417,
|
1547 |
+
"learning_rate": 0.0005422343355805525,
|
1548 |
+
"loss": 5.293,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.22,
|
1553 |
+
"grad_norm": 0.3539026997032359,
|
1554 |
+
"learning_rate": 0.0005417036304898872,
|
1555 |
+
"loss": 5.2695,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.22,
|
1560 |
+
"grad_norm": 0.38720918633148693,
|
1561 |
+
"learning_rate": 0.0005411707935460132,
|
1562 |
+
"loss": 5.2227,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.22,
|
1567 |
+
"grad_norm": 0.4539797383631105,
|
1568 |
+
"learning_rate": 0.0005406358301145925,
|
1569 |
+
"loss": 5.2539,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.22,
|
1574 |
+
"grad_norm": 0.40620115793500733,
|
1575 |
+
"learning_rate": 0.0005400987455827012,
|
1576 |
+
"loss": 5.2852,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.22,
|
1581 |
+
"grad_norm": 0.3680272948713411,
|
1582 |
+
"learning_rate": 0.0005395595453587743,
|
1583 |
+
"loss": 5.2617,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.23,
|
1588 |
+
"grad_norm": 0.3919096232059878,
|
1589 |
+
"learning_rate": 0.0005390182348725522,
|
1590 |
+
"loss": 5.2305,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.23,
|
1595 |
+
"grad_norm": 0.3783288666206609,
|
1596 |
+
"learning_rate": 0.0005384748195750255,
|
1597 |
+
"loss": 5.2031,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.23,
|
1602 |
+
"grad_norm": 0.34519921770570766,
|
1603 |
+
"learning_rate": 0.0005379293049383802,
|
1604 |
+
"loss": 5.2227,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.23,
|
1609 |
+
"grad_norm": 0.3548414963147158,
|
1610 |
+
"learning_rate": 0.0005373816964559426,
|
1611 |
+
"loss": 5.2891,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.23,
|
1616 |
+
"grad_norm": 0.36291865229291537,
|
1617 |
+
"learning_rate": 0.000536831999642124,
|
1618 |
+
"loss": 5.2266,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.23,
|
1623 |
+
"grad_norm": 0.313916097271022,
|
1624 |
+
"learning_rate": 0.0005362802200323654,
|
1625 |
+
"loss": 5.1055,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.23,
|
1630 |
+
"grad_norm": 0.29232836352032804,
|
1631 |
+
"learning_rate": 0.0005357263631830811,
|
1632 |
+
"loss": 5.1406,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.23,
|
1637 |
+
"grad_norm": 0.34482143058503106,
|
1638 |
+
"learning_rate": 0.0005351704346716036,
|
1639 |
+
"loss": 5.2305,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.23,
|
1644 |
+
"grad_norm": 0.3079065808428287,
|
1645 |
+
"learning_rate": 0.0005346124400961267,
|
1646 |
+
"loss": 5.2031,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.23,
|
1651 |
+
"grad_norm": 0.2869436862887739,
|
1652 |
+
"learning_rate": 0.0005340523850756497,
|
1653 |
+
"loss": 5.2539,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.24,
|
1658 |
+
"grad_norm": 0.27208356804470046,
|
1659 |
+
"learning_rate": 0.0005334902752499204,
|
1660 |
+
"loss": 5.1484,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.24,
|
1665 |
+
"grad_norm": 0.27768753128858653,
|
1666 |
+
"learning_rate": 0.0005329261162793785,
|
1667 |
+
"loss": 5.1758,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.24,
|
1672 |
+
"grad_norm": 0.2701859056468535,
|
1673 |
+
"learning_rate": 0.0005323599138450985,
|
1674 |
+
"loss": 5.1562,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.24,
|
1679 |
+
"grad_norm": 0.2940215458662745,
|
1680 |
+
"learning_rate": 0.0005317916736487328,
|
1681 |
+
"loss": 5.1406,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.24,
|
1686 |
+
"grad_norm": 0.29636403080234647,
|
1687 |
+
"learning_rate": 0.0005312214014124536,
|
1688 |
+
"loss": 5.1719,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.24,
|
1693 |
+
"grad_norm": 0.3513688083715198,
|
1694 |
+
"learning_rate": 0.0005306491028788964,
|
1695 |
+
"loss": 5.0664,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.24,
|
1700 |
+
"grad_norm": 0.455104024911365,
|
1701 |
+
"learning_rate": 0.0005300747838111007,
|
1702 |
+
"loss": 5.1289,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.24,
|
1707 |
+
"grad_norm": 0.5257166308389952,
|
1708 |
+
"learning_rate": 0.0005294984499924532,
|
1709 |
+
"loss": 5.1523,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.24,
|
1714 |
+
"grad_norm": 0.440798061960299,
|
1715 |
+
"learning_rate": 0.0005289201072266293,
|
1716 |
+
"loss": 5.1289,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.24,
|
1721 |
+
"grad_norm": 0.4965659619997502,
|
1722 |
+
"learning_rate": 0.0005283397613375339,
|
1723 |
+
"loss": 5.1211,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.25,
|
1728 |
+
"grad_norm": 0.40267641703114215,
|
1729 |
+
"learning_rate": 0.0005277574181692438,
|
1730 |
+
"loss": 5.0586,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.25,
|
1735 |
+
"grad_norm": 0.4013007078780512,
|
1736 |
+
"learning_rate": 0.0005271730835859485,
|
1737 |
+
"loss": 5.0273,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.25,
|
1742 |
+
"grad_norm": 0.38447773033555227,
|
1743 |
+
"learning_rate": 0.0005265867634718903,
|
1744 |
+
"loss": 5.1367,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.25,
|
1749 |
+
"grad_norm": 0.37763602900633203,
|
1750 |
+
"learning_rate": 0.0005259984637313066,
|
1751 |
+
"loss": 5.1055,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.25,
|
1756 |
+
"grad_norm": 0.344024017964152,
|
1757 |
+
"learning_rate": 0.0005254081902883689,
|
1758 |
+
"loss": 5.0898,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.25,
|
1763 |
+
"grad_norm": 0.35441912273779097,
|
1764 |
+
"learning_rate": 0.0005248159490871245,
|
1765 |
+
"loss": 5.1016,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.25,
|
1770 |
+
"grad_norm": 0.2877284013478678,
|
1771 |
+
"learning_rate": 0.0005242217460914358,
|
1772 |
+
"loss": 5.0664,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.25,
|
1777 |
+
"grad_norm": 0.3143093064571279,
|
1778 |
+
"learning_rate": 0.0005236255872849201,
|
1779 |
+
"loss": 5.1484,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.25,
|
1784 |
+
"grad_norm": 0.31206187291371684,
|
1785 |
+
"learning_rate": 0.00052302747867089,
|
1786 |
+
"loss": 5.1328,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.25,
|
1791 |
+
"grad_norm": 0.3150920418962865,
|
1792 |
+
"learning_rate": 0.000522427426272293,
|
1793 |
+
"loss": 5.1289,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.26,
|
1798 |
+
"grad_norm": 0.3195539774191906,
|
1799 |
+
"learning_rate": 0.0005218254361316495,
|
1800 |
+
"loss": 5.0898,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.26,
|
1805 |
+
"grad_norm": 0.24548404338795576,
|
1806 |
+
"learning_rate": 0.000521221514310994,
|
1807 |
+
"loss": 5.1016,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.26,
|
1812 |
+
"grad_norm": 0.25649802021467205,
|
1813 |
+
"learning_rate": 0.0005206156668918122,
|
1814 |
+
"loss": 5.1289,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.26,
|
1819 |
+
"grad_norm": 0.25018114739252273,
|
1820 |
+
"learning_rate": 0.0005200078999749811,
|
1821 |
+
"loss": 5.0508,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.26,
|
1826 |
+
"grad_norm": 0.2740344343745378,
|
1827 |
+
"learning_rate": 0.0005193982196807067,
|
1828 |
+
"loss": 5.082,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.26,
|
1833 |
+
"grad_norm": 0.30807201125247574,
|
1834 |
+
"learning_rate": 0.0005187866321484628,
|
1835 |
+
"loss": 5.0078,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.26,
|
1840 |
+
"grad_norm": 0.32367849723934244,
|
1841 |
+
"learning_rate": 0.0005181731435369292,
|
1842 |
+
"loss": 5.0625,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.26,
|
1847 |
+
"grad_norm": 0.3465653029312147,
|
1848 |
+
"learning_rate": 0.0005175577600239292,
|
1849 |
+
"loss": 5.0078,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.26,
|
1854 |
+
"grad_norm": 0.3716869632171198,
|
1855 |
+
"learning_rate": 0.0005169404878063681,
|
1856 |
+
"loss": 5.0977,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.26,
|
1861 |
+
"grad_norm": 0.37681584996379275,
|
1862 |
+
"learning_rate": 0.0005163213331001702,
|
1863 |
+
"loss": 5.082,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.27,
|
1868 |
+
"grad_norm": 0.34462519335888353,
|
1869 |
+
"learning_rate": 0.0005157003021402166,
|
1870 |
+
"loss": 4.9844,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.27,
|
1875 |
+
"grad_norm": 0.39514090390949574,
|
1876 |
+
"learning_rate": 0.000515077401180282,
|
1877 |
+
"loss": 5.0312,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.27,
|
1882 |
+
"grad_norm": 0.46469822376758096,
|
1883 |
+
"learning_rate": 0.0005144526364929722,
|
1884 |
+
"loss": 5.0234,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.27,
|
1889 |
+
"grad_norm": 0.34570371767844565,
|
1890 |
+
"learning_rate": 0.0005138260143696608,
|
1891 |
+
"loss": 5.0352,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.27,
|
1896 |
+
"grad_norm": 0.2920012584285204,
|
1897 |
+
"learning_rate": 0.0005131975411204257,
|
1898 |
+
"loss": 4.9805,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.27,
|
1903 |
+
"grad_norm": 0.34109638913820345,
|
1904 |
+
"learning_rate": 0.0005125672230739852,
|
1905 |
+
"loss": 4.9844,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.27,
|
1910 |
+
"grad_norm": 0.2976316922487618,
|
1911 |
+
"learning_rate": 0.0005119350665776353,
|
1912 |
+
"loss": 4.9727,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.27,
|
1917 |
+
"grad_norm": 0.38160864657971466,
|
1918 |
+
"learning_rate": 0.0005113010779971848,
|
1919 |
+
"loss": 5.0312,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.27,
|
1924 |
+
"grad_norm": 0.40407725833100544,
|
1925 |
+
"learning_rate": 0.0005106652637168917,
|
1926 |
+
"loss": 5.0312,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.27,
|
1931 |
+
"grad_norm": 0.36275741793161437,
|
1932 |
+
"learning_rate": 0.0005100276301393987,
|
1933 |
+
"loss": 5.0391,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.28,
|
1938 |
+
"grad_norm": 0.35097531980231905,
|
1939 |
+
"learning_rate": 0.0005093881836856688,
|
1940 |
+
"loss": 4.9844,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.28,
|
1945 |
+
"grad_norm": 0.3615382021996322,
|
1946 |
+
"learning_rate": 0.000508746930794921,
|
1947 |
+
"loss": 4.9453,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.28,
|
1952 |
+
"grad_norm": 0.3260265986197515,
|
1953 |
+
"learning_rate": 0.0005081038779245643,
|
1954 |
+
"loss": 5.0078,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.28,
|
1959 |
+
"grad_norm": 0.3230813193726234,
|
1960 |
+
"learning_rate": 0.0005074590315501345,
|
1961 |
+
"loss": 5.0,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.28,
|
1966 |
+
"grad_norm": 0.43011368510100667,
|
1967 |
+
"learning_rate": 0.000506812398165227,
|
1968 |
+
"loss": 4.9961,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.28,
|
1973 |
+
"grad_norm": 0.4688261606016039,
|
1974 |
+
"learning_rate": 0.0005061639842814328,
|
1975 |
+
"loss": 4.9883,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.28,
|
1980 |
+
"grad_norm": 0.4082387881237382,
|
1981 |
+
"learning_rate": 0.0005055137964282728,
|
1982 |
+
"loss": 4.9492,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.28,
|
1987 |
+
"grad_norm": 0.4102411273145604,
|
1988 |
+
"learning_rate": 0.0005048618411531315,
|
1989 |
+
"loss": 4.9492,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.28,
|
1994 |
+
"grad_norm": 0.3333699558922032,
|
1995 |
+
"learning_rate": 0.000504208125021191,
|
1996 |
+
"loss": 4.9492,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.28,
|
2001 |
+
"grad_norm": 0.3014113897515229,
|
2002 |
+
"learning_rate": 0.0005035526546153656,
|
2003 |
+
"loss": 4.9922,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.29,
|
2008 |
+
"grad_norm": 0.33242045759712463,
|
2009 |
+
"learning_rate": 0.000502895436536235,
|
2010 |
+
"loss": 4.8906,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.29,
|
2015 |
+
"grad_norm": 0.27804952465315824,
|
2016 |
+
"learning_rate": 0.000502236477401978,
|
2017 |
+
"loss": 4.8828,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.29,
|
2022 |
+
"grad_norm": 0.346783453227663,
|
2023 |
+
"learning_rate": 0.0005015757838483058,
|
2024 |
+
"loss": 4.9453,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.29,
|
2029 |
+
"grad_norm": 0.33206265244928296,
|
2030 |
+
"learning_rate": 0.000500913362528395,
|
2031 |
+
"loss": 4.9102,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.29,
|
2036 |
+
"grad_norm": 0.31507543033475727,
|
2037 |
+
"learning_rate": 0.000500249220112821,
|
2038 |
+
"loss": 4.9336,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.29,
|
2043 |
+
"grad_norm": 0.34558992633865376,
|
2044 |
+
"learning_rate": 0.0004995833632894907,
|
2045 |
+
"loss": 4.8867,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.29,
|
2050 |
+
"grad_norm": 0.3596650694441014,
|
2051 |
+
"learning_rate": 0.0004989157987635748,
|
2052 |
+
"loss": 4.9141,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.29,
|
2057 |
+
"grad_norm": 0.26520540250540703,
|
2058 |
+
"learning_rate": 0.0004982465332574405,
|
2059 |
+
"loss": 4.9648,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.29,
|
2064 |
+
"grad_norm": 0.2957335916241638,
|
2065 |
+
"learning_rate": 0.0004975755735105844,
|
2066 |
+
"loss": 4.9297,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.29,
|
2071 |
+
"grad_norm": 0.33075169113632213,
|
2072 |
+
"learning_rate": 0.0004969029262795634,
|
2073 |
+
"loss": 4.9102,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.3,
|
2078 |
+
"grad_norm": 0.3588819230985392,
|
2079 |
+
"learning_rate": 0.0004962285983379276,
|
2080 |
+
"loss": 4.8672,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3,
|
2085 |
+
"grad_norm": 0.3441202272395266,
|
2086 |
+
"learning_rate": 0.0004955525964761522,
|
2087 |
+
"loss": 4.8203,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3,
|
2092 |
+
"grad_norm": 0.3150553179412103,
|
2093 |
+
"learning_rate": 0.0004948749275015682,
|
2094 |
+
"loss": 4.8945,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.3,
|
2099 |
+
"grad_norm": 0.31033579532429983,
|
2100 |
+
"learning_rate": 0.0004941955982382948,
|
2101 |
+
"loss": 4.9336,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.3,
|
2106 |
+
"grad_norm": 0.3118267914201189,
|
2107 |
+
"learning_rate": 0.0004935146155271699,
|
2108 |
+
"loss": 4.8125,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.3,
|
2113 |
+
"grad_norm": 0.2864784262575031,
|
2114 |
+
"learning_rate": 0.0004928319862256821,
|
2115 |
+
"loss": 4.9141,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.3,
|
2120 |
+
"grad_norm": 0.3461510509649134,
|
2121 |
+
"learning_rate": 0.0004921477172079008,
|
2122 |
+
"loss": 4.8789,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.3,
|
2127 |
+
"grad_norm": 0.344033222130809,
|
2128 |
+
"learning_rate": 0.0004914618153644073,
|
2129 |
+
"loss": 4.8477,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.3,
|
2134 |
+
"grad_norm": 0.3659600581082481,
|
2135 |
+
"learning_rate": 0.0004907742876022257,
|
2136 |
+
"loss": 4.8945,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.3,
|
2141 |
+
"grad_norm": 0.4139094159706144,
|
2142 |
+
"learning_rate": 0.0004900851408447529,
|
2143 |
+
"loss": 4.875,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.31,
|
2148 |
+
"grad_norm": 0.4555261722963931,
|
2149 |
+
"learning_rate": 0.000489394382031689,
|
2150 |
+
"loss": 4.8867,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.31,
|
2155 |
+
"grad_norm": 0.3920206505325869,
|
2156 |
+
"learning_rate": 0.0004887020181189677,
|
2157 |
+
"loss": 4.9453,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.31,
|
2162 |
+
"grad_norm": 0.3534794151350395,
|
2163 |
+
"learning_rate": 0.00048800805607868586,
|
2164 |
+
"loss": 4.8398,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.31,
|
2169 |
+
"grad_norm": 0.33621706530080386,
|
2170 |
+
"learning_rate": 0.00048731250289903356,
|
2171 |
+
"loss": 4.8086,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.31,
|
2176 |
+
"grad_norm": 0.3529975741380056,
|
2177 |
+
"learning_rate": 0.0004866153655842235,
|
2178 |
+
"loss": 4.8359,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.31,
|
2183 |
+
"grad_norm": 0.3762696746105136,
|
2184 |
+
"learning_rate": 0.00048591665115442067,
|
2185 |
+
"loss": 4.8672,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.31,
|
2190 |
+
"grad_norm": 0.37045506175739756,
|
2191 |
+
"learning_rate": 0.00048521636664567195,
|
2192 |
+
"loss": 4.7266,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.31,
|
2197 |
+
"grad_norm": 0.30161316500390495,
|
2198 |
+
"learning_rate": 0.0004845145191098342,
|
2199 |
+
"loss": 4.8242,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.31,
|
2204 |
+
"grad_norm": 0.3293026838774481,
|
2205 |
+
"learning_rate": 0.00048381111561450447,
|
2206 |
+
"loss": 4.8906,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.31,
|
2211 |
+
"grad_norm": 0.3172310803921575,
|
2212 |
+
"learning_rate": 0.00048310616324294804,
|
2213 |
+
"loss": 4.8164,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.32,
|
2218 |
+
"grad_norm": 0.3173002282317345,
|
2219 |
+
"learning_rate": 0.00048239966909402763,
|
2220 |
+
"loss": 4.793,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.32,
|
2225 |
+
"grad_norm": 0.31178084115992527,
|
2226 |
+
"learning_rate": 0.00048169164028213137,
|
2227 |
+
"loss": 4.7695,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.32,
|
2232 |
+
"grad_norm": 0.314811454990842,
|
2233 |
+
"learning_rate": 0.00048098208393710154,
|
2234 |
+
"loss": 4.7578,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.32,
|
2239 |
+
"grad_norm": 0.30440007615630466,
|
2240 |
+
"learning_rate": 0.0004802710072041628,
|
2241 |
+
"loss": 4.8359,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.32,
|
2246 |
+
"grad_norm": 0.3210092502981338,
|
2247 |
+
"learning_rate": 0.00047955841724384976,
|
2248 |
+
"loss": 4.8203,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.32,
|
2253 |
+
"grad_norm": 0.3440438445158875,
|
2254 |
+
"learning_rate": 0.00047884432123193545,
|
2255 |
+
"loss": 4.75,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.32,
|
2260 |
+
"grad_norm": 0.3193345492738186,
|
2261 |
+
"learning_rate": 0.0004781287263593589,
|
2262 |
+
"loss": 4.7148,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.32,
|
2267 |
+
"grad_norm": 0.30922502822632203,
|
2268 |
+
"learning_rate": 0.00047741163983215233,
|
2269 |
+
"loss": 4.793,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.32,
|
2274 |
+
"grad_norm": 0.3148665346557643,
|
2275 |
+
"learning_rate": 0.0004766930688713693,
|
2276 |
+
"loss": 4.75,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.32,
|
2281 |
+
"grad_norm": 0.42986342556682483,
|
2282 |
+
"learning_rate": 0.00047597302071301136,
|
2283 |
+
"loss": 4.7539,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.33,
|
2288 |
+
"grad_norm": 0.5024276449767565,
|
2289 |
+
"learning_rate": 0.00047525150260795536,
|
2290 |
+
"loss": 4.7656,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.33,
|
2295 |
+
"grad_norm": 0.46027171009254003,
|
2296 |
+
"learning_rate": 0.00047452852182188073,
|
2297 |
+
"loss": 4.8281,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.33,
|
2302 |
+
"grad_norm": 0.39490019666145704,
|
2303 |
+
"learning_rate": 0.00047380408563519596,
|
2304 |
+
"loss": 4.75,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.33,
|
2309 |
+
"grad_norm": 0.41799265356429827,
|
2310 |
+
"learning_rate": 0.0004730782013429653,
|
2311 |
+
"loss": 4.7266,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.33,
|
2316 |
+
"grad_norm": 0.32777355310017275,
|
2317 |
+
"learning_rate": 0.0004723508762548356,
|
2318 |
+
"loss": 4.7461,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.33,
|
2323 |
+
"grad_norm": 0.3248196972872973,
|
2324 |
+
"learning_rate": 0.00047162211769496244,
|
2325 |
+
"loss": 4.7227,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.33,
|
2330 |
+
"grad_norm": 0.28547358165842623,
|
2331 |
+
"learning_rate": 0.00047089193300193637,
|
2332 |
+
"loss": 4.7578,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.33,
|
2337 |
+
"grad_norm": 0.31153343447725707,
|
2338 |
+
"learning_rate": 0.00047016032952870924,
|
2339 |
+
"loss": 4.668,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.33,
|
2344 |
+
"grad_norm": 0.2760372416423509,
|
2345 |
+
"learning_rate": 0.0004694273146425197,
|
2346 |
+
"loss": 4.6758,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.33,
|
2351 |
+
"grad_norm": 0.29463081650056205,
|
2352 |
+
"learning_rate": 0.0004686928957248197,
|
2353 |
+
"loss": 4.6562,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.34,
|
2358 |
+
"grad_norm": 0.29189633228184125,
|
2359 |
+
"learning_rate": 0.0004679570801711995,
|
2360 |
+
"loss": 4.6914,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.34,
|
2365 |
+
"grad_norm": 0.26982925360638704,
|
2366 |
+
"learning_rate": 0.00046721987539131364,
|
2367 |
+
"loss": 4.7148,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.34,
|
2372 |
+
"grad_norm": 0.29787862686017463,
|
2373 |
+
"learning_rate": 0.00046648128880880595,
|
2374 |
+
"loss": 4.6602,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.34,
|
2379 |
+
"grad_norm": 0.3187987682957709,
|
2380 |
+
"learning_rate": 0.00046574132786123527,
|
2381 |
+
"loss": 4.7031,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.34,
|
2386 |
+
"grad_norm": 0.3585486863686879,
|
2387 |
+
"learning_rate": 0.00046499999999999997,
|
2388 |
+
"loss": 4.5742,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.34,
|
2393 |
+
"grad_norm": 0.3259002331050169,
|
2394 |
+
"learning_rate": 0.0004642573126902635,
|
2395 |
+
"loss": 4.7148,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.34,
|
2400 |
+
"grad_norm": 0.3275487016909797,
|
2401 |
+
"learning_rate": 0.0004635132734108787,
|
2402 |
+
"loss": 4.6797,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.34,
|
2407 |
+
"grad_norm": 0.3583530324503953,
|
2408 |
+
"learning_rate": 0.000462767889654313,
|
2409 |
+
"loss": 4.7422,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.34,
|
2414 |
+
"grad_norm": 0.3632248660395384,
|
2415 |
+
"learning_rate": 0.00046202116892657245,
|
2416 |
+
"loss": 4.6641,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.34,
|
2421 |
+
"grad_norm": 0.38122548821869745,
|
2422 |
+
"learning_rate": 0.00046127311874712655,
|
2423 |
+
"loss": 4.6836,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.35,
|
2428 |
+
"grad_norm": 0.36808830716304386,
|
2429 |
+
"learning_rate": 0.0004605237466488322,
|
2430 |
+
"loss": 4.6641,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.35,
|
2435 |
+
"grad_norm": 0.3137223061843467,
|
2436 |
+
"learning_rate": 0.0004597730601778582,
|
2437 |
+
"loss": 4.7422,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.35,
|
2442 |
+
"grad_norm": 0.3045761075947892,
|
2443 |
+
"learning_rate": 0.00045902106689360903,
|
2444 |
+
"loss": 4.625,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.35,
|
2449 |
+
"grad_norm": 0.34040203496490573,
|
2450 |
+
"learning_rate": 0.0004582677743686486,
|
2451 |
+
"loss": 4.6445,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.35,
|
2456 |
+
"grad_norm": 0.3456455549160395,
|
2457 |
+
"learning_rate": 0.00045751319018862434,
|
2458 |
+
"loss": 4.6875,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.35,
|
2463 |
+
"grad_norm": 0.39535233067020553,
|
2464 |
+
"learning_rate": 0.00045675732195219046,
|
2465 |
+
"loss": 4.5625,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.35,
|
2470 |
+
"grad_norm": 0.36300954605061336,
|
2471 |
+
"learning_rate": 0.00045600017727093185,
|
2472 |
+
"loss": 4.625,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.35,
|
2477 |
+
"grad_norm": 0.34321074019054293,
|
2478 |
+
"learning_rate": 0.000455241763769287,
|
2479 |
+
"loss": 4.6875,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.35,
|
2484 |
+
"grad_norm": 0.4028061367150823,
|
2485 |
+
"learning_rate": 0.00045448208908447144,
|
2486 |
+
"loss": 4.5664,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.35,
|
2491 |
+
"grad_norm": 0.4408851349392791,
|
2492 |
+
"learning_rate": 0.00045372116086640074,
|
2493 |
+
"loss": 4.6211,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.36,
|
2498 |
+
"grad_norm": 0.4191120056165356,
|
2499 |
+
"learning_rate": 0.00045295898677761377,
|
2500 |
+
"loss": 4.5781,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.36,
|
2505 |
+
"grad_norm": 0.3613069682757734,
|
2506 |
+
"learning_rate": 0.00045219557449319506,
|
2507 |
+
"loss": 4.6133,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.36,
|
2512 |
+
"grad_norm": 0.31397596134892436,
|
2513 |
+
"learning_rate": 0.0004514309317006977,
|
2514 |
+
"loss": 4.5039,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.36,
|
2519 |
+
"grad_norm": 0.2903352888009877,
|
2520 |
+
"learning_rate": 0.00045066506610006633,
|
2521 |
+
"loss": 4.6328,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.36,
|
2526 |
+
"grad_norm": 0.3038739076874848,
|
2527 |
+
"learning_rate": 0.000449897985403559,
|
2528 |
+
"loss": 4.6289,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.36,
|
2533 |
+
"grad_norm": 0.27322755655814623,
|
2534 |
+
"learning_rate": 0.00044912969733566967,
|
2535 |
+
"loss": 4.6484,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.36,
|
2540 |
+
"grad_norm": 0.2832382706505613,
|
2541 |
+
"learning_rate": 0.0004483602096330509,
|
2542 |
+
"loss": 4.6328,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.36,
|
2547 |
+
"grad_norm": 0.28631598952989207,
|
2548 |
+
"learning_rate": 0.0004475895300444351,
|
2549 |
+
"loss": 4.6094,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.36,
|
2554 |
+
"grad_norm": 0.2987917584998194,
|
2555 |
+
"learning_rate": 0.0004468176663305572,
|
2556 |
+
"loss": 4.6133,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.36,
|
2561 |
+
"grad_norm": 0.2967880899806566,
|
2562 |
+
"learning_rate": 0.0004460446262640763,
|
2563 |
+
"loss": 4.5117,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.37,
|
2568 |
+
"grad_norm": 0.3131220348773598,
|
2569 |
+
"learning_rate": 0.0004452704176294972,
|
2570 |
+
"loss": 4.5625,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.37,
|
2575 |
+
"grad_norm": 0.351287172376684,
|
2576 |
+
"learning_rate": 0.00044449504822309245,
|
2577 |
+
"loss": 4.5859,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.37,
|
2582 |
+
"grad_norm": 0.41479718509121755,
|
2583 |
+
"learning_rate": 0.0004437185258528231,
|
2584 |
+
"loss": 4.6133,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.37,
|
2589 |
+
"grad_norm": 0.500858047476452,
|
2590 |
+
"learning_rate": 0.00044294085833826105,
|
2591 |
+
"loss": 4.5195,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.37,
|
2596 |
+
"grad_norm": 0.44264696668268316,
|
2597 |
+
"learning_rate": 0.00044216205351050935,
|
2598 |
+
"loss": 4.5273,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.37,
|
2603 |
+
"grad_norm": 0.3491811100518669,
|
2604 |
+
"learning_rate": 0.000441382119212124,
|
2605 |
+
"loss": 4.4492,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.37,
|
2610 |
+
"grad_norm": 0.39094065310443904,
|
2611 |
+
"learning_rate": 0.0004406010632970348,
|
2612 |
+
"loss": 4.5938,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.37,
|
2617 |
+
"grad_norm": 0.42589950669151017,
|
2618 |
+
"learning_rate": 0.00043981889363046604,
|
2619 |
+
"loss": 4.4766,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.37,
|
2624 |
+
"grad_norm": 0.3735169848840402,
|
2625 |
+
"learning_rate": 0.0004390356180888577,
|
2626 |
+
"loss": 4.4961,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.37,
|
2631 |
+
"grad_norm": 0.3489922132224555,
|
2632 |
+
"learning_rate": 0.00043825124455978563,
|
2633 |
+
"loss": 4.5781,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.38,
|
2638 |
+
"grad_norm": 0.32411356449145856,
|
2639 |
+
"learning_rate": 0.00043746578094188283,
|
2640 |
+
"loss": 4.5273,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.38,
|
2645 |
+
"grad_norm": 0.3072457144479494,
|
2646 |
+
"learning_rate": 0.0004366792351447589,
|
2647 |
+
"loss": 4.5859,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.38,
|
2652 |
+
"grad_norm": 0.30778933355611565,
|
2653 |
+
"learning_rate": 0.00043589161508892146,
|
2654 |
+
"loss": 4.5391,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.38,
|
2659 |
+
"grad_norm": 0.30422537554955104,
|
2660 |
+
"learning_rate": 0.0004351029287056957,
|
2661 |
+
"loss": 4.5117,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.38,
|
2666 |
+
"grad_norm": 0.28548018463401653,
|
2667 |
+
"learning_rate": 0.0004343131839371447,
|
2668 |
+
"loss": 4.457,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.38,
|
2673 |
+
"grad_norm": 0.2987254595952286,
|
2674 |
+
"learning_rate": 0.00043352238873598957,
|
2675 |
+
"loss": 4.4531,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.38,
|
2680 |
+
"grad_norm": 0.32044706774364184,
|
2681 |
+
"learning_rate": 0.0004327305510655292,
|
2682 |
+
"loss": 4.5,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.38,
|
2687 |
+
"grad_norm": 0.3835631814807335,
|
2688 |
+
"learning_rate": 0.0004319376788995602,
|
2689 |
+
"loss": 4.5273,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.38,
|
2694 |
+
"grad_norm": 0.4987353932481338,
|
2695 |
+
"learning_rate": 0.00043114378022229616,
|
2696 |
+
"loss": 4.543,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.38,
|
2701 |
+
"grad_norm": 0.521234888411183,
|
2702 |
+
"learning_rate": 0.00043034886302828837,
|
2703 |
+
"loss": 4.5469,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.39,
|
2708 |
+
"grad_norm": 0.3367046977250759,
|
2709 |
+
"learning_rate": 0.000429552935322344,
|
2710 |
+
"loss": 4.5742,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.39,
|
2715 |
+
"grad_norm": 0.3574936591433018,
|
2716 |
+
"learning_rate": 0.00042875600511944607,
|
2717 |
+
"loss": 4.4805,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.39,
|
2722 |
+
"grad_norm": 0.3301760060022735,
|
2723 |
+
"learning_rate": 0.000427958080444673,
|
2724 |
+
"loss": 4.418,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.39,
|
2729 |
+
"grad_norm": 0.3209607031995241,
|
2730 |
+
"learning_rate": 0.00042715916933311755,
|
2731 |
+
"loss": 4.4375,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.39,
|
2736 |
+
"grad_norm": 0.2928558259134389,
|
2737 |
+
"learning_rate": 0.00042635927982980534,
|
2738 |
+
"loss": 4.4297,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.39,
|
2743 |
+
"grad_norm": 0.30495011187424853,
|
2744 |
+
"learning_rate": 0.00042555841998961517,
|
2745 |
+
"loss": 4.5586,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.39,
|
2750 |
+
"grad_norm": 0.29893525391168935,
|
2751 |
+
"learning_rate": 0.00042475659787719663,
|
2752 |
+
"loss": 4.4219,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.39,
|
2757 |
+
"grad_norm": 0.2662839149983714,
|
2758 |
+
"learning_rate": 0.0004239538215668894,
|
2759 |
+
"loss": 4.4648,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.39,
|
2764 |
+
"grad_norm": 0.2948338332982422,
|
2765 |
+
"learning_rate": 0.000423150099142642,
|
2766 |
+
"loss": 4.4336,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.39,
|
2771 |
+
"grad_norm": 0.3160166991490238,
|
2772 |
+
"learning_rate": 0.0004223454386979305,
|
2773 |
+
"loss": 4.5508,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.4,
|
2778 |
+
"grad_norm": 0.3094869555573116,
|
2779 |
+
"learning_rate": 0.0004215398483356765,
|
2780 |
+
"loss": 4.4453,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.4,
|
2785 |
+
"grad_norm": 0.2666983935113946,
|
2786 |
+
"learning_rate": 0.00042073333616816607,
|
2787 |
+
"loss": 4.5586,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.4,
|
2792 |
+
"grad_norm": 0.27831035395423853,
|
2793 |
+
"learning_rate": 0.0004199259103169678,
|
2794 |
+
"loss": 4.4141,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.4,
|
2799 |
+
"grad_norm": 0.3036373944797484,
|
2800 |
+
"learning_rate": 0.00041911757891285086,
|
2801 |
+
"loss": 4.4922,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.4,
|
2806 |
+
"grad_norm": 0.30775706426180766,
|
2807 |
+
"learning_rate": 0.0004183083500957039,
|
2808 |
+
"loss": 4.5078,
|
2809 |
+
"step": 400
|
2810 |
+
}
|
2811 |
+
],
|
2812 |
+
"logging_steps": 1,
|
2813 |
+
"max_steps": 1000,
|
2814 |
+
"num_input_tokens_seen": 0,
|
2815 |
+
"num_train_epochs": 1,
|
2816 |
+
"save_steps": 100,
|
2817 |
+
"total_flos": 0.0,
|
2818 |
+
"train_batch_size": 32,
|
2819 |
+
"trial_name": null,
|
2820 |
+
"trial_params": null
|
2821 |
+
}
|
checkpoint-400/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbd9a6067cf818494e2505097746a1cad30533fc72eb13916de34f7671e3e456
|
3 |
+
size 6520
|
checkpoint-400/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|