File size: 1,196 Bytes
eb29ff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: llama3.1
datasets:
- DebateLabKIT/deepa2-conversations
- DebateLabKIT/deep-argmap-conversations
- allenai/tulu-3-sft-mixture
base_model: DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT
pipeline_tag: text-generation
library_name: transformers
tags:
- logic
- argumentation
- critical-thinking
- argument-mapping
- trl
- sft
- mlx
- mlx-my-repo
---
# ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx
The Model [ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx](https://huggingface.co/ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx) was converted to MLX format from [DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT](https://huggingface.co/DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|