File size: 57,663 Bytes
			
			| aaae0c3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import gc
import re
import json
import time
import mmap
import math
import torch
import random
import logging
import warnings
import traceback
import subprocess
import numpy as np
import torchaudio
import gradio as gr
import gradio_client.utils
from pydub import AudioSegment
from datetime import datetime
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, List
from torch.cuda.amp import autocast
from fastapi import FastAPI, HTTPException, Body
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import threading
# ======================================================================================
# PATCHES & RUNTIME SETUP
# ======================================================================================
# Gradio schema bool patch (prevents crash for boolean schemas)
_original_get_type = gradio_client.utils.get_type
def _patched_get_type(schema):
    if isinstance(schema, bool):
        return "boolean"
    return _original_get_type(schema)
gradio_client.utils.get_type = _patched_get_type
# Warnings
warnings.filterwarnings("ignore")
# Allocator for CUDA 12.x
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Determinism/Benchmark settings
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Logging
LOG_DIR = "logs"
os.makedirs(LOG_DIR, exist_ok=True)
LOG_FILE = os.path.join(LOG_DIR, f"musicgen_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s [%(levelname)s] %(message)s",
    handlers=[logging.FileHandler(LOG_FILE), logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger("ghostai-musicgen")
# Device
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
if DEVICE != "cuda":
    logger.error("CUDA is required. Exiting.")
    sys.exit(1)
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
logger.info("Precision: fp16 model, fp32 CPU audio ops")
# ======================================================================================
# SETTINGS PERSISTENCE
# ======================================================================================
SETTINGS_FILE = "settings.json"
DEFAULT_SETTINGS: Dict[str, Any] = {
    "cfg_scale": 5.8,
    "top_k": 250,              # more creative search space
    "top_p": 0.95,             # user requested higher probability cap
    "temperature": 0.90,       # user requested ~0.9
    "total_duration": 60,      # default to 1 minute
    "bpm": 120,
    "drum_beat": "none",
    "synthesizer": "none",
    "rhythmic_steps": "none",
    "bass_style": "none",
    "guitar_style": "none",
    "target_volume": -23.0,
    "preset": "default",
    "max_steps": 1500,         # keep for UI, chunking now fixed to 30s
    "bitrate": "192k",
    "output_sample_rate": "48000",
    "bit_depth": "16",
    "instrumental_prompt": ""
}
def load_settings_from_file() -> Dict[str, Any]:
    try:
        if os.path.exists(SETTINGS_FILE):
            with open(SETTINGS_FILE, "r") as f:
                data = json.load(f)
            # ensure all defaults present
            for k, v in DEFAULT_SETTINGS.items():
                data.setdefault(k, v)
            logger.info(f"Loaded settings from {SETTINGS_FILE}")
            return data
    except Exception as e:
        logger.error(f"Failed reading {SETTINGS_FILE}: {e}")
    return DEFAULT_SETTINGS.copy()
def save_settings_to_file(settings: Dict[str, Any]) -> None:
    try:
        with open(SETTINGS_FILE, "w") as f:
            json.dump(settings, f, indent=2)
        logger.info(f"Saved settings to {SETTINGS_FILE}")
    except Exception as e:
        logger.error(f"Failed saving {SETTINGS_FILE}: {e}")
CURRENT_SETTINGS = load_settings_from_file()
# ======================================================================================
# VRAM / DISK / MEMORY
# ======================================================================================
def clean_memory() -> Optional[float]:
    try:
        torch.cuda.empty_cache()
        gc.collect()
        torch.cuda.ipc_collect()
        torch.cuda.synchronize()
        vram_mb = torch.cuda.memory_allocated() / 1024**2
        logger.info(f"Memory cleaned. VRAM={vram_mb:.2f} MB")
        return vram_mb
    except Exception as e:
        logger.error(f"clean_memory failed: {e}")
        logger.error(traceback.format_exc())
        return None
def check_vram():
    try:
        r = subprocess.run(
            ['nvidia-smi', '--query-gpu=memory.used,memory.total', '--format=csv'],
            capture_output=True, text=True
        )
        lines = r.stdout.splitlines()
        if len(lines) > 1:
            used_mb, total_mb = map(int, re.findall(r'\d+', lines[1]))
            free_mb = total_mb - used_mb
            logger.info(f"VRAM: used {used_mb} MiB | free {free_mb} MiB | total {total_mb} MiB")
            if free_mb < 5000:
                logger.warning(f"Low free VRAM ({free_mb} MiB). Running processes:")
                procs = subprocess.run(
                    ['nvidia-smi', '--query-compute-apps=pid,used_memory', '--format=csv'],
                    capture_output=True, text=True
                )
                logger.info(f"\n{procs.stdout}")
            return free_mb
    except Exception as e:
        logger.error(f"check_vram failed: {e}")
    return None
def check_disk_space(path=".") -> bool:
    try:
        stat = os.statvfs(path)
        free_gb = stat.f_bavail * stat.f_frsize / (1024**3)
        if free_gb < 1.0:
            logger.warning(f"Low disk space: {free_gb:.2f} GB")
        return free_gb >= 1.0
    except Exception as e:
        logger.error(f"Disk space check failed: {e}")
        return False
# ======================================================================================
# AUDIO UTILS (CPU)
# ======================================================================================
def ensure_stereo(audio_segment: AudioSegment, sample_rate=48000, sample_width=2) -> AudioSegment:
    try:
        if audio_segment.channels != 2:
            audio_segment = audio_segment.set_channels(2)
        if audio_segment.frame_rate != sample_rate:
            audio_segment = audio_segment.set_frame_rate(sample_rate)
        return audio_segment
    except Exception as e:
        logger.error(f"ensure_stereo failed: {e}")
        return audio_segment
def calculate_rms(segment: AudioSegment) -> float:
    try:
        samples = np.array(segment.get_array_of_samples(), dtype=np.float32)
        rms = float(np.sqrt(np.mean(samples**2)))
        return rms
    except Exception as e:
        logger.error(f"calculate_rms failed: {e}")
        return 0.0
def hard_limit(audio_segment: AudioSegment, limit_db=-3.0, sample_rate=48000) -> AudioSegment:
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        limit = 10 ** (limit_db / 20.0) * (2**23 if audio_segment.sample_width == 3 else 32767)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        samples = np.clip(samples, -limit, limit).astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
        if len(samples) % 2 != 0:
            samples = samples[:-1]
        return AudioSegment(
            samples.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_segment.sample_width,
            channels=2
        )
    except Exception as e:
        logger.error(f"hard_limit failed: {e}")
        return audio_segment
def rms_normalize(segment: AudioSegment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=48000) -> AudioSegment:
    try:
        segment = ensure_stereo(segment, sample_rate, segment.sample_width)
        target_rms = 10 ** (target_rms_db / 20) * (2**23 if segment.sample_width == 3 else 32767)
        current_rms = calculate_rms(segment)
        if current_rms > 0:
            gain_factor = target_rms / current_rms
            segment = segment.apply_gain(20 * np.log10(max(gain_factor, 1e-6)))
        segment = hard_limit(segment, limit_db=peak_limit_db, sample_rate=sample_rate)
        return segment
    except Exception as e:
        logger.error(f"rms_normalize failed: {e}")
        return segment
def balance_stereo(audio_segment: AudioSegment, noise_threshold=-40, sample_rate=48000) -> AudioSegment:
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        if audio_segment.channels != 2:
            return audio_segment
        stereo = samples.reshape(-1, 2)
        db = 20 * np.log10(np.abs(stereo) + 1e-10)
        mask = db > noise_threshold
        stereo = stereo * mask
        left = stereo[:, 0]
        right = stereo[:, 1]
        l_rms = np.sqrt(np.mean(left[left != 0] ** 2)) if np.any(left != 0) else 0
        r_rms = np.sqrt(np.mean(right[right != 0] ** 2)) if np.any(right != 0) else 0
        if l_rms > 0 and r_rms > 0:
            avg = (l_rms + r_rms) / 2
            stereo[:, 0] *= (avg / l_rms)
            stereo[:, 1] *= (avg / r_rms)
        out = stereo.flatten().astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
        if len(out) % 2 != 0:
            out = out[:-1]
        return AudioSegment(
            out.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_segment.sample_width,
            channels=2
        )
    except Exception as e:
        logger.error(f"balance_stereo failed: {e}")
        return audio_segment
def apply_noise_gate(audio_segment: AudioSegment, threshold_db=-80, sample_rate=48000) -> AudioSegment:
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        if audio_segment.channels != 2:
            return audio_segment
        stereo = samples.reshape(-1, 2)
        for _ in range(2):
            db = 20 * np.log10(np.abs(stereo) + 1e-10)
            mask = db > threshold_db
            stereo = stereo * mask
        out = stereo.flatten().astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
        if len(out) % 2 != 0:
            out = out[:-1]
        return AudioSegment(
            out.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_segment.sample_width,
            channels=2
        )
    except Exception as e:
        logger.error(f"apply_noise_gate failed: {e}")
        return audio_segment
def apply_eq(segment: AudioSegment, sample_rate=48000) -> AudioSegment:
    try:
        segment = ensure_stereo(segment, sample_rate, segment.sample_width)
        segment = segment.high_pass_filter(20)
        segment = segment.low_pass_filter(8000)
        segment = segment - 3
        segment = segment - 3
        segment = segment - 10
        return segment
    except Exception as e:
        logger.error(f"apply_eq failed: {e}")
        return segment
def apply_fade(segment: AudioSegment, fade_in_duration=500, fade_out_duration=500) -> AudioSegment:
    try:
        segment = ensure_stereo(segment, segment.frame_rate, segment.sample_width)
        segment = segment.fade_in(fade_in_duration).fade_out(fade_out_duration)
        return segment
    except Exception as e:
        logger.error(f"apply_fade failed: {e}")
        return segment
# ======================================================================================
# PROMPTS
# ======================================================================================
def set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, chunk_num):
    try:
        bpm_range = (90, 130)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", standard rock drums with funk fills"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style != "none" else ", funky slap bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", energetic guitar riffs"
        base = f"Instrumental alternative rock by Red Hot Chili Peppers{guitar}{bass}{drum}{synth}, funk-rock energy at {bpm} BPM"
        if chunk_num == 1:
            return base + ", dynamic intro and expressive verse."
        return base + ", powerful chorus and energetic outro."
    except Exception:
        return ""
def set_nirvana_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (100, 130)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums, punk energy" if drum_beat != "none" else ", standard rock drums, punk energy"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        chosen_bass = random.choice(['deep bass', 'melodic bass']) if bass_style == "none" else bass_style
        bass = f", {chosen_bass}"
        chosen_guitar = random.choice(['distorted guitar', 'clean guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}"
        chosen_rhythm = random.choice(['steady steps', 'dynamic shifts']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        return f"Instrumental grunge by Nirvana{guitar}{bass}{drum}{synth}, raw lo-fi production{rhythm} at {bpm} BPM."
    except Exception:
        return ""
def set_pearl_jam_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (100, 140)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums, driving rhythm" if drum_beat != "none" else ", standard rock drums, driving rhythm"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style}, emotional tone" if bass_style != "none" else ", melodic bass, emotional tone"
        chosen_guitar = random.choice(['clean guitar', 'distorted guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}, soulful leads"
        chosen_rhythm = random.choice(['steady steps', 'syncopated steps']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        return f"Instrumental grunge by Pearl Jam{guitar}{bass}{drum}{synth}, classic rock influences{rhythm} at {bpm} BPM."
    except Exception:
        return ""
def set_soundgarden_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (90, 140)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums, heavy rhythm" if drum_beat != "none" else ", standard rock drums, heavy rhythm"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style}, sludgy tone" if bass_style != "none" else ", deep bass, sludgy tone"
        guitar = f", {guitar_style}, downtuned riffs, psychedelic vibe" if guitar_style != "none" else ", distorted guitar, downtuned riffs, psychedelic vibe"
        rhythm = f", {rhythmic_steps}" if rhythmic_steps != "none" else ", complex steps"
        return f"Instrumental grunge with heavy metal influences by Soundgarden{guitar}{bass}{drum}{synth}{rhythm} at {bpm} BPM."
    except Exception:
        return ""
def set_foo_fighters_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (110, 150)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums, powerful drive" if drum_beat != "none" else ", standard rock drums, powerful drive"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style}, supportive tone" if bass_style != "none" else ", melodic bass, supportive tone"
        chosen_guitar = random.choice(['distorted guitar', 'clean guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}, anthemic quality"
        chosen_rhythm = random.choice(['steady steps', 'driving rhythm']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        return f"Instrumental alternative rock with post-grunge influences by Foo Fighters{guitar}, stadium-ready hooks{bass}{drum}{synth}{rhythm} at {bpm} BPM."
    except Exception:
        return ""
def set_classic_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (120, 180)
        bpm = random.randint(*bpm_range) if bpm == 120 else bpm
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", double bass drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style}" if bass_style != "none" else ", aggressive bass"
        guitar = f", {guitar_style}, blazing fast riffs" if guitar_style != "none" else ", distorted guitar, blazing fast riffs"
        rhythm = f", {rhythmic_steps}" if rhythmic_steps != "none" else ", complex steps"
        return f"Instrumental thrash metal by Metallica{guitar}{bass}{drum}{synth}{rhythm} at {bpm} BPM."
    except Exception:
        return ""
def set_smashing_pumpkins_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ", lush synths"
        bass = f", {bass_style} bass" if bass_style != "none" else ""
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", dreamy guitar"
        return f"Instrumental alternative rock by Smashing Pumpkins{guitar}{synth}{drum}{bass} at {bpm} BPM."
    except Exception:
        return ""
def set_radiohead_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ", atmospheric synths"
        bass = f", {bass_style} bass" if bass_style != "none" else ", hypnotic bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ""
        return f"Instrumental experimental rock by Radiohead{synth}{bass}{drum}{guitar} at {bpm} BPM."
    except Exception:
        return ""
def set_alternative_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style != "none" else ", melodic bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", distorted guitar"
        return f"Instrumental alternative rock by Pixies{guitar}{bass}{drum}{synth} at {bpm} BPM."
    except Exception:
        return ""
def set_post_punk_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", precise drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style != "none" else ", driving bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", jangly guitar"
        return f"Instrumental post-punk by Joy Division{guitar}{bass}{drum}{synth} at {bpm} BPM."
    except Exception:
        return ""
def set_indie_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style != "none" else ", groovy bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", jangly guitar"
        return f"Instrumental indie rock by Arctic Monkeys{guitar}{bass}{drum}{synth} at {bpm} BPM."
    except Exception:
        return ""
def set_funk_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", heavy drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style != "none" else ", slap bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", funky guitar"
        return f"Instrumental funk rock by Rage Against the Machine{guitar}{bass}{drum}{synth} at {bpm} BPM."
    except Exception:
        return ""
def set_detroit_techno_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", four-on-the-floor drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ", pulsing synths"
        bass = f", {bass_style} bass" if bass_style != "none" else ", driving bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ""
        return f"Instrumental Detroit techno by Juan Atkins{synth}{bass}{drum}{guitar} at {bpm} BPM."
    except Exception:
        return ""
def set_deep_house_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", steady kick drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ", warm synths"
        bass = f", {bass_style} bass" if bass_style != "none" else ", deep bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ""
        return f"Instrumental deep house by Larry Heard{synth}{bass}{drum}{guitar} at {bpm} BPM."
    except Exception:
        return ""
PRESETS = {
    "default":   {"cfg_scale": 5.8, "top_k": 250, "top_p": 0.95, "temperature": 0.90},
    "rock":      {"cfg_scale": 5.8, "top_k": 250, "top_p": 0.95, "temperature": 0.90},
    "techno":    {"cfg_scale": 5.2, "top_k": 300, "top_p": 0.96, "temperature": 0.95},
    "grunge":    {"cfg_scale": 6.2, "top_k": 220, "top_p": 0.94, "temperature": 0.90},
    "indie":     {"cfg_scale": 5.5, "top_k": 240, "top_p": 0.95, "temperature": 0.92},
    "funk_rock": {"cfg_scale": 5.8, "top_k": 260, "top_p": 0.96, "temperature": 0.94},
}
# ======================================================================================
# MODEL LOAD
# ======================================================================================
try:
    from audiocraft.models import MusicGen
except Exception as e:
    logger.error("audiocraft is required. pip install audiocraft")
    raise
def load_model():
    free_vram = check_vram()
    if free_vram is not None and free_vram < 5000:
        logger.warning("Low free VRAM; consider closing other apps.")
    clean_memory()
    local_model_path = "./models/musicgen-large"
    if not os.path.exists(local_model_path):
        logger.error(f"Model path missing: {local_model_path}")
        sys.exit(1)
    logger.info("Loading MusicGen (large)...")
    with autocast(dtype=torch.float16):
        model = MusicGen.get_pretrained(local_model_path, device=DEVICE)
    # base params get overridden per-call
    model.set_generation_params(duration=30, two_step_cfg=False)
    logger.info("MusicGen loaded.")
    return model
musicgen_model = load_model()
# ======================================================================================
# GENERATION PIPELINE (30s CHUNKING, SEAMLESS MERGE)
# ======================================================================================
def get_latest_log() -> str:
    try:
        files = sorted(Path(LOG_DIR).glob("musicgen_log_*.log"), key=os.path.getmtime, reverse=True)
        if not files:
            return "No log files found."
        return files[0].read_text()
    except Exception as e:
        return f"Error reading log: {e}"
def set_bitrate_128(): return "128k"
def set_bitrate_192(): return "192k"
def set_bitrate_320(): return "320k"
def set_sample_rate_22050(): return "22050"
def set_sample_rate_44100(): return "44100"
def set_sample_rate_48000(): return "48000"
def set_bit_depth_16(): return "16"
def set_bit_depth_24(): return "24"
def generate_music_wrapper(*args):
    try:
        return generate_music(*args)
    finally:
        clean_memory()
def _export_torch_to_segment(audio_tensor: torch.Tensor, sample_rate: int, bit_depth_int: int) -> Optional[AudioSegment]:
    """Helper: save torch stereo float32 to WAV -> load with pydub as segment."""
    temp = f"temp_audio_{int(time.time()*1000)}.wav"
    try:
        torchaudio.save(temp, audio_tensor, sample_rate, bits_per_sample=bit_depth_int)
        with open(temp, "rb") as f:
            mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
            seg = AudioSegment.from_wav(temp)
            mm.close()
        return seg
    except Exception as e:
        logger.error(f"_export_torch_to_segment failed: {e}")
        logger.error(traceback.format_exc())
        return None
    finally:
        try:
            if os.path.exists(temp):
                os.remove(temp)
        except OSError:
            pass
def _crossfade_segments(seg_a: AudioSegment, seg_b: AudioSegment, overlap_ms: int, sample_rate: int, bit_depth_int: int) -> AudioSegment:
    """Blend tail of seg_a with head of seg_b using hann window for seamless merge."""
    try:
        seg_a = ensure_stereo(seg_a, sample_rate, seg_a.sample_width)
        seg_b = ensure_stereo(seg_b, sample_rate, seg_b.sample_width)
        if overlap_ms <= 0 or len(seg_a) < overlap_ms or len(seg_b) < overlap_ms:
            return seg_a + seg_b
        # export overlaps
        prev_wav = f"tmp_prev_{int(time.time()*1000)}.wav"
        curr_wav = f"tmp_curr_{int(time.time()*1000)}.wav"
        try:
            seg_a[-overlap_ms:].export(prev_wav, format="wav")
            seg_b[:overlap_ms].export(curr_wav, format="wav")
            a_audio, sr_a = torchaudio.load(prev_wav)
            b_audio, sr_b = torchaudio.load(curr_wav)
            if sr_a != sample_rate:
                a_audio = torchaudio.functional.resample(a_audio, sr_a, sample_rate, lowpass_filter_width=64)
            if sr_b != sample_rate:
                b_audio = torchaudio.functional.resample(b_audio, sr_b, sample_rate, lowpass_filter_width=64)
            n = min(a_audio.shape[1], b_audio.shape[1])
            n = n - (n % 2)
            if n <= 0:
                return seg_a + seg_b
            a = a_audio[:, :n]
            b = b_audio[:, :n]
            hann = torch.hann_window(n, periodic=False)
            fade_in = hann
            fade_out = hann.flip(0)
            blended = (a * fade_out + b * fade_in).to(torch.float32)
            blended = torch.clamp(blended, -1.0, 1.0)
            # scale to PCM and save
            scale = (2**23 if bit_depth_int == 24 else 32767)
            blended_i = (blended * scale).to(torch.int32 if bit_depth_int == 24 else torch.int16)
            temp_x = f"tmp_cross_{int(time.time()*1000)}.wav"
            torchaudio.save(temp_x, blended_i, sample_rate, bits_per_sample=bit_depth_int)
            blended_seg = AudioSegment.from_wav(temp_x)
            blended_seg = ensure_stereo(blended_seg, sample_rate, blended_seg.sample_width)
            # combine
            result = seg_a[:-overlap_ms] + blended_seg + seg_b[overlap_ms:]
            try:
                if os.path.exists(temp_x):
                    os.remove(temp_x)
            except OSError:
                pass
            return result
        finally:
            for p in [prev_wav, curr_wav]:
                try:
                    if os.path.exists(p):
                        os.remove(p)
                except OSError:
                    pass
    except Exception as e:
        logger.error(f"_crossfade_segments failed: {e}")
        return seg_a + seg_b
def generate_music(
    instrumental_prompt: str,
    cfg_scale: float,
    top_k: int,
    top_p: float,
    temperature: float,
    total_duration: int,
    bpm: int,
    drum_beat: str,
    synthesizer: str,
    rhythmic_steps: str,
    bass_style: str,
    guitar_style: str,
    target_volume: float,
    preset: str,
    max_steps: str,                 # kept for UI parity
    vram_status_text: str,
    bitrate: str,
    output_sample_rate: str,
    bit_depth: str
) -> Tuple[Optional[str], str, str]:
    global musicgen_model
    if not instrumental_prompt or not instrumental_prompt.strip():
        return None, "β οΈ Please enter a valid instrumental prompt!", vram_status_text
    try:
        # Apply preset if not default
        if preset != "default":
            p = PRESETS.get(preset, PRESETS["default"])
            cfg_scale, top_k, top_p, temperature = p["cfg_scale"], p["top_k"], p["top_p"], p["temperature"]
            logger.info(f"Preset '{preset}' applied: cfg={cfg_scale} top_k={top_k} top_p={top_p} temp={temperature}")
        # Validate numerics
        try:
            output_sr_int = int(output_sample_rate)
        except:
            return None, "β Invalid output sampling rate; choose 22050/44100/48000", vram_status_text
        try:
            bit_depth_int = int(bit_depth)
            sample_width = 3 if bit_depth_int == 24 else 2
        except:
            return None, "β Invalid bit depth; choose 16 or 24", vram_status_text
        if not check_disk_space():
            return None, "β οΈ Low disk space (<1GB).", vram_status_text
        # Chunking: EXACT 30s per chunk (unify stepping -> always 30s). Two chunks => full 60s song.
        CHUNK_SEC = 30
        total_duration = max(30, min(int(total_duration), 120))
        num_chunks = math.ceil(total_duration / CHUNK_SEC)
        # Internal processing rate (resample to this for DSP)
        PROCESS_SR = 48000
        OVERLAP_SEC = 0.20  # 200ms crossfade/prompt tail
        channels = 2
        # Seed & params
        seed = random.randint(0, 2**31 - 1)
        random.seed(seed)
        torch.manual_seed(seed)
        np.random.seed(seed)
        torch.cuda.manual_seed_all(seed)
        musicgen_model.set_generation_params(
            duration=CHUNK_SEC,
            use_sampling=True,
            top_k=int(top_k),
            top_p=float(top_p),
            temperature=float(temperature),
            cfg_coef=float(cfg_scale),
            two_step_cfg=False,
        )
        vram_status_text = f"Start VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
        segments: List[AudioSegment] = []
        start_time = time.time()
        for idx in range(num_chunks):
            chunk_idx = idx + 1
            dur = CHUNK_SEC if (idx < num_chunks - 1) else (total_duration - CHUNK_SEC * (num_chunks - 1) or CHUNK_SEC)
            logger.info(f"Generating chunk {chunk_idx}/{num_chunks} ({dur}s)")
            # Prompt per chunk (variable for RHCP only)
            if "Red Hot Chili Peppers" in instrumental_prompt:
                prompt_text = set_red_hot_chili_peppers_prompt(
                    bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, chunk_idx
                )
            else:
                prompt_text = instrumental_prompt
            try:
                with torch.no_grad():
                    with autocast(dtype=torch.float16):
                        clean_memory()
                        if idx == 0:
                            audio = musicgen_model.generate([prompt_text], progress=True)[0].cpu()
                        else:
                            # Use tail of previous segment as continuation prompt
                            prev_seg = segments[-1]
                            prev_seg = apply_noise_gate(prev_seg, threshold_db=-80, sample_rate=PROCESS_SR)
                            prev_seg = balance_stereo(prev_seg, noise_threshold=-40, sample_rate=PROCESS_SR)
                            temp_prev = f"prev_{int(time.time()*1000)}.wav"
                            try:
                                prev_seg.export(temp_prev, format="wav")
                                prev_audio, prev_sr = torchaudio.load(temp_prev)
                                if prev_sr != PROCESS_SR:
                                    prev_audio = torchaudio.functional.resample(prev_audio, prev_sr, PROCESS_SR, lowpass_filter_width=64)
                                if prev_audio.shape[0] != 2:
                                    prev_audio = prev_audio.repeat(2, 1)[:, :prev_audio.shape[1]]
                                prev_audio = prev_audio.to(DEVICE)
                                tail = prev_audio[:, -int(PROCESS_SR * OVERLAP_SEC):]
                                audio = musicgen_model.generate_continuation(
                                    prompt=tail,
                                    prompt_sample_rate=PROCESS_SR,
                                    descriptions=[prompt_text],
                                    progress=True
                                )[0].cpu()
                                del prev_audio, tail
                            finally:
                                try:
                                    if os.path.exists(temp_prev):
                                        os.remove(temp_prev)
                                except OSError:
                                    pass
                        clean_memory()
            except Exception as e:
                logger.error(f"Chunk {chunk_idx} generation failed: {e}")
                logger.error(traceback.format_exc())
                return None, f"β Failed to generate chunk {chunk_idx}: {e}", vram_status_text
            try:
                # Ensure stereo & resample to PROCESS_SR for DSP
                if audio.shape[0] != 2:
                    audio = audio.repeat(2, 1)[:, :audio.shape[1]]
                audio = audio.to(dtype=torch.float32)
                audio = torchaudio.functional.resample(audio, 32000, PROCESS_SR, lowpass_filter_width=64)
                seg = _export_torch_to_segment(audio, PROCESS_SR, bit_depth_int)
                if seg is None:
                    return None, f"β Failed to convert audio for chunk {chunk_idx}", vram_status_text
                seg = ensure_stereo(seg, PROCESS_SR, sample_width)
                seg = seg - 15
                seg = apply_noise_gate(seg, threshold_db=-80, sample_rate=PROCESS_SR)
                seg = balance_stereo(seg, noise_threshold=-40, sample_rate=PROCESS_SR)
                seg = rms_normalize(seg, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
                seg = apply_eq(seg, sample_rate=PROCESS_SR)
                # Trim exactly to 'dur' seconds for last chunk
                seg = seg[:dur * 1000]
                segments.append(seg)
                del audio
                clean_memory()
                vram_status_text = f"VRAM after chunk {chunk_idx}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
            except Exception as e:
                logger.error(f"Post-processing failed (chunk {chunk_idx}): {e}")
                logger.error(traceback.format_exc())
                return None, f"β Failed to process chunk {chunk_idx}: {e}", vram_status_text
        if not segments:
            return None, "β No audio generated.", vram_status_text
        # Seamless join with crossfades
        logger.info("Combining chunks...")
        final_seg = segments[0]
        overlap_ms = int(OVERLAP_SEC * 1000)
        for i in range(1, len(segments)):
            final_seg = _crossfade_segments(final_seg, segments[i], overlap_ms, PROCESS_SR, bit_depth_int)
        # Final length clamp
        final_seg = final_seg[:total_duration * 1000]
        # Final polish
        final_seg = apply_noise_gate(final_seg, threshold_db=-80, sample_rate=PROCESS_SR)
        final_seg = balance_stereo(final_seg, noise_threshold=-40, sample_rate=PROCESS_SR)
        final_seg = rms_normalize(final_seg, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
        final_seg = apply_eq(final_seg, sample_rate=PROCESS_SR)
        final_seg = apply_fade(final_seg, 500, 800)
        final_seg = final_seg - 10
        final_seg = final_seg.set_frame_rate(output_sr_int)
        # Export MP3
        mp3_path = f"ghostai_music_{int(time.time())}.mp3"
        try:
            clean_memory()
            final_seg.export(mp3_path, format="mp3", bitrate=bitrate, tags={"title": "GhostAI Instrumental", "artist": "GhostAI"})
        except Exception as e:
            logger.error(f"MP3 export failed ({bitrate}): {e}")
            fb = f"ghostai_music_fallback_{int(time.time())}.mp3"
            try:
                final_seg.export(fb, format="mp3", bitrate="128k")
                mp3_path = fb
            except Exception as ee:
                return None, f"β Failed to export MP3: {ee}", vram_status_text
        elapsed = time.time() - start_time
        vram_status_text = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
        logger.info(f"Done in {elapsed:.2f}s -> {mp3_path}")
        return mp3_path, "β
 Done! 30s chunking unified seamlessly. Check output loudness/quality.", vram_status_text
    except Exception as e:
        logger.error(f"Generation failed: {e}")
        logger.error(traceback.format_exc())
        return None, f"β Generation failed: {e}", vram_status_text
    finally:
        clean_memory()
def clear_inputs():
    s = DEFAULT_SETTINGS.copy()
    return (
        s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
        s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
        s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
        s["bitrate"], s["output_sample_rate"], s["bit_depth"]
    )
# ======================================================================================
# SERVER STATUS (BUSY/IDLE) & RENDER API
# ======================================================================================
BUSY_LOCK = threading.Lock()
BUSY_FLAG = False
BUSY_FILE = "/tmp/musicgen_busy.lock"
CURRENT_JOB: Dict[str, Any] = {"id": None, "start": None}
def set_busy(val: bool, job_id: Optional[str] = None):
    global BUSY_FLAG, CURRENT_JOB
    with BUSY_LOCK:
        BUSY_FLAG = val
        if val:
            CURRENT_JOB["id"] = job_id or f"job_{int(time.time())}"
            CURRENT_JOB["start"] = time.time()
            try:
                Path(BUSY_FILE).write_text(CURRENT_JOB["id"])
            except Exception:
                pass
        else:
            CURRENT_JOB["id"] = None
            CURRENT_JOB["start"] = None
            try:
                if os.path.exists(BUSY_FILE):
                    os.remove(BUSY_FILE)
            except Exception:
                pass
def is_busy() -> bool:
    with BUSY_LOCK:
        return BUSY_FLAG
def job_elapsed() -> float:
    with BUSY_LOCK:
        if CURRENT_JOB["start"] is None:
            return 0.0
        return time.time() - CURRENT_JOB["start"]
class RenderRequest(BaseModel):
    instrumental_prompt: str
    cfg_scale: Optional[float] = None
    top_k: Optional[int] = None
    top_p: Optional[float] = None
    temperature: Optional[float] = None
    total_duration: Optional[int] = None
    bpm: Optional[int] = None
    drum_beat: Optional[str] = None
    synthesizer: Optional[str] = None
    rhythmic_steps: Optional[str] = None
    bass_style: Optional[str] = None
    guitar_style: Optional[str] = None
    target_volume: Optional[float] = None
    preset: Optional[str] = None
    max_steps: Optional[int] = None
    bitrate: Optional[str] = None
    output_sample_rate: Optional[str] = None
    bit_depth: Optional[str] = None
class SettingsUpdate(BaseModel):
    settings: Dict[str, Any]
fastapp = FastAPI(title="GhostAI Music Server", version="1.0")
fastapp.add_middleware(
    CORSMiddleware,
    allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"],
)
@fastapp.get("/health")
def health():
    return {"ok": True, "ts": int(time.time())}
@fastapp.get("/status")
def status():
    busy = is_busy()
    return {
        "busy": busy,
        "job_id": CURRENT_JOB["id"],
        "since": CURRENT_JOB["start"],
        "elapsed": job_elapsed(),
        "lockfile": os.path.exists(BUSY_FILE)
    }
@fastapp.get("/config")
def get_config():
    return {"defaults": CURRENT_SETTINGS}
@fastapp.post("/settings")
def set_settings(payload: SettingsUpdate):
    try:
        s = CURRENT_SETTINGS.copy()
        s.update(payload.settings or {})
        save_settings_to_file(s)
        for k, v in s.items():
            CURRENT_SETTINGS[k] = v
        return {"ok": True, "saved": s}
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))
@fastapp.post("/render")
def render(req: RenderRequest):
    if is_busy():
        raise HTTPException(status_code=409, detail="Server busy")
    job_id = f"render_{int(time.time())}"
    set_busy(True, job_id)
    try:
        s = CURRENT_SETTINGS.copy()
        # apply overrides
        for k, v in req.dict().items():
            if v is not None:
                s[k] = v
        mp3, msg, vram = generate_music(
            s.get("instrumental_prompt", req.instrumental_prompt),
            float(s.get("cfg_scale", DEFAULT_SETTINGS["cfg_scale"])),
            int(s.get("top_k", DEFAULT_SETTINGS["top_k"])),
            float(s.get("top_p", DEFAULT_SETTINGS["top_p"])),
            float(s.get("temperature", DEFAULT_SETTINGS["temperature"])),
            int(s.get("total_duration", DEFAULT_SETTINGS["total_duration"])),
            int(s.get("bpm", DEFAULT_SETTINGS["bpm"])),
            str(s.get("drum_beat", DEFAULT_SETTINGS["drum_beat"])),
            str(s.get("synthesizer", DEFAULT_SETTINGS["synthesizer"])),
            str(s.get("rhythmic_steps", DEFAULT_SETTINGS["rhythmic_steps"])),
            str(s.get("bass_style", DEFAULT_SETTINGS["bass_style"])),
            str(s.get("guitar_style", DEFAULT_SETTINGS["guitar_style"])),
            float(s.get("target_volume", DEFAULT_SETTINGS["target_volume"])),
            str(s.get("preset", DEFAULT_SETTINGS["preset"])),
            str(s.get("max_steps", DEFAULT_SETTINGS["max_steps"])),
            "",
            str(s.get("bitrate", DEFAULT_SETTINGS["bitrate"])),
            str(s.get("output_sample_rate", DEFAULT_SETTINGS["output_sample_rate"])),
            str(s.get("bit_depth", DEFAULT_SETTINGS["bit_depth"]))
        )
        if not mp3:
            raise HTTPException(status_code=500, detail=msg)
        return {"ok": True, "job_id": job_id, "path": mp3, "status": msg, "vram": vram}
    finally:
        set_busy(False, None)
def _start_fastapi():
    uvicorn.run(fastapp, host="0.0.0.0", port=8555, log_level="info")
api_thread = threading.Thread(target=_start_fastapi, daemon=True)
api_thread.start()
logger.info("FastAPI server started on http://0.0.0.0:8555")
# ======================================================================================
# GRADIO UI (HIGH CONTRAST / WHITE TEXT)
# ======================================================================================
CSS = """
:root { color-scheme: dark; }
body, .gradio-container, .block, .tabs, .panel, .form, .wrap { background: #0B0B0D !important; color: #FFFFFF !important; }
* { color: #FFFFFF !important; }
label, p, span, h1, h2, h3, h4, h5, h6 { color: #FFFFFF !important; }
input, textarea, select { background: #15151A !important; color: #FFFFFF !important; border: 1px solid #2B2B33 !important; }
button { background: #1F6FEB !important; color: #FFFFFF !important; border: 2px solid transparent !important; border-radius: 8px !important; padding: 10px 16px !important; font-weight: 700 !important; }
button:hover { background: #2D7BFF !important; }
button:focus { outline: 3px solid #00C853 !important; }
.slider > input { accent-color: #FFD600 !important; }
.group-container { border: 1px solid #2B2B33; border-radius: 10px; padding: 16px; }
.header { text-align:center; padding: 12px 16px; border-bottom: 2px solid #00C853; }
.header h1 { font-size: 28px; margin: 6px 0 0 0; }
.header .logo { font-size: 44px; }
"""
loaded = CURRENT_SETTINGS
logger.info("Building Gradio UI...")
with gr.Blocks(css=CSS, analytics_enabled=False, title="GhostAI Music Generator") as demo:
    gr.Markdown(f"""
    <div class="header" role="banner" aria-label="GhostAI Music Generator">
        <div class="logo">π»</div>
        <h1>GhostAI Music Generator</h1>
        <p>30s chunking, seamless joins, 1-minute ready, API status & settings save</p>
    </div>
    """)
    with gr.Column(elem_classes="input-container"):
        gr.Markdown("### Prompt")
        instrumental_prompt = gr.Textbox(
            label="Instrumental Prompt",
            placeholder="Type your instrumental prompt or use genre buttons below",
            lines=4,
            value=loaded.get("instrumental_prompt", ""),
        )
        with gr.Row():
            rhcp_btn = gr.Button("Red Hot Chili Peppers πΆοΈ")
            nirvana_btn = gr.Button("Nirvana πΈ")
            pearl_jam_btn = gr.Button("Pearl Jam π¦ͺ")
            soundgarden_btn = gr.Button("Soundgarden π")
            foo_fighters_btn = gr.Button("Foo Fighters π€")
        with gr.Row():
            smashing_pumpkins_btn = gr.Button("Smashing Pumpkins π")
            radiohead_btn = gr.Button("Radiohead π§ ")
            classic_rock_btn = gr.Button("Metallica Heavy Metal πΈ")
            alternative_rock_btn = gr.Button("Alternative Rock π΅")
            post_punk_btn = gr.Button("Post-Punk π€")
        with gr.Row():
            indie_rock_btn = gr.Button("Indie Rock π€")
            funk_rock_btn = gr.Button("Funk Rock πΊ")
            detroit_techno_btn = gr.Button("Detroit Techno ποΈ")
            deep_house_btn = gr.Button("Deep House π ")
    with gr.Column(elem_classes="settings-container"):
        gr.Markdown("### Settings")
        with gr.Group(elem_classes="group-container"):
            cfg_scale = gr.Slider(1.0, 10.0, step=0.1, value=float(loaded.get("cfg_scale", DEFAULT_SETTINGS["cfg_scale"])), label="CFG Scale")
            top_k = gr.Slider(10, 500, step=10, value=int(loaded.get("top_k", DEFAULT_SETTINGS["top_k"])), label="Top-K")
            top_p = gr.Slider(0.0, 1.0, step=0.01, value=float(loaded.get("top_p", DEFAULT_SETTINGS["top_p"])), label="Top-P")
            temperature = gr.Slider(0.1, 2.0, step=0.01, value=float(loaded.get("temperature", DEFAULT_SETTINGS["temperature"])), label="Temperature")
            total_duration = gr.Dropdown(choices=[30, 60, 90, 120], value=int(loaded.get("total_duration", 60)), label="Song Length (seconds)")
            bpm = gr.Slider(60, 180, step=1, value=int(loaded.get("bpm", 120)), label="Tempo (BPM)")
            drum_beat = gr.Dropdown(choices=["none", "standard rock", "funk groove", "techno kick", "jazz swing"], value=str(loaded.get("drum_beat", "none")), label="Drum Beat")
            synthesizer = gr.Dropdown(choices=["none", "analog synth", "digital pad", "arpeggiated synth"], value=str(loaded.get("synthesizer", "none")), label="Synthesizer")
            rhythmic_steps = gr.Dropdown(choices=["none", "syncopated steps", "steady steps", "complex steps"], value=str(loaded.get("rhythmic_steps", "none")), label="Rhythmic Steps")
            bass_style = gr.Dropdown(choices=["none", "slap bass", "deep bass", "melodic bass"], value=str(loaded.get("bass_style", "none")), label="Bass Style")
            guitar_style = gr.Dropdown(choices=["none", "distorted", "clean", "jangle"], value=str(loaded.get("guitar_style", "none")), label="Guitar Style")
            target_volume = gr.Slider(-30.0, -20.0, step=0.5, value=float(loaded.get("target_volume", -23.0)), label="Target Loudness (dBFS RMS)")
            preset = gr.Dropdown(choices=["default", "rock", "techno", "grunge", "indie", "funk_rock"], value=str(loaded.get("preset", "default")), label="Preset")
            max_steps = gr.Dropdown(choices=[1000, 1200, 1300, 1500], value=int(loaded.get("max_steps", 1500)), label="Max Steps (per chunk hint)")
            bitrate_state = gr.State(value=str(loaded.get("bitrate", "192k")))
            sample_rate_state = gr.State(value=str(loaded.get("output_sample_rate", "48000")))
            bit_depth_state = gr.State(value=str(loaded.get("bit_depth", "16")))
            with gr.Row():
                bitrate_128_btn = gr.Button("Bitrate 128k")
                bitrate_192_btn = gr.Button("Bitrate 192k")
                bitrate_320_btn = gr.Button("Bitrate 320k")
            with gr.Row():
                sample_rate_22050_btn = gr.Button("SR 22.05k")
                sample_rate_44100_btn = gr.Button("SR 44.1k")
                sample_rate_48000_btn = gr.Button("SR 48k")
            with gr.Row():
                bit_depth_16_btn = gr.Button("16-bit")
                bit_depth_24_btn = gr.Button("24-bit")
        with gr.Row():
            gen_btn = gr.Button("Generate Music π")
            clr_btn = gr.Button("Clear π§Ή")
            save_btn = gr.Button("Save Settings πΎ")
            load_btn = gr.Button("Load Settings π")
            reset_btn = gr.Button("Reset Defaults β»οΈ")
    with gr.Column(elem_classes="output-container"):
        gr.Markdown("### Output")
        out_audio = gr.Audio(label="Generated Track", type="filepath")
        status_box = gr.Textbox(label="Status", interactive=False)
        vram_box = gr.Textbox(label="VRAM Usage", interactive=False, value="")
    with gr.Column(elem_classes="logs-container"):
        gr.Markdown("### Logs")
        log_output = gr.Textbox(label="Last Log File", lines=16, interactive=False)
        log_btn = gr.Button("View Last Log")
    # Genre buttons -> prompt text (chunk_num fixed = 1 for initial suggestion)
    rhcp_btn.click(
        set_red_hot_chili_peppers_prompt,
        inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, gr.State(value=1)],
        outputs=instrumental_prompt
    )
    nirvana_btn.click(set_nirvana_grunge_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    pearl_jam_btn.click(set_pearl_jam_grunge_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    soundgarden_btn.click(set_soundgarden_grunge_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    foo_fighters_btn.click(set_foo_fighters_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    smashing_pumpkins_btn.click(set_smashing_pumpkins_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    radiohead_btn.click(set_radiohead_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    classic_rock_btn.click(set_classic_rock_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    alternative_rock_btn.click(set_alternative_rock_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    post_punk_btn.click(set_post_punk_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    indie_rock_btn.click(set_indie_rock_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    funk_rock_btn.click(set_funk_rock_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    detroit_techno_btn.click(set_detroit_techno_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    deep_house_btn.click(set_deep_house_prompt, [bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], instrumental_prompt)
    # Bitrate / SR / Bit depth quick-sets
    bitrate_128_btn.click(set_bitrate_128, outputs=bitrate_state)
    bitrate_192_btn.click(set_bitrate_192, outputs=bitrate_state)
    bitrate_320_btn.click(set_bitrate_320, outputs=bitrate_state)
    sample_rate_22050_btn.click(set_sample_rate_22050, outputs=sample_rate_state)
    sample_rate_44100_btn.click(set_sample_rate_44100, outputs=sample_rate_state)
    sample_rate_48000_btn.click(set_sample_rate_48000, outputs=sample_rate_state)
    bit_depth_16_btn.click(set_bit_depth_16, outputs=bit_depth_state)
    bit_depth_24_btn.click(set_bit_depth_24, outputs=bit_depth_state)
    # Generate
    gen_btn.click(
        generate_music_wrapper,
        inputs=[
            instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
            drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
            preset, max_steps, vram_box, bitrate_state, sample_rate_state, bit_depth_state
        ],
        outputs=[out_audio, status_box, vram_box]
    )
    # Clear
    clr_btn.click(
        clear_inputs, outputs=[
            instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
            drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
            preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state
        ]
    )
    # Save / Load / Reset actions
    def _save_action(
        instrumental_prompt_v, cfg_v, top_k_v, top_p_v, temp_v, dur_v, bpm_v,
        drum_v, synth_v, steps_v, bass_v, guitar_v, vol_v, preset_v, maxsteps_v, br_v, sr_v, bd_v
    ):
        s = {
            "instrumental_prompt": instrumental_prompt_v,
            "cfg_scale": float(cfg_v),
            "top_k": int(top_k_v),
            "top_p": float(top_p_v),
            "temperature": float(temp_v),
            "total_duration": int(dur_v),
            "bpm": int(bpm_v),
            "drum_beat": str(drum_v),
            "synthesizer": str(synth_v),
            "rhythmic_steps": str(steps_v),
            "bass_style": str(bass_v),
            "guitar_style": str(guitar_v),
            "target_volume": float(vol_v),
            "preset": str(preset_v),
            "max_steps": int(maxsteps_v),
            "bitrate": str(br_v),
            "output_sample_rate": str(sr_v),
            "bit_depth": str(bd_v)
        }
        save_settings_to_file(s)
        for k, v in s.items():
            CURRENT_SETTINGS[k] = v
        return "β
 Settings saved."
    def _load_action():
        s = load_settings_from_file()
        for k, v in s.items():
            CURRENT_SETTINGS[k] = v
        return (
            s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
            s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
            s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
            s["bitrate"], s["output_sample_rate"], s["bit_depth"],
            "β
 Settings loaded."
        )
    def _reset_action():
        s = DEFAULT_SETTINGS.copy()
        save_settings_to_file(s)
        for k, v in s.items():
            CURRENT_SETTINGS[k] = v
        return (
            s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
            s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
            s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
            s["bitrate"], s["output_sample_rate"], s["bit_depth"],
            "β
 Defaults restored."
        )
    save_btn.click(
        _save_action,
        inputs=[
            instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
            drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
            preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state
        ],
        outputs=status_box
    )
    load_btn.click(
        _load_action,
        outputs=[
            instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
            drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
            preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, status_box
        ]
    )
    reset_btn.click(
        _reset_action,
        outputs=[
            instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
            drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
            preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, status_box
        ]
    )
    # Logs
    log_btn.click(get_latest_log, outputs=log_output)
# ======================================================================================
# LAUNCH GRADIO
# ======================================================================================
logger.info("Launching Gradio UI at http://0.0.0.0:9999 ...")
try:
    demo.launch(
        server_name="0.0.0.0",
        server_port=9999,
        share=False,
        inbrowser=False,
        show_error=True
    )
except Exception as e:
    logger.error(f"Failed to launch Gradio UI: {e}")
    logger.error(traceback.format_exc())
    sys.exit(1)
 | 
