--- library_name: peft license: other base_model: mistralai/Ministral-8B-Instruct-2410 tags: - generated_from_trainer model-index: - name: workspace/FinLoRA/lora/axolotl-output/xbrl_term_mistral_8b_8bits_r8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0` ```yaml base_model: mistralai/Ministral-8B-Instruct-2410 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 load_in_8bit: true load_in_4bit: false bnb_4bit_use_double_quant: false bnb_4bit_quant_type: null bnb_4bit_compute_dtype: null adapter: lora lora_model_dir: null lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj - k_proj - path: /workspace/FinLoRA/data/train/xbrl_term_train.jsonl type: system_prompt: '' field_system: system field_instruction: context field_output: target format: '[INST] {instruction} [/INST]' no_input_format: '[INST] {instruction} [/INST]' dataset_prepared_path: null val_set_size: 0.02 output_dir: /workspace/FinLoRA/lora/axolotl-output/xbrl_term_mistral_8b_8bits_r8 peft_use_dora: false peft_use_rslora: false sequence_len: 4096 sample_packing: false pad_to_sequence_len: false wandb_project: finlora_models wandb_entity: null wandb_watch: gradients wandb_name: xbrl_term_mistral_8b_8bits_r8 wandb_log_model: 'false' bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: null logging_steps: 500 flash_attention: false deepspeed: deepspeed_configs/zero1.json warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> ```

# workspace/FinLoRA/lora/axolotl-output/xbrl_term_mistral_8b_8bits_r8 This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the /workspace/FinLoRA/data/train/xbrl_term_train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 1.4496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 180 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0 | 0 | 2.6069 | | No log | 0.2507 | 45 | 1.6456 | | No log | 0.5014 | 90 | 1.5092 | | No log | 0.7521 | 135 | 1.4593 | | No log | 1.0 | 180 | 1.4496 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2