--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Framing shop providing custom picture framing and art preservation services. We frame artwork, photographs, and memorabilia with quality materials. - text: Lymph node pathology reveals metastatic adenocarcinoma with extracapsular extension. Immunostains are consistent with breast primary tumor origin. - text: Fluoroscopy-guided placement of central venous catheter for chemotherapy administration. Port placement performed successfully with proper tip positioning confirmed. - text: Immunotherapy harnesses the body's immune system to fight cancer. Checkpoint inhibitors block proteins like PD-1 and CTLA-4 that normally prevent immune cells from attacking cancer cells, while CAR-T therapy genetically modifies T cells to better recognize cancer. - text: Endometrial biopsy shows endometrioid adenocarcinoma, grade 2, with squamous differentiation. Deep myometrial invasion is present involving the outer half. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: TimKond/S-PubMedBert-MedQuAD model-index: - name: SetFit with TimKond/S-PubMedBert-MedQuAD results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with TimKond/S-PubMedBert-MedQuAD This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TimKond/S-PubMedBert-MedQuAD](https://huggingface.co/TimKond/S-PubMedBert-MedQuAD) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [TimKond/S-PubMedBert-MedQuAD](https://huggingface.co/TimKond/S-PubMedBert-MedQuAD) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | non_oncology | | | oncology | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Lymph node pathology reveals metastatic adenocarcinoma with extracapsular extension. Immunostains are consistent with breast primary tumor origin.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 12 | 31.1543 | 929 | | Label | Training Sample Count | |:-------------|:----------------------| | non_oncology | 293 | | oncology | 180 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: 200 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.005 | 1 | 0.1922 | - | | 0.25 | 50 | 0.0766 | - | | 0.5 | 100 | 0.0081 | - | | 0.75 | 150 | 0.0058 | - | | 1.0 | 200 | 0.0005 | 0.0074 | ### Framework Versions - Python: 3.11.10 - SetFit: 1.1.2 - Sentence Transformers: 5.0.0 - Transformers: 4.49.0 - PyTorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```