--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Framing shop providing custom picture framing and art preservation services. We frame artwork, photographs, and memorabilia with quality materials. - text: Lymph node pathology reveals metastatic adenocarcinoma with extracapsular extension. Immunostains are consistent with breast primary tumor origin. - text: Fluoroscopy-guided placement of central venous catheter for chemotherapy administration. Port placement performed successfully with proper tip positioning confirmed. - text: Immunotherapy harnesses the body's immune system to fight cancer. Checkpoint inhibitors block proteins like PD-1 and CTLA-4 that normally prevent immune cells from attacking cancer cells, while CAR-T therapy genetically modifies T cells to better recognize cancer. - text: Endometrial biopsy shows endometrioid adenocarcinoma, grade 2, with squamous differentiation. Deep myometrial invasion is present involving the outer half. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: TimKond/S-PubMedBert-MedQuAD model-index: - name: SetFit with TimKond/S-PubMedBert-MedQuAD results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with TimKond/S-PubMedBert-MedQuAD This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TimKond/S-PubMedBert-MedQuAD](https://huggingface.co/TimKond/S-PubMedBert-MedQuAD) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [TimKond/S-PubMedBert-MedQuAD](https://huggingface.co/TimKond/S-PubMedBert-MedQuAD) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | non_oncology |